Implementation of Error Correction on IBM Quantum Computing Devices
DOI:
https://doi.org/10.3126/jnphyssoc.v8i1.48278Keywords:
Bit-flip error, phase-flip error, quantum circuit, quantum gates, qubitsAbstract
Quantum noise cannot be avoided in the quantum computing devices due to unstable nature of qubits and signals. The error caused by quantum noise can be detected and corrected using different error correcting codes. In this work, we have tested the feasibility and accuracy of three qubit bit flip and phase flip error correcting code in quantum computer provided by International Business Machine Quantum Experience (IBM QX) cloud platform. Among five quantum processors, ibmq_ourense is found to have highest average accuracy 77.9% ± 3.09% on all qubits simultaneously. Three qubits bit flip error correction circuit gave correct output 89.9% ± 1.01% of the time on average. Similarly three qubits phase flip error correction circuit give 88.05% ±1.89%. The measurement error mitigation has improved the accuracy of bit flip and phase flip error correction code by 5.01% and 7.01% respectively on average. The error rate shows that the error in quantum computations are random in nature and can be corrected. IBM QX quantum computer are suitable for only small scale quantum computation and demonstrate purpose. Furthermore, the accuracy of error correction codes can be increased with the use of higher accuracy quantum qubits and quantum gates.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
All right reserved. No part of this Journal may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval system, without permission in writing from the publisher, except by a reviewer who may quote brief passage in a review. The views and interpretation in this journal are those of author(s) and they are not attributable to the NPS.