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Abstract.
A sample of 3,115 data of perovskite oxides in the form of ABO3 (A and B being the cations) was taken for this study of the
application of machine learning in predicting the lattice constants (a determining factor in material design). The ANN, DT, RF,
KNN, and SVM models were used to predict the lattice constants of perovskites because machine learning techniques have been
phenomenal in uncovering crystal structures in the field of material research in recent years. These models used properties like
ionic radii, formation energy, and band gap as input features. The R2 score was used to assess the regression model’s performance.
The Random Forest Regression Model outperforms all other regression models regarding dataset and features.
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INTRODUCTION

The crystal structure of perovskite is similar to that of
calcium titanate (CaTiO3). Perovskite has the general
formula ABX3, where A and B are alkaline earth (Ca, Ba,
Sr, etc.) and transition metal (Fe, Ti, Ni, etc.) cations,
respectively, and X is an oxyhalide ion. The B cations are
in 6-fold coordination surrounded by an octahedron of
anions in an ideal cubic structure, and the A cation is in
12-fold cuboctahedral coordination. In cubic space, they
belong to the Pm3m group [1, 2].

Tetragonal, orthorhombic, rhombohedral, monoclinic,
and triclinic structures exist in perovskite, depending on
structural variations caused by tilting characteristics such
as ferroelectricity, charge ordering, spin-dependent trans-
port, high thermopower, and huge magnetoresistance. As
a result of their wide range of applications, these char-
acteristics have been frequently exploited in materials
research [1]. Several microscopic parameters in mate-
rial design, such as band gap energy, electron affinity,

molecule atomization energy, and lattice constant, are
essential in material performance. The lattice mismatch
between layers made up of different materials is one of
the critical concerns in material design. To solve this
problem, predicting the lattice constant from many con-
ceivable combinations of elements is extremely difficult
and time-consuming [3].

Researchers are employing various computational tools
such as Density Functional Theory (DFT) [4]- [5] as a
result of advancements in high-performance computing
approaches. DFT is based on quantum mechanics’ first
principle, which solves the Schrodinger equation by min-
imizing the system’s total energy using a density func-
tional equation known as the Kohn-Sham equation [6]-
[7]. The electronic structure of atoms or molecules and
the elastic characteristics of compounds are determined
separately using the DFT method. Significant computa-
tional resources are necessary when utilizing DFT [8] as
well as in-depth knowledge of the electrical configura-
tion, bonding energy, charge distribution, and density of
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the states of the material under study [9].

In recent years, machine learning (ML)-based techniques
have offered several advantages over DFT. The physic-
ochemical properties of substances can be determined
using different predictive models in machine learning.
These models learn from training datasets and predict
compound attributes, allowing for high-performance pre-
diction at a low temporal and computational cost.

Different machine learning techniques have been used
to estimate the lattice constants of perovskite materials
for obtaining lattice constants in GdFeO3 - type ABO3
perovskites, Li et al. employed LR and ANN models
[10]. The LR model used elemental ionic radii, whereas
the ANN model used other fundamental properties such
as the electronegativities of cations A and B and the va-
lence of ion A, including the ionic radii. The ANN model
was proven more accurate than the LR model during the
experiment. The accuracy error limit was within 2 %, al-
though the prediction accuracy on testing data was lower
than on training data. The SVR model outperformed
the ANN model on both training and testing data of or-
thorhombic ABO3 perovskites. [11].

The mean percentage absolute difference (PAD) values
obtained for all lattice constants were 0.43 percent, 0.54
percent, and 0.96 percent, indicating that the SVR tech-
nique had the best prediction performance. Majid et al.
also worked on cubic perovskites, using solely ionic radii
as an essential feature to calculate lattice constants. His
research used SVR, RF, GRNN, and multiple linear re-
gression (MLR) as machine learning models. According
to the study, the SVR model outperformed the others re-
garding training and testing data sets’ accuracy. [2].

In the previous works, it was found that the lattice con-
stant prediction of perovskites was carried out using very
few models. This paper uses prediction models such as
ANN, DT, RF, KNN, and SVM to calculate the lattice
constants of cubic perovskites.

