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ABSTRACT

Considering the serious threat of landslides to life, property, and the environment, this study aimed at exploring past 
landslides (2005-2020) to evaluate landslide susceptibility. The study is carried out in the Rangun Khola watershed, 
in western Nepal covering an area of 488 km2. The landslide inventory map was prepared, recognizing 494 landslides, 
among them 70% were used for susceptibility mapping, and the rest 30% for validation purposes. The size of the landslide 
was found in the range of 103.53 m2 to 149120.1 m2, with an average of 4677.35 m2. Frequency ratio (FR) and logistic 
regression (LR) models were implemented for landslide susceptibility assessment based on the various intrinsic factors. 
The validity of the models was assessed by using receiver operating characteristic (ROC) curves. The success rate was 
87.6% for the LR model with a prediction rate of 87.3% indicating a good degree of fit. Similarly, with a success rate 
of 76.4% and a prediction rate of 75.1%, the result obtained from the FR model was a fairly good performance. Thus, 
both exhibited reasonably good accuracy in predicting the susceptibility of the landslide and are considered to be in land 
management and hazard mitigation, and policy formulating purposes.
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INTRODUCTION

Nepal lies in the subduction zone between the Indian and 
Eurasian convergent plates making this area prone to various 
geo-hazards and associated disasters. Landslides are among 
the most frequent geo-hazards and major land degradation 
processes prevalent in the Himalaya (Dhakal, 2015). These 
landslides are the product of existing conditioning factors 
and complex interaction of various triggering factors (TU-
CDES, 2016).  Several natural conditioning factors as well as 
anthropic activities are prevalent within the Himalaya causing 
landslide incidents (Dhakal, 2014a). Unstable geological 
structures, soft and fragile rocks, common earthquakes, along 
with heavy and concentrated rainfalls during monsoon periods 
(Dahal and Hasegawa, 2008) are major natural factors leading 
to landslides and related phenomena in the rugged  topography 
of Nepal (Dhakal, 2013; Dhital, 2000). Beside the inherent 
geology and natural characteristics; anthropic activities like 
poor linear infrastructure construction, improper land use, 
and mismanagement of the drainage leads to the evolution of 
landslide hazard (Dhakal, 2014a; Dhakal, 2014b). However 
the occurrence and  risk of landslides varies with geological 
structure, rock and soil types, and   geomorphology; rapid urban 
growth with increasing population and related phenomenon 
accelerating the landslide in Nepal (Petley et al., 2007).

The annual loss of lives and properties due to landslides is 
significantly high in the Himalayan region. It affects the lives 
and livelihoods of locals and the local economy along with 
psychological effects that can take decades to heal. During 
the summer monsoon, landslide has been mostly affecting  
infrastructure, lives, and properties in Nepal (Thapa, 2015). 

According to the data published by MoHA in Nepal Disaster 
Report (MoHA, 2019), a total of 483 landslide events were 
recorded causing 161 fatalities and affecting 1083 households 
with an estimated loss of $2 million during 2017/18. Apart 
from these many small-scale landslides go unreported; losing 
productive lands unless and until they involve the loss of life 
and properties or cause the blockage of the road (Dahal, 2012, 
Paudyal et al., 2021). The current study area, Rangun Khola 
watershed is regarded as prone to landslides and erosion events 
historically and now facing the development of urban features 
and other linear infrastructures (Dhakal, 2014b; Bhandari et al., 
2021). Presence of active fault and erosional effect of seasonal 
rivers poses potentiality for landslide (Dhital, 2015) and related 
direct and indirect livelihood impacts in the area (Pathak et al., 
2020; Bhandari et al., 2021).  Although most of the incidents 
are not reported at national level but has significant ecological 
and economic. To minimize such losses, potential landslide-
prone areas should, therefore, be recognized i.e. early detection 
of landslides probability (Schweigl and Hervas, 2009). In this 
respect, landslide susceptibility mapping can provide valuable 
information crucial for hazard mitigation through effective 
project planning and execution.

Susceptibility is the probability of an area to occur landslides. In 
mathematical form, landslide susceptibility can be considered 
as the probability of spatial occurrence of known slope failures,  
at a given set of geo-environmental situations (Guzzetti et 
al., 2005), which is considered as prerequisite for disaster 
management and planning development activities (Devkota 
et al., 2012). Susceptibility assessments can thus be used to 
predict the spatial distribution of future landslides based on the 
principle of uniformitarianism, which assumes that landslides 
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would occur in the future due to the same conditions that caused 
them in the past (Guzzetti et al., 2005). The first step toward  
susceptibility assessment is the identification and preparation 
of the Landslide Inventory Map (LIM) (Brabb, 1985; Galli 
et al., 2008). Based on inventory and conditioning factors 
susceptibility can be assessed applying various modeling 
approaches and GIS techniques (Pourghasemi et al., 2018).

