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ABSTRACT

The study was carried out in Tinau-Mathagadhi section of Palpa District, Lumbini Province. The output of the landslide 
susceptibility analysis using frequency ratio (FR) is evaluated. Google Earth (CNES/Airbus and Maxar Technologies) 
Imagery of 50 cm spatial resolution was used to detect landslides. Data training and testing sampling was created using 
the landslide inventory. Eight causative factors were derived from topographic, geological, and land-use maps. The 
causative factors and training events were used to determine the FR ratings. The objective of present study is to address 
the effect of the Main Boundary Thrust (MBT) along with other important parameters in landslide susceptibility mapping. 
The integration of causative factors that assigned FR scores yielded the landslide susceptibility map. The validation of 
79.6% was obtained using the ROC-AUC curve. Among eight causative factors, it was found that distance from the Main 
Boundary Thrust (MBT), aspect, land-use, and geology are dominating factors in the occurrence of the landslide. The FR 
method is based on a quantitative relationship between landslide inventory and landslide affecting factors. The method is 
valid for Tinau-Mathagadhi section and MBT is one of the causes of landslides in this area.
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INTRODUCTION

Nepal's hilly regions are characterized by rough terrain, active 
seismicity, and monsoon rains, rendering them vulnerable to a 
variety of geohazards. Landslides are dynamic geohazards that 
can have catastrophic effects on long-term socio-economic 
development in mountainous terrains.
The presence of deep and steep river valleys in central Nepal 
is largely supported by the geomorphic and tectonic past of the 
Nepal Himalaya (Bell et al., 2021). There are many large-scale 
and small-scale landslides in these valleys. Earthquakes often 
pose a long-term threat to the slope's stability, particularly 
in seismically active areas like Nepal (Roback et al., 2018). 
The study area, Tinau-Mathagadhi is located in Palpa District, 
Nepal (Fig. 1). The topography of the area is highly dissected 
and roughly followed by the presence of thrust (MBT) which 
makes it susceptible to landslides. The altitude of the area 
ranges from 389 m to 1843 m and the total area under study 
is 59.57 sq. km. The study area is bounded by 83.491358 to 
83.639506 longitudes and 27.799393 to 27.735617 latitudes. 
The study area can be accessed by the Siddhartha Rajmarg 
and many other local roads. It is additionally connected with 
numerous graveled streets and foot trails.
The climatic condition of the Tinau-Mathagadhi area is 
upper tropical to the sub-tropical zone. The driest month is 
December, with 22 mm/0.9 inches of precipitation. Most of the 
precipitation here falls in July, averaging 690 mm/27.2 inches. 
Due to steep slope, rugged topography, and the fragile rock 

condition, the Tinau-Mathagadhi area is susceptible to many 
slopes instabilities issues.

Fig. 1: Location map of the Tinau-Mathagadhi section.
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METHODOLOGY

For landslide susceptibility mapping, it is critical to conclude 
that landslide causative factors affect the spatial distribution of 
landslides, and that future landslides will occur under similar 
conditions to previous landslides (Mersha and Meten, 2020).
Many researchers have devised efficient methods for creating 
an accurate landslide susceptibility map over the last few 
decades. Frequency ratio (Goetz et al., 2015; Hong et al., 
2016; Lee et al., 2016), logistic regression (Chen et al., 2017; 
Steger et al., 2016), decision trees (Beucher et al., 2019), fuzzy 
logic (Pham et al., 2021), neuro-fuzzy systems (Shihabudheen 
and Pillai, 2018), support vector machines (Huang and Zhao, 
2018), artificial neural networks (Gameiro et al., 2021), 
Analytical Hierarchy Process (AHP) (Sonker et al., 2021), 
information value method (IVM) (Farooq and Akram, 
2021) and multimethod approach (Wubalem, 2021) are a 