METHODOLOGY

In the present work, machine learning techniques have
been employed to study the lattice constants of the per-
ovskite materials. In predicting the lattice constants,
properties such as ionic radii, band gap, and formation
energy were used as input parameters. The experimental
value of the lattice constant was taken from Wolverton
Oxides Data [12]. A total of 3,115 cubic perovskite ox-
ides were taken, where 2,920 compounds were used for
training and 195 were used for testing. The testing com-

pounds have been given in the Appendix section. After
splitting the datasets, a 16-fold cross-validation was ap-
plied for the DT, RF, KNN, SVR, and ANN models.
Random Forest Regression provides the maximum value
of the R2 score, and the data sets were used to evaluate
the performance for the rest of the regression models.
Figure 1 shows the block diagram used to carry out all the
calculations in this study, including a detailed flow of the
methodology.

FIGURE 1. Block Diagram

The performance evaluation was measured by calculating
PAD and R2 values.

Percentage of absolute difference is the performance mea-
sure used to evaluate the predictive accuracy and is de-
fined as:

PAD % =
Ytrue−Ypred

Ytrue
∗100 (1)

where,
Ytrue: true values of the lattice constants
Ypred : predicted values of lattice constants

The R2 score is the measure of goodness of the regres-
sion model i.e., it represents how much the data converged
around the mean value. The R2 score was used to evaluate
the performance of the regression models.

R2 = 1− ∑i(yi− ŷi)
2

∑i(yi− ȳi)2 (2)
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where
yi are the actual values
ŷi are the predicated values
ȳi are the mean values

MODEL

Artificial Neural Network (ANN)

The Artificial Neural Network (ANN) is the formal math-
ematical description of neurons and the network structure.
It suggests that a single neuron can perform the logical
function. ANN has three types of layers, namely Input
Layer, Output Layer, and Hidden Layer. The input layer
receives the data (or signal) from the outside world. The
layers of the hidden neurons lie between the input and the
output layers, and which cannot be viewed from outside
the network [13].

ANN is the group of nodes interconnected to one another
which work together to quantify a prediction [14]. They
are composed of simple elements called neurons or nodes
that receive a set of weighted inputs, process their sum
with its activation function φ , and pass the result to nodes
further down the graph [15]. With this procedure, a neu-
ron can make simple mathematical decisions.

All the nodes are connected to form a neural network.
Usually, this is done in layers—the inputs to a layer of
nodes are the outputs from the previous layer. Together,
the neurons can analyze complex problems, emulate al-
most any function including the complicated ones, and
provide accurate answers [16].

The goal of this study is to train a network using labeled
data so that a set of inputs can be fed into it, and thereby
allowing the network to produce the appropriate outputs
for the unlabeled data. Since it is a supervised learning
algorithm, the input xi and their corresponding labels yi
are used in pairs. In the first iteration of the training pro-
cess, the values in the neurons are calculated using the
weighted inputs. The values in the output neurons are
calculated as well. The predicted and the actual values
are compared using the appropriate loss function in order
to estimate the loss or error. Afterward, the gradient de-
scent optimization is performed to update the weights and
eventually reduce the loss value. The training process is
repeated until the optimal weights are achieved [17, 18].
The network and its trained weights form a function (de-
noted h) that operates on input data. With the trained
network, predictions can be made once an unlabeled test
input is provided [19]. For the input features xi, the pre-
dicted value is shown as [17].

ŷ = g

[
βih

(
n

∑
i=1

xiαi +φ

)]
(3)

where,
xi is the input variables;
α is the weight connecting input node to hidden node;
β is the weight connecting hidden node to output node;
φ is the corresponding bias;
g(), h() are the activation functions at hidden and output
layers respectively.

The weights are updated in the next phase of back propa-
gation with the following formula [18]

W (l) =W (l)−η ∆W (l)L (4)

where,
W (l) is a set of weights associated with the neurons in
layer l;
η is the learning rate;
∆W (l)L is the Partial Derivative of the quantified Loss
with respect to the weights.

Several experiments were performed with the hyperpa-
rameters, thereby achieving 80% of the R2 score with the
following specifications:

Loss Function: Mean Squared Error; Metrics: Mean
Absolute Error; Optimizer: Adam; Epochs: 200.