Statistical approaches have been mostly used in landslide 
susceptibility assessment as it minimizes the subjectivity in 
the weightage assignment procedure (Pardeshi et al., 2013; 
Pourghasemi et al., 2018; Shao et al., 2020). Among the 
different statistical methods to prepare landslide susceptibility, 
most common models suggested in the literature are bivariate 
(Saha et al., 2005; Lee and Pradhan, 2007; Pradhan and Lee, 
2010; Pardeshi et al., 2013; Pourghasemi et al., 2018; Shao et 
al., 2020) and multivariate (Lee and Talib, 2005; Pradhan and 
Lee, 2010; Devkota et al., 2012) and statistical techniques such 
as the logistic regression (Pourghasemi et al., 2018). Bivariate 
statistical analyses include the idea of comparing a landslide 
inventory map with maps of landslide conditioning factors 
to rank the corresponding classes according to their role in 
landslide formation. The ranking is generally carried out using 
the density of landslides. Multivariate statistical approaches 
uses two or more conditioning factors and evaluates which, 
if any, are correlated with a particular result. Other different 
methods have been proposed by several investigators, 
including weights-of-evidence methods (Pradhan et al., 2010; 
Regmi et al. 2014), certainty factors (Devkota et al., 2012), 
artificial neural networks (Lee, 2007), neuro-fuzzy (Sezer et 
al., 2011) etc. to evaluate the landslide susceptibility, with 
improved accuracy.

There are multiple studies in Nepal Himalaya focused on 
landslide susceptibility mapping using various approaches 
(Dhital et al., 1991; Pantha et al., 2008; Devkota et al., 2012; 
Regmi et al., 2014; Paudyal et al.,2021). These studies focus 
on to access physical properties of the landslides, geological 
settings, and associated loss of life and property, and study of 
the relationship between landslide occurrences and landslide 
conditioning factor needed to be studied for susceptibility 
mapping. The purpose of current study is to produce landslide 
susceptibility map of Rangun Khola watershed of Far-west 
Nepal using a bivariate statistical model i.e. Frequency Ratio 
(FR) and a multivariate statistical model i.e. logistic regression 
(LR). These models use data from the inventory map to predict 
where landslides might occur in the future and the results have 
been validated and reviewed.

MATERIALS AND METHODS

Study area

Rangun Khola is one of the seven watersheds within the 
Mahakali River Basin of Nepal having an area of 489.39 sq. 
km (Fig. 1). The watershed ranges from a tropical climate in the 
south to a temperate in the north with an elevation range from 
2,500 m in the north, near the Mahabharat range, to 258 m in 
the southern part where the watershed flows into the Mahakali 
River at Parshuramdham (Pathak and Devkota, 2022). The 
population of the Rangun Khola watershed is 53,109 (CBS, 
2011), and includes parts of the Doti and Dadeldhura districts 
in Sudurpaschim Province of Nepal. The average annual 

temperature ranges between 10°C to 25⁰C, and the annual 
average rainfall in the watershed is 1,346.6 mm, with the 
highest amount falling in the month of July (448.4 mm) and 
the lowest in November (7.3 mm) (Bhandari et al., 2021). 

Based upon the digitization of map (Physiographic divisions 
of Nepal) (Dhital, 2015), the topography is characterized 
by a complex mixture of Siwalik 29% (lower, middle, and 
upper), Dun valley 20 %, and the 51% of Mahabharat range. 
The geology of the watershed is characterized by Boulder, 
cobble, grey mud and conglomerates in upper Siwalik region. 
Lower Shiwalik consists of fine-grained sandstones shales and 
siltstones whereas precambrian high grade metamorphic rocks 
comprising gneisses, quartzites and marbles are frequent over 
upper part.  An active fault passes close to the main boundary 
thrust and runs through Budar, Alital, and Kalena depicted in 
(Fig. 1) (Dhital, 2015). This existing geology and topography 
make this area prone to landslide hazards. Several historical 
and present landslides are prevalent in this area (Pathak 
and Devkota, 2022). Thus, the study of landslides and their 
causative factors for determining susceptibility is necessary for 
this area.

Fig. 1: Location map of the study area.

Methodology

In this study, bivariate and multivariate techniques for the 
Landslide Susceptibility mapping were applied.  Preparation 
of the LSM in this study involved data collection, inventory 
map preparation, selection and preparation of Landslide 
Conditioning Factors (LCFs), LSM preparation using 
Frequency Ratio (FR), and Logistic Regression (LR) models 
and validation of the models (Fig. 2). Both primary and 
secondary data were used. The LIM was prepared based on 
the field investigation, satellite images, and Google Earth 
imagery. The topographic parameters of elevation, slope 
gradient, aspect, slope curvature, stream power index (SPI), 
drainage density, and topographical wetness index (TWI) were 
obtained from the 12.5×12.5 m resolution ALOSPALSAR 
DEM obtained from the Alaska Satellite Facility homepage. 
The geological map was acquired from the Department of 
Mines and Geology (DMG, 2020). NDVI and LULC were 
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form DMG (2020). NDVI was calculated using red band and 
NIR band (NDVI = (NIR-RED)/(NIR+RED)) of Sentinel 2 
images. Similarly land use and cover map was prepared with 
maximum likelihood classification of Sentinel 2 images. Table 
1 depicts the range of parameters used for classification, along 
with their classes and methods.