few illustrations of these methods. The methodology used a 
frequency ratio (FR) to evaluate the efficiency of the landslide 
susceptibility study.
The FR model has the advantage of being able to rank the 
causative variables in terms of their likelihood of causing 
a landslide, as well as determining whether a given set of 
causative factor values would be dangerous in the case of a 
landslide.
Manual digitization of aerial photographs/satellite images from 
the Google Earth (March 2020) image was used to conduct 
the landslide inventory of 118. The inventory of landslides 
was then divided into training (70–83%) and testing (30–35%) 
samples. A training sample was used to create the landslide 
susceptibility index model (LSI) while a testing sample was 
used to validate the model by using Receiver Operating Curve 
(ROC). Figure 2 shows the detailed methodology used in the 
analysis.

Landslide susceptibility mapping requires the preparation of 
thematic data layers. Hence eight thematic layers viz. geology, 
slope, aspect, plan curvature, distance from the stream, distance 
from the thrust (MBT), relief and land use land cover all of 
20×20 m cell were used. A digital elevation model (DEM) 
derived from a triangulated irregular network (TIN) surface 
was used to prepare topographic and hydrologic factors. The 
TIN was generated using ArcMap 10.4.1 and contour lines at 
20 m intervals from digital topographic maps. Topographic 
and hydrologic factors such as slope gradient, plan curvature, 

slope aspect, relief, distance from the stream were taken into 
account for landslide susceptibility. LULC map was prepared 
by digitizing the image in ArcMap10.4.1. Geology and MBT 
of the area were extracted from petroleum block (Department 
of Mines and Geology, Government of Nepal) data. Distance to 
MBT map was created using the Euclidean distance algorithm.
After preparing eight factor maps, a landslide inventory 
map was used to cross with the all-factor maps and generate 
tabulated data. Hence, landslide susceptibility mapping was 
carried out using the frequency ratio method (FRM). LSI map 

Fig. 2: Methodology of landslide susceptibility mapping by using FR method.
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so generated was classified into map into five zones viz. very 
low, low, moderate, high and very high susceptible zones.

Frequency ratio method

Understanding the area-specific, physical conditions and 
processes for triggering the landslides is of significant 
importance to evaluate the probability of landslides. Frequency 
ratio is a quantitative technique for landslide susceptibility 
assessment using GIS techniques and spatial data (Baral et al., 
2021). The frequency ratio (FR) technique is frequently and 
effectively used for landslide susceptibility mapping (Wang 
and Li, 2017). It is based on the quantified association between 
the landslide inventory and the landslide causative factors 
(Saravanan et al., 2021). To obtain the frequency ratio (FR) 
for each class of the causative factors, a combination has been 
established between the landslide inventory map and factor 
map using Eq. (1) (Acharya and Lee, 2019; Fayez et al., 2018; 
Shu et al., 2021). 

                          (1)

where, Npix(1) = The number of pixels containing Landslide 
in a class, Npix(2) = Total number of pixels of each class in 
the whole area, Npix(3) = Total number of pixels containing 
landslide., Npix(4) = Total number of pixels in the study area
The derived frequency ratio is summed to develop a Landslide 
Susceptibility Index (LSI) map using Eq. (2) (Fayez et al., 
2018).

LSI = FR1 + FR2 + FR3 + FR4 + . . . . . . . . + FRn     (2)

RESULT AND DISCUSSION

Landslide inventory
Based on the Landsat images freely available on google earth 
and field visits, 118 landslides were mapped with a total area 
of 1.45 km2 (Fig. 3a,b).
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Fig. 3: Tinau-Mathagadhi section, Palpa District (a) Landslide inventory map, (b) Training and testing landslide datasets.