K - Nearest Neighbour (KNN)

K-Nearest Neighbor (KNN) is another machine learning
algorithm that predicts the targeted numerical values for
the corresponding input values using certain similarity
metrics (e.g., distance functions). KNN is an effective
way of predicting the values of a function in a point with
reference to its values in other points [20]. There are
different ways of measuring how ‘close’ two points are.
The “Euclidean Distance” has been used as the similarity
measure. The Euclidean distance between two points is
defined as following [21].

ED(x,y) =

√
n

∑
i=1
|xi− yi| (5)

The value ‘K’ determines the number of similar points to
consider while making the prediction (nearest neighbors).
The implementation of the KNN regression is to calcu-
late the average of the numerical target of the K nearest
neighbors. Regarding the data in this study, the Euclidean
Distance was used as the evaluation metric, whereas the
five neighbors for the KNN workflow were considered.
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Decision Tree

A decision tree is a supervised machine learning model
that is used to predict a target by learning decision rules
from features. A decision tree is constructed by recur-
sive partitioning-starting from the root node (known as
the first parent), each node can then be split into left and
right child nodes. These nodes can be further split, until
they themselves become parent nodes of their resulting
children nodes.

Starting from the root, the data were split on the fea-
ture that results in the highest homogeneity. The Mean
Squared Error (MSE) was used to calculate the homo-
geneity of a numerical sample. The MSE can be calcu-
lated as [22].

MSE =
1
n

n

∑
i=1

(Xobs,i−Xmodel,i)
2 (6)

where,
n is the number of training samples;
Xobs,i is the true value for ith data;
Xmodel,i is the predicted value for ith data.

If the numerical sample is completely homogeneous, the
value of MSE is zero. The MSE reduction is based on the
decrease in MSE after a dataset is split on an attribute.
Constructing a decision tree is all about finding the at-
tribute that returns the highest MSE reduction (i.e., the
most homogeneous branches).

There may arise anomalies in the decision trees due to
outliers or noise. Slight changes in the values may result
in completely different results. Constraints like tree max-
depth, max-leaf nodes, etc. were implemented to erad-
icate the inconsistency and prevent overfitting. Starting
from the maximum tree depth of 5, a maximum tree depth
of 10 was experimented with and used to achieve the R2

score of 90.7 %.

Random Forest Method (RF)

The random forests model improves by introducing an
additional layer of randomness to bootstrap aggregating,
which is used to predict the LC of perovskites compounds
[23]. A set of 2,920 training samples were randomly se-
lected as subsets descriptors to grow trees by RF algo-
rithms.

A random forest is a meta-estimator (i.e., it combines the
result of multiple predictions) that aggregates many deci-
sion trees, with some helpful modifications:

• In each node, the split in the number of features is
limited to a certain percentage of the whole. This
ensures that the random forest model does not rely
too heavily on any individual feature and makes fair
use of all potentially predictive features.

• A random sample from the original data is drawn
while generating the splits. Randomness is added
to avoid overfitting.

The predictions of individual trees are aggregated—through
averaging-into a single ensemble random forest model.
The ensemble trains the multiple models on training data
and uses the prediction of all models to make the final
output [24].

In the RF network, a randomly generated tree (ntree =
2920) was provided for better performance. The values of
an independently sampled random vector gave the output
in this case. After multiple runs on the training data, the
best set of data—one that gives the best results—would
finally be reported. Similar to the decision tree, a max-
imum depth of 20 and the minimum samples split of 2
with an experiment for the RF model were used. The
quality of the split was measured using the Mean Squared
Error.

Support Vector Machine

Support Vector Regression is used for various applica-
tions in materials science [10, 25, 26]. It is a powerful
machine learning algorithm that allows the researchers
to choose how tolerant they are of errors, both through
an acceptable error margin (ε)and through tuning their
tolerance of falling outside that acceptable error rate [25].

Theoretical details of SVR models are available in the
statistical learning theory [27], but it gives the researchers
the flexibility to define the extent of acceptable error in
a particular model and find out an appropriate line (or
hyperplane in higher dimensions) to fit the data.

In contrast to OLS described in Linear Regression, the
objective function of SVR is to minimize the coefficients,
more specifically, the l2-norm of the coefficient vector,
not the squared error. The error term is instead handled
in the constraints, where the absolute error is set less than
or equal to a specified margin, called the maximum error
(ε). The epsilon can be tuned to gain the desired accu-
racy for the given model. The new objective function and
constraints are as follows [28].