Elevation is frequently used LCF for landslide susceptibility 
studies. It is stated that the landslides have more tendency to 
occur at higher elevations (Ercanoglu et al., 2004). The slope 
aspect or the direction of maximum slope of the terrain surface 
is divided into nine classes this can influence landslide in 
the way the direction of wind sunlight and also the amount 
of rainfall get influenced by aspect. The slope gradient is one 
of the most important factors that influence slope stability 
(Bednarik et al., 2010). The slope curvature represents the 
morphology of the topography (Devkota et al., 2012). The 
curvature maps were obtained from the second derivative of 
the surface and the absorption percolation and speed of water 
flow get influenced by this. Drainage density is also   one of 
the landslide conditioning factors, which is a measurement 
of the sum of the channel lengths per unit area. SPI measures 
the erosion power of the stream and is also considered as a 
factor contributing toward stability within the study area and 
TWI combines local upslope contributing area and the entire 
slope, is commonly used to quantify topographic control 
on hydrological processes. Faults are the tectonic breaks 
that usually decrease the rock strength and play vital role in 
instabilities. Lithology is also an important in determining the 
susceptibility due different susceptibilities of geological units 
to existing geomorphic phenomenon (Pradhan and Lee, 2010). 
Similarly, LULC and NDVI also plays major role in slope 
stability and greatly influence landslide occurrence.

Landslide susceptibility modeling

Frequency ratio (FR) model

Frequency ratio is a successfully observation-based bivariate 
statistical approach for landslide susceptibility assessment 
(Pham et al., 2015). This model is based on the assessment 
of the observed spatial relationship between past landslides 
and a set of landslides contributing factors. It is carried by 
summation of the frequency ratio values that are the ratio of 
the probability of present and absence of landslide occurrences 
for each landslide conditioning factor class (Eq. 1) (Lee and 
Pradhan, 2007). 

			       		  (1)

where, Pi is the percentage of pixels in each landslide 
conditioning factor class, PLj is the percentage of landslide 
pixels in each landslide conditioning factor class and FRi is the 
frequency ratio of each conditioning factor (Eq. 2).

				    	 (2)

where, LSA is landslide susceptibility index and FRi is the FR 
of each factor range.

Generally, FR value 1 is an average value; a value higher than 
1 means higher correlation, and a value lower than 1 means 
lower correlation.

prepared by using Sentinel 2 images.  The LSM is classified 
into five classes using the natural break method of Jenks. The 
whole process was carried out using R studio and QGIS.

Landslide inventory map (LIM)

Landslide Inventory Mapping (LIM) is an essential part of 
landslide susceptibility mapping. The relationship between the 
landslide inventory datasets and LCFs is the most important 
for landslide susceptibility mapping (Yilmaz et al., 2011). 
LIM can be prepared based on a combination of several data 
sources, including previous records, local field examinations, 
and the perception survey with inhabitants and interpretation of 
satellite images. Many landslides, due to their remote locations, 
undetectable in field surveys, can be extracted with acceptable 
resolution using Google Earth’s optical images. For this study 
polygon-based spatiotemporal LIM was prepared from 2005 
to 2020 based on both the desk study (satellite images, Google 
Earth imagery, and different published and unpublished 
reports) and field visit (GPS and landslide inventory form).

Landslide conditioning factors (LCFs)

Field surveys and review of previous literatures (Dhital et 
al., 1991; Pantha et al., 2008; Devkota et al., 2012; Regmi 
et al., 2014; PCTMCDB and TU-CDES, 2017) were carried 
out to select the landslide conditioning factors for this study. 
Eleven LCFs were considered with significant contribution 
were elevation (Fig. 3A), slope (Fig. 3B), plan curvature 
(Fig. 3C), slope aspect (Fig. 3D), topographic wetness index 
(Fig. 3E), stream power index (SPI) (Fig. 3F), drainag density 
(Fig. 3G), lithology (Fig. 3H), distance from fault (Fig. 3I),  
normalized difference vegetation index (NDVI) (Fig. 3J), and 
land use land cover (LULC) (Fig. 3K). The topographic factors 
elevation, slope gradient, aspect, slope curvature, stream power 
index (SPI), drainage density, and topographical wetness 
index (TWI) were obtained from the 12.5×12.5 m resolution 
ALOSPALSAR DEM which was acquired from Alaska 
Satellite Facility homepage. Lithology and distance form fault 
were acquired from Geological Map of Sudurpaschim acquired 

Fig. 2: Methodological flowchart of the study.
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Fig. 3: Landslide conditioning factors: (A) Elevation, (B) Slope angle, (C) Plan curvature, (D) Slope aspect, (E) Topographic wetness 
index (TWI), (F) Stream power index. Continued...
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Fig. 3: Landslide conditioning factors: (G) Drainage density, (H) Lithology, (I) Distance to fault, (J) NDVI, (K) Land use/land cover 
(LULC).
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LCFs Data
Used/Resolution Technique References

Elevation (m) ALOSPALSAR 
DEM(12.5×12.5 m)

By using the DEM the elevation range (250-2500 m) was 
classified into eight classes.  (Li et al., 2004)

Slope Gradient (°) ALOSPALSAR 
DEM(12.5×12.5 m)  

Table 1: Data used for the preparation of LCFs analysis technique and classification 

LCFs Data  

Used/Resolution 

Technique Ref. 