(a) (b)

Influencing factors
Land-use/land-cover: Land cover map was prepared by using 
an image classification tool (Fig. 4a). Table 1 shows that forest 
occupies 62% of total area, agricultural land occupies 19.3%, 
barren land occupies 9.2%, 7.4% grassland, 1.1% water body, 
and 0.9% road of total area. The settlement occupies the least 
area of 0.2% only. Crossing LULC data with present landslide 
shows that 46.3% of total landslide lies in the barren land, 
40.9% in forest area, 8.8% in grassland, 2.5% in agricultural 
land, and 0.4% of total landslide lies in the road (Table 1).
The frequency ratio for the land-use/land-cover shows that the 
barren land and grassland are highly susceptible to landslide 
as the high-frequency ratio are 5.05 and 1.18 respectively 
compared to other classes like the forest, settlement, and 
agricultural land which has least FR of 0.66, 0 and 0.13 
respectively (Table 2).
Geology: A geological map from the department of mines and 
geology was used (Fig. 4b). Geologically, the study area is 
divided into five major groups viz. LS: Lower Siwalik, MS1: 
Lower Middle Siwalik, MS2: Upper Middle Siwalik, Ar: Aru 
Formation, and Ch: Charchare Formation. Table 1 shows that 
Aru Formation dominates the study area covering 52.5% of the 
total area whereas at the same geology 39.9% of total landslide 
is present. Maximum percentage (53.4%) of the landslide was 
observed in the Upper Middle Siwalik that occupies an area of 
29.7%. Hence, MS2 region has a high-frequency ratio value of 
1.8. The Lower Siwalik and Lower Middle Siwalik have the 
least frequency ratio and the FR of the Charchare Formation 
is 0 since the region occupies only 0.9% of the total study area 
and has no landslide in the vicinity.
Distance to thrust: Distance to thrust (MBT) is an extrinsic 
parameter considered in this study and is the most important 
landslide causative parameter (Nath et al., 2021). MBT from 
petroleum Block No. 5 was obtained from the Department of 
Mines and Geology, Government of Nepal. The block was then 
georeferenced and the location of MBT was traced from the 
map. 
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Table 1: Tabulation of domain with landslide inventory with areal coverage.

Domain Class Class Pixel
Area (sq.

km)
% Class 

pixel
Landslide 

pixel
% Landslide 

pixel
Area (sq.km)

Slope 0 – 10° 5909 2.36 3.97 20 0.6 0.008
10 – 20° 16225 6.49 10.90 82 2.3 0.033
20 – 30° 35994 14.40 24.19 463 12.7 0.185
30 – 40° 60193 24.08 40.45 1522 41.9 0.609
40 – 50° 29013 11.61 19.50 1359 37.4 0.544
50 – 61.8° 1483 0.59 1.00 186 5.1 0.074

Distance to Thrust 0 – 500 m 38280 15.31 25.7 1910 52.6 0.764
500 – 1,000 m 37548 15.02 25.2 685 18.9 0.274
1,000 – 1,500 m 37129 14.85 24.9 789 21.7 0.316
1,500 – 2,000 m 27411 10.96 18.4 245 6.7 0.098
2,000 – 2,640 m 8656 3.46 5.8 1 0.03 0.000

Land use Agriculture 28728 11.49 19.3 90 2.5 0.036
Grassland 11025 4.41 7.4 318 8.8 0.127
Forest 92359 36.94 62.0 1485 40.9 0.594
Barren Land 13660 5.46 9.2 1679 46.3 0.672
Settlement 303 0.12 0.2 0 0.0 0.000
Water Body 1585 0.63 1.1 44 1.2 0.018
Road 1369 0.55 0.9 14 0.4 0.006

Geology LS 2995 1.20 2.0 10 0.3 0.004
Ar 78193 31.28 52.5 1450 39.9 0.580
MS1 22301 8.92 15.0 231 6.4 0.092
MS2 44249 17.70 29.7 1939 53.4 0.776
Ch 1286 0.51 0.9 0 0.0 0