30 Poudel et al
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Minimize:

1
2
‖w‖2 (7)

Subject to:

{
yi−< w,xi >−b≤ ε

< w,xi >+b− yi ≤ ε
(8)

where,
wi is the coefficient vector / weights;
xi is the training sample;
yi is the predicted values for xi;
b is the intercept / bias.

SVR can also use the kernel functions to transform the
data into a higher dimensional feature space and make it
possible to perform the linear separation.

In this case, a Radial Basis Function (RBF) kernel was
used to support the vector regression. The RBF kernel,
along with two feature vectors, x and x′ is defined as [29].

K(x,x′) = exp(−‖x− x′‖2

2σ2 ) (9)

where,
‖x− x′‖ is the squared Euclidean distance between the
feature vectors;
σ = free parameter.

RESULTS AND DISCUSSION

Table 1 shows the outcome of the lattice constant predic-
tion for cubic perovskite oxide. One hundred ninety-five
compounds have been given in the table, along with their
lattice constants a, b, and c, which are used to test the
various models. The prediction accuracy is assessed by
comparing the experimental and predicted values, using
PAD and R2 values from 0 to 1. The smaller the PAD
and the higher R2, the more accurate values are with the
experimental ones.

Comparison in terms of PAD

The lattice constants of the compounds were predicted
using factors such as ionic radii and electronegativity
in previous work. However, to determine the predic-
tion accuracy of the lattice constant of cubic perovskites,

characteristics such as ionic radii, band gap, and forma-
tion energy were used as input parameters in this study
(in the form ABO3). The band gap and lattice constant
correlation were determined to be 0.041, which indicates
a lesser association. The correlation values of ionic radii
and formation energy with the lattice constant were 0.31,
0.80, and 0.29, demonstrating a significant association.
For ANN, RF, KNN, DT, and SVR models, mean PAD
values of 0.03, 0.01, 0.02, 0.02, and 0.02 were obtained.

Performance Comparison in terms of Linear
Correlation

In terms of linear correlation, the performance of pre-
diction models was also compared. The linear fit graph
between the experimental and anticipated values for the
testing data set is shown in Figures 1-5.

The observed and predicted lattice constants using KNN
are shown in Figure 2. The R2 value was 0.785, indicating
that the data averaged around the best fit line.

Figure 3 shows how the SVR with RBF kernel was uti-
lized to forecast the lattice constant values. Most values
were mapped around the best fit line with a few outliers.
The R2 value was 0.803, showing that the correlation was
better than KNN.

Figure 4 depicts the linear correlation concerning ANN
in the same way. The ultimate R2 score was 0.809 after
several tests with the hyperparameters of the neural net-
work.

FIGURE 2. Experimental Lattice Constant of KNN

A decent correlation with the R2 score of 0.907 was ob-
tained using the decision tree algorithm as shown in figure

31 Poudel et al
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TABLE I. Summary of Percentage Absolute Difference.

FIGURE 3. Experimental Lattice Constant of SVR

FIGURE 4. Experimental Lattice Constant of ANN

5. Almost all the data points are centered around the best
fit line, showing a minimum error and a decent prediction.

Finally, the best result was obtained using the Random
Forest Algorithm that outperformed all the other re-

FIGURE 5. Experimental Lattice Constant of Decision Tree

FIGURE 6. Experimental Lattice Constant of Random Forest

gression models. Minimum anomalies were observed
as shown in figure 6, and the R2 score was obtained to be
0.913.

32 Poudel et al
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FIGURE 7. Performance comparison of different ML models

CONCLUSIONS

The performance evaluation of various prediction models
was compared in this study. A total of 3,115 experimen-
tal datasets were employed, with 70 % used to train the
algorithm and 30 % used to test model correctness. The
empirical and projected lattice constants are compared in
Fig. 7 using various regression models. The R2 ratings
generated from all of the algorithms are near in value, as
evidenced by the height of the bars. The overall results
provided in the research, however, show that the Ran-
dom Forest Regression (RF) model predicted the lattice
constants of cubic perovskites with greater accuracy than
the other models used. This methodology can be used to
estimate the lattice constant of double perovskites, which
have also been employed as a material for an active layer
in solar cells in the future.
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