 

Elevation (m) ALOSPALSAR  

DEM(12.5*12.5m) 

By using the DEM the elevation range (250-2500m) was 
classified into eight classes. 

 (Li et al., 
2004) 

Slope Gradient (°) ALOSPALSAR  

DEM(12.5*12.5m) 

Tan θ = 𝑁𝑁∗𝑖𝑖
636.6  

where N = No. of Contour Cuttings 

(Pradhan 
and Lee, 
2010) 

Plane Curvature ALOSPALSAR  

DEM(12.5*12.5m) 

Using the DEM, plane curvature was classified into 
concave-convex and plane. 

(Li et al., 
2004) 

Slope Aspect ALOSPALSAR  

DEM(12.5*12.5m) 

Using the DEM slope aspect was determined.   

SPI ALOSPALSAR  

DEM(12.5*12.5m) 

𝑆𝑆𝑆𝑆𝑆𝑆 = As tanβ 

where As = the specific catchment area and  

β = local slope gradient. 

(Moore 
and 
Grayson, 
1991) 

Drainage Density  ALOSPALSAR 

DEM(12.5*12.5m) (l/km2) 

Drainage density =  stream−length summation
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    

TWI ALOSPALSAR  

DEM(12.5*12.5m resolution) 

TWI = ln ( 𝑎𝑎
tanβ )   

Where, a= cumulative upslope area draining through a point 
(per unit contour length)  and tanβ = e slope. 

(Moore 
and 
Grayson, 
1991) 

Lithology DMG (2020), Dhital  (2015) and 
Shrestha et al.(1985) 

Digitization process (Dhital, 
2015) 

Distance to fault Geological data from Dhital  (2015) 
and DMG (2020) 

Digitization and then Euclidian Distance Buffering  

LULC Sentinel 2 

(9.5 *9.5 m ) 

Supervised classification 

(Maximum likelihood) 

 

NDVI Sentinel 2 

(9.5*9.5 m) 

NDVI = (NIR-R) / (NIR+R),  

Where NIR is near inferred 

band R is the red band 

(NIR=B8, Red=B4) 

(D’Odori
co et al., 
2013) 
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 (Li et al., 
2004) 

Slope Gradient (°) ALOSPALSAR  

DEM(12.5*12.5m) 

Tan θ = 𝑁𝑁∗𝑖𝑖
636.6  

where N = No. of Contour Cuttings 

(Pradhan 
and Lee, 
2010) 

Plane Curvature ALOSPALSAR  

DEM(12.5*12.5m) 

Using the DEM, plane curvature was classified into 
concave-convex and plane. 

(Li et al., 
2004) 

Slope Aspect ALOSPALSAR  

DEM(12.5*12.5m) 

Using the DEM slope aspect was determined.   

SPI ALOSPALSAR  

DEM(12.5*12.5m) 

𝑆𝑆𝑆𝑆𝑆𝑆 = As tanβ 

where As = the specific catchment area and  

β = local slope gradient. 

(Moore 
and 
Grayson, 
1991) 

Drainage Density  ALOSPALSAR 

DEM(12.5*12.5m) (l/km2) 

Drainage density =  stream−length summation
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    

TWI ALOSPALSAR  

DEM(12.5*12.5m resolution) 

TWI = ln ( 𝑎𝑎
tanβ )   

Where, a= cumulative upslope area draining through a point 
(per unit contour length)  and tanβ = e slope. 

(Moore 
and 
Grayson, 
1991) 

Lithology DMG (2020), Dhital  (2015) and 
Shrestha et al.(1985) 

Digitization process (Dhital, 
2015) 

Distance to fault Geological data from Dhital  (2015) 
and DMG (2020) 

Digitization and then Euclidian Distance Buffering  

LULC Sentinel 2 

(9.5 *9.5 m ) 

Supervised classification 

(Maximum likelihood) 

 

NDVI Sentinel 2 

(9.5*9.5 m) 

NDVI = (NIR-R) / (NIR+R),  

Where NIR is near inferred 

band R is the red band 

(NIR=B8, Red=B4) 

(D’Odori
co et al., 
2013) 

 

Where, a= cumulative upslope area draining through a point 
(per unit contour length)  and tanβ = e slope.

(Moore and Grayson, 
1991)

Lithology DMG (2020), Dhital  (2015) and 
Shrestha et al.(1985) Digitization process (Dhital, 2015)

Distance to fault Geological data from Dhital  (2015) 
and DMG (2020) Digitization and then Euclidian Distance Buffering

LULC Sentinel 2
(9.5×9.5 m )

Supervised classification
(Maximum likelihood)

NDVI Sentinel 2
(9.5×9.5 m)

NDVI = (NIR-R) / (NIR+R), 
Where NIR is near inferred
band R is the red band
(NIR=B8, Red=B4)

(D’Odorico et al., 
2013)

Table 1: Data used for the preparation of LCFs analysis technique and classification.