Distance to Stream 0 – 250 m 55529 22.21 37.3 1883 51.9 0.753
250 – 500 m 44236 17.69 29.7 1247 34.4 0.499
500 – 1000 m 42299 16.92 28.4 453 12.5 0.181
1000 – 2300 m 6960 2.78 4.7 47 1.3 0.019

Curvature Concave 68991 27.60 46.4 2128 58.6 0.851
Linear 10217 4.09 6.9 207 5.7 0.083
Convex 69609 27.84 46.8 1297 35.7 0.519

Aspect North 21426 8.57 14.4 309 8.5 0.124
Northeast 20398 8.16 13.7 268 7.4 0.107
East 15047 6.02 10.1 180 5.0 0.072
Southeast 17882 7.15 12.0 260 7.2 0.104
South 22049 8.82 14.8 860 23.7 0.344
Southwest 19255 7.70 12.9 668 18.4 0.267
West 16481 6.59 11.1 620 17.1 0.248
Northwest 16279 6.51 10.9 467 12.9 0.187

Relief 389 – 500 m 2937 1.17 2.0 22 0.6 0.009
500 – 750 m 18783 7.51 12.6 1034 28.5 0.414
750 – 1,000 m 33753 13.50 22.7 712 19.6 0.285
1,000 – 1,250 m 45352 18.14 30.5 878 24.2 0.351
1,250 – 1,500 m 35237 14.09 23.7 771 21.2 0.308
1,500 – 1,843 m 12755 5.10 8.6 215 5.9 0.086
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Table 2: Frequency ratio of each factor classes.
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Fig. 4: a) Land-use map, b) Geological map, c) Distance to thrust (MBT) map, d) Slope map, e) Aspect map, f) Relief map, g) Distance 
to stream map, and h) Curvature map of the study area.

The distance to thrust (MBT) map was created using the 
MBT and Euclidean distance tool that describes each cell's 
relationship to a source or a set of sources based on the 
straight-line distance (Fig. 4c). The map was categorized into 
five divisions at an interval of 500 m. It was found that the 
nearest distance i.e., 0–500 m was the most vulnerable zone 
to landslides since the maximum percentage (52.6%) of all 

the landslides was found to be accumulated in this zone, this 
statement is also supported by the Frequency Ratio table as the 
zone has the highest FR value of 2.05.
Slope: Slope map was generated using 20×20 m Digital 
Elevation Model (DEM) using the algorithm slope of Surface-
Spatial Analyst Tool in ArcMap (Fig. 4d). The slope is classified 
into six classes using the equal interval classification method. 
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LSI = PRd1×FR1 + PRd2×FR2 + PRd3×FR3 + PRd4×FR4 + . . . . 
. . . . . + PRdn×FRn (3)
where, PR = Predictive ratio of each domain, FR = Frequency 
ratio of each class of a domain (Influencing Factors).
Here the predictive ratio (Table 3) is the weight given to 
the domain or the influencing factor from Table 1, which is 
calculated as in Equation 4:
PR = (Max RF–Min RF)/ (Min RF of Max RF–Min RF) (4)
where, RF stands for relative frequency. It is the ratio of FR of 
a class of a domain to the total FR of the domain.
LSI was created by using the Eq. (2). For the classification 
of LSI data, ROC/AUC curve was used (Fig. 6). To check 
the predictive power of the proposed frequency method for 
landslide potential zone, LSI (landslide susceptibility index) 
was examined by success rate curves. 

Figure 6 shows the area under the success rate curve (ROC/
AUC) is 0.796, indicating that the prediction rate was 79.6% and 
80.4% as upper bound, the analysis is valid. For the landslide 
potential, the success rate reveals that 20% of the study area, 
has a high rank and could explain 65% of the total landslide 
of the area. Likewise, 40% and 50% of proposed GWP values 
could explain around 78% and 85% of all existing landslide 
respectively. Finally, three Groundwater Potential classes are 
established as Very low susceptibility (greater than 50%), low 
susceptibility (40–50%), moderate susceptibility (20–40%), 
high susceptibility (10–20%), and very high susceptibility 
(0–10%) using which final landslide susceptibility map is 
prepared.

Fig. 5: Landslide susceptibility index map of the study area.

Table 3: Weight of individual factor.

Domain/Factor PR Weight
Aspect 1.00 100
Curvature 1.26 126
Slope 1.43 143
Relief 2.41 241
Distance to stream 2.45 245
Distance to thrust 3.63 363
Geology 4.13 413
Land-use 4.22 422

Table 1 shows that the slope angle ranged 0–20° occupies the 
area of 3.97% of the total study area and has 0.6% of total 
landslide in it. Similarly slope angle ranged 10–20°, 20–30°, 
30–40°, 40–50°, 50–61.8° occupies 10.9%, 24.19%, 40.45%, 
19.5% and 1% of total study area respectively and landslide 
in the respective slopes are 2.3%, 12.7%, 41.9%, 37.4% and 
5.1%. The terrain with a slope of 50–61.8° is most prone to 
landslides with a frequency ratio of 5.14 and the terrain with 
a slope gradient of <100 is least prone to landslides with a 
frequency ratio of 0.14 (Table 1).
Aspect: Aspect map was prepared using 20×20 m DEM using 
the algorithm aspect of Surface-Spatial Analyst Tool in ArcMap 
(Fig. 4e). The aspect was classified into eight classes (Table 1). 
It is found that a south-facing slope that occupies 14.8% of 
the total study area dominates the study area. The second and 
third dominant aspects are north and northeast facing aspects 
respectively. Most of the landslides were observed in these 
aspects i.e., south (23.7%), southwest (18.4%), west (17.1%), 
and northwest (12.9%). The frequency ratio for the aspect map 
shows that the south, west & south-west facing aspect has the 
highest frequency ratio value of 1.6, 1.54 and 1.42 respectively 
(Table 1), and are comparably more prone to landslides.
Relief: A relief map or elevation map of the study area was 
generated using 20×20 m DEM (Fig. 4f). The lowest elevation 
is observed as 389 m and the highest elevation is 1843 m. 
The relief map was classified into six classes (Table 1). It was 
observed that the elevation ranged 500–750 m occupies 12.6% 
of the total study area and has 28.5% of total landslides with 
the highest frequency ratio of 2.26. 
Distance from stream: Stream is one of the important factors of 
landslide susceptibility mapping. The ground near the stream 
is more prone to landslide, hence the distance to the stream 
map (Fig. 4g) was generated using the Euclidean distance tool 
that describes each cell's relationship to a source or a set of 
sources based on the straight-line distance. It is classified into 
four interval classes. Table 1 shows that the vicinity in the 
range of 0 to 250 m covers 37.3 % of the total study area and 
covers 58.6% of total landslide. Also, the area ranging distance 
of 0–250 m from the streams has a high-frequency ratio of 1.39 
and is prone to landslides in the future too.
Curvature: The curvature is the amount by which a curve 
deviates from being a straight line, or a surface deviates from 
being a plane (Fig. 4h). The curvature map was prepared using 
20×20 m DEM using the algorithm aspect of Surface-Spatial 
Analyst Tool in ArcMap. Curvature is categorized into concave, 
linear, and convex surfaces. Table 1 shows that the study area 
is more convex by 46.8% of the total area whereas 46.4% of 
the total area is of concave topography and the remaining 6.9% 
is linear or plane surface. Most of the landslide has occurred on 
the concave surface as 58.6% of the total landslide lies in this 
zone. Thus, concave is more prone to a landslide which is also 
supported by the frequency ratio that value 1.26.

Landslide susceptibility analysis

Landslide susceptibility Index map (LSI) was prepared by 
combining all eight factor maps (Eq. 3) (Fig. 5).
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Table 4: Boundary value set for different susceptibility classes.