Logistic regression (LR) model

Logistic regression is the most commonly used multivariate 
statistical approach used in predicting the presence or absence 
of characteristics based on values of a set of predictor variables 
(Budimir et al., 2015). Considering p independent variables, 
x1, x2, ... , xp, affecting landslide occurrences, we define the 
vector X = (x1, x2, ... , xp). In this study, the independent 
variables were considered with values of 1 (presence) or 0 
(absence). 

In its most simple form the logistic regression model can be 
quantitatively expressed as (Eq. 3):

		  P=1 / (1+e-z)                                (3)

where, p is the probability of an event occurring, e is the 
constant 2.718 and, and z is the linear combination (Eq. 4):

	  Z= b0+ b1x1 + b2x2+ b3x3+bnxn           (4)

where, b0 is the intercept of the model,  bi (i= 0,1, 2, 3 …. n), 
are the slope coefficient of the logistic regression model and,  
xi (i= 0, 1, 2, 3,  n), are the independent variables the linear 
model is formed. 

The logistic regression analysis was performed in R studio 
with exported data from GIS software to obtain the coefficients 
of the landslide conditioning factors.

(5)

(6)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹     

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

Validation of the models

Validation was performed by using the area under the curve 
(AUC) of the receiver operating characteristic (ROC) curve. 
The AUC value ranges from 0.5 to 1 with AUC value 1 
indicating perfect prediction. The ROC curve was plotted 
1-specificity on the x-axis versus and sensitivity on the y-axis. 
The sensitivity and specificity were computed using the 
following equations 5 and 6.

where, TP (true positive), TN (true negative), FP (false 
positive), and FN (false negative).

The success rate curve was generated using the training dataset 
(70% landslides) while the prediction rate is developed using 
the validation dataset (30%). The success rate represents how 
well the resulting landslide map is classified using the existing 
landslides while the prediction rate indicates the predictive 
power of the landslide susceptibility model (Budimir et al., 
2015).
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RESULTS

Landslide inventory

In total, 494 landslides were identified in the study area 
including recent and old events based on both the desk 
study (satellite images, Google Earth imagery, and different 
published and unpublished reports) and field observation. 
The size of the individual landslide was found in the range 
of 103.53m2-149120.1 m2, with an average size of 4677.35 
m2, which ultimately covers the area of 2301058.62 m2. The 
total area covered by the landslide is about 0.47% of the study. 
Landslides size greater than 100 m2 were considered in the 
study as very small sizes were very difficult to identify remotely 
and precisely. Of the 494 landslides 70% (346 landslides) were 
randomly used for training the susceptibility models and the 
rest 30% (148/494) were used for validation of the models. 

Landslide susceptibility

Landslide susceptibility map using frequency ratio (FR) 
model

The susceptibility of the landslide was determined based on 
the frequency ratios of the all eleven LCFs considered in 
this study. The numbers of the pixel in each class of LCFs 
were counted and ratio of the frequency was determined for 
each class, and a relationship was established between those 
factor and landslide occurrence. The final susceptibility map 
developed from this model is shown in Figure 4.
The susceptibility range of the landslide obtained by FR 
model was categorized into five classes namely Very low, 
Low, Moderate, High and Very high based upon natural 
break technique. In the study area largest portion falls under 
the high susceptibility zone which covers 27.98% of the total 
area. Similarly 19.74%, 18.29%, 18.68%, and 15.31% area is 
covered by moderate, low, very low and very high susceptibility 
zone, respectively (Fig. 5).
Investigating the effect of each class of on landslide occurrence 
using the FR method (Table 2) showed that landslide densities 
are higher in elevation range between 500-750 m followed 
by 750-1000 m. A slope gradient greater than 60 degrees is 
highly susceptible whereas less than 15 degrees is the lowest. 
Concave curvature is in the highly susceptible zone with a 

higher number of pixels than convex plane curvature. The FR 
from the slope aspect analysis shows that the S and SE-facing 
slopes are most affected by landslides, followed by NE, and 
E-facing slopes (Table 2). Similarly, TWI in between 8-12 has 
the highest landslide density. In the case of the lithology, it 
can be seen that the FR for Upper Siwaliks is highest followed 
by Middle Siwalik and lowest for Sallyani Gad Formation 
(Table 2). The influence of a drainage system on the landslide 
susceptibility was also analyzed by identifying the drainage 
density which was found to be varying from 0-9 and has a 
positive influence on landslide density. Barren land cover can 
be seen as highly susceptible for the landslide with Riverbanks 
value 4.1 followed by Barren land and Grassland.

Landslide susceptibility map using the logistic regression 
model

The logistic regression was carried out in R-Studio to 
estimate the coefficients for each independent variable in the 
intercept. The following Equation 7 is implemented and the 
raster calculator in ArcGIS 10.5 is then used to obtain the 
susceptibility map.

Fig. 4: Landslide susceptibility map derived from the frequency 
ratio (FR) model.