Cumulative (%) Susceptible Class
LSI

Upper Bound
50% Very Low 4.26
60% Low 4.74
80% Moderate 5.79
90% High 6.65
100% Very 10.28

The result of the final susceptibility map prepared using eight 
influencing factor maps suggests that Patle village lies in a very 
high susceptibility zone and is a prone area (Fig. 8). Arun Khola 
Pakha, Gijanchaur, and Kerabari lie in the high susceptibility 
zone. The rest of the villages i.e. lie in either low or very low 
susceptible zone. Out of the total study area, 60% of the area 
is stable (Shirdanda, Jayahtilung, Sisne Gaun, Marangkot, 
Charghare, Kamauri, Khamauri, Sattawati Danda, Kholdanda, 
Kokaldanda, Aules, Dhami Gaun, Marmera Danda, Archanga, 
Puktung, and Jagatpur) while 20% is moderately susceptible 
and 10% region of the study area is highly and 10% is very 
highly prone to landslides in near future (Fig. 7, 8; Table 5). 

DISCUSSIONS

Landslide causative factors
The contributing factors were selected in this study based on 
the presence or absence of the factors and their importance. 
The landslide conditioning factors incorporated the 
geomorphological, anthropogenic, and extrinsic factors. In this 
study, eight conditioning factors were considered to prepare 

 Fig. 6: ROC/AUC Curve of landslide susceptibility assessment 
in Tinau-Mathagadhi.

Fig. 7: Landslide Susceptibility map of the Study area (Tinau-
Mathagadhi).

Fig. 8: The percentage of susceptibility class in Tinau-Mathagadhi.

the landslide susceptibility map namely, distance from a thrust 
(MBT), aspect, slope, land use land cover, relief, distance from 
the stream, geology, and curvature. 
The frequency ratio values showed that the terrain slope has 
a significant impact on the landslide distribution. Generally, 
occurrences of landslides increase with an increase in terrain 
gradient. This statement is also supported by our analysis since 
the slope of 50o–61.8o gradient has the highest FR value of 
5.14 and is most prone the landslides. the terrain with a slope 

Hence, the LSI was classified into five susceptibility zones viz. 
very low, low, moderate, high, and very high susceptibility 
zones with the threshold value of respective classes are 4.26, 
4.74 5.79, 6.65, and 10.28 respectively (Table 4) using which 
final landslide susceptibility maps was prepared (Fig. 7).

Table 5: Area coverage by different landslide susceptibility 
classes.

Landslide Susceptibility Landslide
Classification 

MethodSuseptible 
Class Count Area 

(sq.km)
Area 
(%) (%)

Very Low 74144 29.66 50% 15.21 %

R
O

C
/A

U
C

 C
ur

veLow 14682 5.87 10% 6.45 %

Moderate 29893 11.96 20% 14.16 %

High 14783 5.91 10% 12.64 %

Very high 14844 5.94 10% 51.54 %

Total 148346 59.34 100% 15.21 %
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gradient of <100 is least prone to landslides with a frequency 
ratio of 0.14. The frequency ratio for the aspect map shows that 
the South, Southwest, and west-facing aspect has the highest 
frequency ratio values. The south aspect has the maximum FR 
of 1.6 followed by the west with 1.54 and the south-west slope 
has an FR value of 1.42. The area range of 0–250 m from the 
streams has a high-frequency ratio of 1.39. Among the land-
use/land-cover, the barren land has the highest FR of 5.05. It is 
found that concave curvature has a high frequency of landslide 
occurrence with the value of 1.26. Also, it was observed that 
that most of the landslides were occurring in the Upper Middle 
Siwalik zone with a frequency ratio of 1.8 followed by Aru 
Formation with FR of 0.76. The nearest distance from the 
thrust, MBT has the highest number of landslides with the 
highest frequency ratio value of 2.05; hence, the zone of 0–500 
m distance is most vulnerable to landslide.

Topographic parameters

The DEM has been used as an important factor in the study 
of earthquake-induced landslides (Wang et al., 2015). 
Research shows an increase in the probability of landslide 
occurrence for higher elevation although there is an absence 
of any direct relationship between the elevation and landslide 
occurrence (Liu et al., 2021). The landslide concentration was 
maximum for elevation range 500–750 m. The steepness of 
the slope is another major topographic factor used in landslide 
susceptibility studies (Regmi et al., 2016). The slope ranges 
from 0–61.8°. The landslide concentration was maximum 
along with the slope range from 50–61.8°. The aspect of the 
slope resembles the moisture retention and its relation to the 
attitude of bedding of the rock formation which in turn affects 
the physical properties of slope material and its susceptibility 
to failure (Gadtaula and Dhakal, 2019). In this study, the 
aspect to the south, southwest, and west contributes mostly 
to landslides. It is usually because most of the river segments 
trend towards SW-SE and many landslides appear on the slope 
towards the river.
The surface undulation of the slope can play a major role in 
triggering landslides as it has a strong influence on creating 
slope instability. In curvatures, the landslides are usually 
distributed in convex slopes and concave slopes. The convex 
slopes usually have earthquake-induced landslides (Gadtaula 
and Dhakal, 2019).

Anthropogenic factor
Land-use is considered to be one of the landslide conditioning 
factors as the variation in the land-use might play a role in 
changing the vegetation cover varying the mechanical (e.g., soil 
strength and slope behavior) and hydrological (e.g. Roccati et 
al., 2021). The variation in land use distribution may be either 
natural, human-induced, or a combination of both. Land-use 
map was generated by manual digitization of satellite image 
(Google Earth Image) of the study area. The frequency ratio 
weight values depict that the correlation of barren land and 
grassland, that is 5.05 and 1.18 respectively is stronger than 
other land use classes and our result matches concerning the 

value obtained however the landslide was not found in barren 
lands.

CONCLUSIONS

In this study, the Frequency Ratio model based on statistical 
method was used for determining the spatial probability of 
landslide occurrence where each factor layer was weighted 
according to the contribution on landslides. This method 
predicted the probability of landslide occurrence efficiently 
which was validated by positive correlations between the field 
conditions and the results obtained by the model. A total of 118 
landslides were identified. It is found that landslides are more 
influenced by distance from the thrust (MBT). Geology factor 
map suggests that most of the landslides have occurred in the 
Upper Middle Siwalik zone. The slope map exhibit that the 
landslides are more focused in the slope angle between 50° and 
61.8°, the result shows landslide mostly occur in higher slopes 
or increasing relief. It was observed that the slope angle less 
than 10 degrees did not contribute much to induce landslides. 
The results suggested that the landslides are most common in 
a slope facing south, southwest, and west. While the curvature 
suggested that concave curvature is the role player to predict 
landslides. During the study of elevation map, it suggested that 
the number of landslides increase until 750 m and then decline 
in area percentage of landslide.
The agricultural land followed by forest area and agricultural 
land covered the maximum area in the Tinau-Mathagadhi 
region but the result suggests that barren land is found to be 
vulnerable to landslide. It was found from the study that the 
distance from the thrust (MBT) had a direct correlation with the 
landslide event as the landslide distribution is maximum around 
the MBT zone ranging the distance of 0–500 m. The statistical 
analysis obtained from the results of the susceptibility map 
prepared by using the Frequency Ratio model gave the result 
that maximum area of landslide distribution was observed in 
very high susceptibility class or unstable zone i.e., 51.54%, 
high susceptibility zone has 12.64%, the moderate zone has 
14.16%, low susceptibility and very low susceptibility zone 
have 21.66% combined. Among the different factors, aspects, 
distance from the thrust (MBT), land use, and geology were 
found to be the major contributors to trigger the landslides in 
the Tinau-Mathagadhi area.
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