Fig. 5: Area covered by different susceptibility classes based on 
frequency ratio (FR) model.

degrees is the lowest. Concave curvature is in the highly susceptible zone with a higher number 

of pixels than convex plane curvature. The FR from the slope aspect analysis shows that the S 

and SE-facing slopes are most affected by landslides, followed by NE, and E-facing slopes 

(Table 2). Similarly, TWI in between 8-12 has the highest landslide density. In the case of the 

lithology, it can be seen that the FR for Upper Siwaliks is highest followed by Middle Siwalik 

and lowest for Sallyani Gad Formation (Table 2). The influence of a drainage system on the 

landslide susceptibility was also analyzed by identifying the drainage density which was found to 

be varying from 0-9 and has a positive influence on landslide density. Barren land cover can be 

seen as highly susceptible for the landslide with Riverbanks value 4.1 followed by Barren land 

and Grassland. 

Landslide susceptibility map using the logistic regression model 

The logistic regression was carried out in R-Studio to estimate the coefficients for each 

independent variable in the intercept. The following equation is implemented and the raster 

calculator in ArcGIS 10.5 is then used to obtain the susceptibility map. 

𝑧𝑧 = −2.738 + (𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 0.0019) + (Drainage density × − 0.0046) +  (Elevation ×
        − 0.002) +  (Distance from fault × − 0.00001) +  (Lithology × − 0.000001) +
         (LULC ×  − 0.00001) +  (NDVI × − 0.0002) + (Plane curvature ×  0.066) +
         (TWI × − 0.004) + (Slope × 0.075),                               (7)  

The analysis of the logistic regression coefficients (β-coefficients) depicts slope gradient, slope 

aspect, elevation, and plane curvature have prominent role in landslide susceptibility with 

positive β-coefficients. Similarly, drainage density, distance from fault, and NDVI lithology all 

have a negative impact on landslide formation because they all have a negative β-coefficient and 

are thus regarded less important in landslide formation.  

The susceptibility range of the landslide obtained by LR model ranges between (0-1) and was 

categorized into five classes namely Very low, Low, Moderate, High and Very high based upon 

natural break technique. The final susceptibility map developed form this model is shown in Fig. 

6. From the analysis of logistic regression model also most of the area high susceptibility zone 

covering 25.55% of the study area followed by moderate susceptibility zone with 22.81 %. Very 

The analysis of the logistic regression coefficients 
(β-coefficients) depicts slope gradient, slope aspect, elevation, 
and plane curvature have prominent role in landslide 
susceptibility with positive β-coefficients. Similarly, drainage 
density, distance from fault, and NDVI lithology all have a 
negative impact on landslide formation because they all have a 
negative β-coefficient and are thus regarded less important in 
landslide formation. 

The susceptibility range of the landslide obtained by LR 
model ranges between (0-1) and was categorized into five 
classes namely Very low, Low, Moderate, High and Very high 
based upon natural break technique. The final susceptibility 
map developed form this model is shown in Figure 6. From 
the analysis of logistic regression model also most of the area 
high susceptibility zone covering 25.55% of the study area 
followed by moderate susceptibility zone with 22.81 %. Very 
high susceptibility zone covers the least area i.e. 13.99 % and 
very low susceptibility region covers 20.94 % of the study area 
(Fig. 7). 
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LCFs Class Landslide Area (m2) FR PR

Elevation

250-542 1406.25 0.04

542-773 502968.75 1.69

773-995 648906.25 1.63
995-1226 101093.75 0.54 3.467
1226-1475 19531.25 0.15

1475-1742 8593.75 0.08

1742-2044 10937.50 0.14

2044-2524 1875.00 0.04

Slope Gradient

0-15 94687.50 0.44

15-30 233437.50 0.70
30-45 395312.50 1.10 2.624
45-60 327500.00 1.22

60-76.5 244375.00 2.05

Plane Curvature
Concave 676562.50 1.19
Flat 80781.25 0.57 2.079
Convex 537968.75 0.92

Slope Aspect

Flat 58593.75 0.38

N 108906.25 0.89

NE 172500.00 1.54

E 203125.00 1.47

SE 249531.25 1.67 1.480

S 285937.50 1.66

SW 132812.50 0.89

W 56093.75 0.39

NW 27812.50 0.18

TWI

-3-4 354218.75 1.19

4-8 287187.50 0.85 1.000

8-12 653906.25 0.99

Drainage Density

0-2 339218.75 0.55

2-4 486250.00 1.41

4-6 377968.75 1.84 2.570

>6 91875.00 0.71

Lithology

Bu 26875.00 0.71

Basic Rocks 43437.50 0.20

SGF 5468.75 0.08

Granites 7500.00 0.21
Gn 21406.25 0.39 4.054
SGF 23906.25 0.36

SYF 17968.75 0.30

SAF 20625.00 0.38

Lower Siwalik 85781.25 0.39

Upper Siwalik 762968.75 3.51

Middle Siwalik 279375.00 1.09

Distance from fault

0-200 226875.00 2.09

200-400 165468.75 1.57

400-600 76093.75 0.74
600-800 168437.50 1.71 1.570
800-1000 108125.00 1.19

>1000 550312.50 0.70

Table 2: Spatial relationship between each landslide conditioning factor and landslide by frequency ratio model.
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LCFs Class Landslide Area (m2) FR PR

NDVI

<0.2 6562.50 0.21

0.2-0.6 1051718.75 1.28
0.6-0.8 237031.25 0.54 5.683
>0.8 0.00 0.00

LULC

Cultivation 143125.00 2.51

Forest 223906.25 0.26
Barren 442031.25 4.98 3.430
Grassland 370468.75 1.31

River and Bank 115781.25 6.01

SPI

0-150 1109843.75 0.98

150-300 82812.50 1.15
300-450 30625.00 1.26 0.570
>450 72031.25 1.04

Fig. 6: Landslide susceptibility map derived from the logistic  
regression (LR) model.

Fig. 7: Area covered by different susceptibility classes based on 
logistic regression (LR) model.

Validation of the susceptibility models

In this study, the performance of the FR and LR model has 
been evaluated using the success rate and prediction rate 
curves. The success rate curve was prepared by using the 

relationship between the percentage of landslide susceptibility 
map and the percentage of landslide pixels used for the 
training process (70%) whereas validation data (30%) were 
used to generate a prediction rate curve. The success rate and 
prediction rate curve for both models are presented in Figure 
8. The area under the receiver operating characteristic curve 
(AUC) explains the degree of fit of the models in terms of 
success rate and prediction rate. The success rate shows how 
well the resulting landslide map is classified using the existing 
landslides while the prediction rate indicates the predictive 
power of the landslide map (Jaafari et al., 2014).

Fig. 8: Validation of the susceptibility models (a) Success rate 
of the landslide susceptibility maps. (b) Prediction rate of the 
landslide susceptibility maps.

The AUC was obtained using 100 subdivisions of all the cells 
in the study area's LSI values and the cumulative percentage 
of landslide occurrences in the classes. Both the training and 
validation data were used to calculate the AUC. From the AUC 
curve, it can be observed that the success rate is 87.6% for the 
LR model with a prediction rate of 87.3% indicating a good 
degree of fit. With a success rate of 76.4% and a prediction 
rate of 75.1%, the result obtained from the FR model is a fairly 
good performance but the LR model seems to be better for the 
study area.

DISCUSSION

Landslide inventory

Geomorphologic hazards in the Hindu Kush regions have been 
evolved due to weak geological environments, diversified rock 
types, high degree of rock weathering, varying topography, 
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the high gradient of rivers, seasonal precipitation, and changes 
in climatic conditions (Dhakal, 2015). The distribution of 
the number and size of the landslides in the study area is not 
homogenous and was found to be varying with geology and 
morphology as mentioned by (Pathak and Devkota, 2022). The 
extent of the present study area falls under the Mahabharat range 
and Sub-Himalaya Range. Dhital (2015)  has differentiated the 
Sub- Himalaya of the portion between Mahakali–Seti Rivers 
into the Lower Siwaliks, Middle Siwaliks and Upper Siwaliks. 
This division of the Siwalik zone into three formations based 
on lithology and stratigraphy by various researchers (Devkota 
et al., 2012; Dhakal, 2015; Dhital, 2015) and also found 
variation in landslide dynamics along with these divisions 
(Bhandari and Dhakal, 2020). 

The elevation ranges from 258 to 2,500 m within a very small 
area and has a higher slope gradient and profile. Along with 
the sedimentary rock, this caused slope instability, and various 
slope movements like rock fall, rock flow, rock slides, and 
complex types (Cruden and Varnes, 1996) were observed in 
the study area. The distribution of the small landslides in the 
study area is due to the fragile nature of the Siwalik region, 
whereas the occurrence of medium and large size sized 
landslides is due to the presence of active fault passes close 
to the main boundary thrust and runs through Budar, Alital, 
and Kalena. In the south of this active fault, Budar thrust 
delimits the Siwaliks from the Mahabharat Range. The higher 
density of the small and medium-sized landslides in this study 
area is a similar result to that of the previous study (Bhandari 
and Dhakal, 2020). The densities of the landslide were found 
higher in the vicinity of these faults and thrust. This shows 
that the landslide mobility in the study area is greatly affected 
by lithology along with terrain height and slope. Currently, 
there are two very large-sized landslides found to be active and 
the morphology shows the evolution of the landscape found 
to be greatly influenced by landslide events. As concluded by 
Fort et al. (2009), landslide events may influence landscape 
morphology and evolution for thousands of years.

Landslide susceptibility

Landslide susceptibility evaluation from both models gives 
little bit different results this is due to their capacity of 
prediction based upon the LCFs considered. In the case of 
the FR model highest weightage was of NDVI followed by 
lithology indicating the vital role of vegetation for landslide 
occurrence. Similarly, lithology also plays an important role 
because the types of rock and their weathering status differ in 
different lithology. Weathering processes affect rock types at 
different rates, making some more susceptible to weathering 
and therefore weaker (Dhakal, 2015). Also, unstable bedding 
sequences can lead to weaknesses within the geology, 
intensified by weathering processes, faulting, and tectonic 
uplift, fracturing, and folding, making them more susceptible 
to landslide (Duncan et al., 2003). Along the elevation up to 
a certain limit of about 1000 m, the landslide frequency was 
higher (Table 2) with a frequency ratio greater than one for 
500 to 750 and 750 to 1000 classes. This can be due to most 
of the portion of Upper and Lower Siwaliks falling under this 
class and which is considered a landslide-prone area from 
past studies also (Bhandari and Dhakal, 2018, 2020; Devkota 
et al., 2012; TU-CDES, 2016). In the case of slope gradient, 
it is seen that landslides are higher in slopes >30°. The FR 

value is highest for slope class ≥ 60°, followed by the 45- 60° 
slope class. This is due to the reason that the shear stress in 
the soil or other unconsolidated material generally increases 
with an increase in the slope angle. Generally, gentle slopes 
are expected to have a low frequency of landslides because 
of the lower shear stresses that are related to low gradients 
(Regmi et al., 2014). From the value of frequency ratio, the 
slope aspect shows that the SE-facing slopes are most affected 
by landslides, followed by S-, NE, and E-facing slopes. 

The distance between 0 and 200 m from the fault shows a 
higher correlation with the landslides. The relation between a 
landslide and its distance to a fault line shows that, when the 
distance from the fault line increases, the landslide occurrence 
probability decreases, and densities of the landslide are found 
higher in the vicinity of faults and thrust. The drainage density 
also has a great influence on landslide formation in the study 
area. The relation between TWI and landslide probabilities 
showed that the -3–5 classes have the highest FR value. In 
the case of land use, higher FR values were associated with 
the area around the river which has toe cutting effect upon the 
surrounding slope. Similarly, barren land is also found to be 
prone to landslides.  From the analysis of logistic regression 
coefficients, it is seen that slope angle, curvature, NDVI, and 
lithology have a prominent role in the landslide susceptibility 
of the area, as they all have positive β values. Also, it is seen 
that SPI is not significant LCF for susceptibility analysis by 
using the LR model. 

The area covered by the different susceptible zones in landslide 
susceptible maps from both methods is not exactly overlapped 
implying that if a factor class has lower and higher values in 
both models, the susceptibility will also be lower and higher 
respectively. In case of FR model, the spatial relationship 
between the causative factors and landslide is determined by 
FR values where as in case of LR model it is determined by 
β values. Therefore validation was conducted to know the 
accuracy of the model used. As in landslide susceptibility 
assessment validation is very important and helps to identify 
the potential area of landslides and it is one of the preliminary 
steps for hazard and risk assessment (Jaafari et al., 2014). The 
AUC method used in this study is most widely used and used 
by several researchers (Devkota et al., 2012; Ghimire, 2011; 
Nepal et al., 2019; Regmi et al., 2014). In this study, the success 
rate is 87.6% for the LR model with a prediction rate of 87.3% 
indicating a good degree of fit. With a success rate of 76.4% 
and a prediction rate of 75.1%, the result obtained from the 
FR model was fairly good. Thus, the logistic model exhibited 
better similar performance, and can be regarded suitable for 
similar areas.

CONCLUSIONS

By considering the serious threat of landslides to the life, 
property, and environment this study is carried out to predict the 
susceptibility of landslide-prone areas. The total area covered 
by the landslides in the study area is 0.47%. For the prediction 
of landslide susceptible area landslide susceptibility map, 
based on frequency ratio (FR) and logistic regression (LR) 
model is implemented and susceptibility of the area divided 
into five groups. By using the FR model in the study area 
largest portion falls under the high susceptibility zone which 
covers 27.98 % of the total area. Similarly 19.74%, 18.29%, 



Landslide Susceptibility Assessment in the Rangun Khola Watershed of far western Nepal 

43

18.68%, and 15.31% area is covered by moderate, low, very 
low and very high susceptibility zone, respectively. Similarly, 
from the analysis of the logistic regression, 25.55 % of the area 
found to be high susceptible to landslide followed by moderate 
susceptibility zone with 22.81 %. Very high susceptibility zone 
covers the least area i.e. 13.99 % and very low susceptibility 
region covers 20.94 % of the study area. Coefficients of the 
logistic regression (β-coefficients) depict slope gradient, slope 
aspect, elevation, and plane curvature have prominent role in 
landslide susceptibility and with negative β coefficient drainage 
density, distance from fault, and NDVI can be considered less 
important in landslide occurrence.

The validity of the models was confirmed by using the 
relationship between the percentage of landslide susceptibility 
map and the percentage of landslide pixels used for the training 
process (70%) whereas validation data (30%) were used to 
generate a prediction rate curve. The success rate is 87.6% for 
the LR model with a prediction rate of 87.3% indicating a good 
degree of fit. With a success rate of 76.4% and a prediction rate 
of 75.1%, the result obtained from the FR model is a fairly 
good performance but the LR model seems to be better for the 
study area.
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