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Abstract 

The significant adsorption capacity of activated carbon makes it a highly effective adsorbent 

material. The choice of activating chemicals plays a crucial role in determining the surface 

morphology and pore size distribution of the resulting activated carbon. In this study, potassium 

hydroxide and sodium hydroxide were employed as chemical activating agents in the preparation 

of activated carbon from the waste biomass of Acacia catechu seeds through a carbonization process. 

Fourier-transform infrared spectroscopy (FTIR) was utilized to examine the surface functional 

groups, while X-ray diffraction (XRD) analysis provided insights into the crystallinity of the activated 

carbons. Field-Emission Scanning Electron Microscopy (FESEM) was employed to analyze surface 

morphology. For the adsorption capacity assessment, methylene blue number (MBN) and iodine 

number (IN) method were employed. The activated carbon derived using KOH-activator (ACSK-6) 

exhibited higher iodine number (1269.62 mg/g) and methylene blue number (238.62 mg/g) 

compared to activated carbon synthesized using NaOH (ACSN-6). The well-developed porosity and 

superior adsorption capacity of the ACSK-6 sample underscore its potential in various application. 
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Introduction  

The astonishing capabilities of activated 

carbons as adsorbents have led to a growing 

interest in potential application in various field. 

These materials' large surface area, micro-

porous assembly, and notably high degree of 

surface responsiveness are responsible for 

adsorptive properties. The porous structure of 

activated carbons plays a major role in their 

adsorptive properties and its efficacy. Generally, 

these materials are produced from precursors 

with high carbon content [1]. The intrinsic 

properties of activated carbon materials are 

fundamentally influenced by the selection of 

precursors, choice of activating agent, 

carbonization temperature and the specific 

methodologies employed during their synthesis 

[2], [3]. The thermal conditions govern the 

structural transformation, pore development, 

and surface area characteristics of the material, 

while the adopted preparation techniques 

dictate the chemical composition, functional 

group distribution, and overall adsorption 

capacity [4], [5]. High-temperature 

carbonization is essential for generating porous 

activated carbon, as elevated temperature cause 
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volatile organic matters to escape from the 

carbon matrix, creating porous surface [6], [7], 

[8].  

The activated carbon produced from 

different sources like agriculture waste and 

renewable biomass are economic as well as 

environmentally friendly which ultimately helps 

to reduce the reliance on the fossil fuels [9]. The 

viability of creating high-quality activated 

carbon, the availability and affordability of the 

raw materials, and the materials' storage 

lifespan are pre-requisite condition for selecting 

an ideal precursor material [10]. There are two 

main approaches of generating activated 

carbons, (i) physical activation and (ii) chemical 

activation method [11], [12], [13]. Amid these, 

activation by chemical method precedence 

physical method in the sense that it requires 

relatively lower temperature for producing 

highly porous activated carbon [1].  

Among various biomass-derived precursors, 

the seeds of Acacia catechu hold significant 

potential as a valuable resource for synthesizing 

nanoporous activated carbon [14]. The high 

lignocellulosic content, comprising cellulose, 

hemicellulose, and lignin, in Acacia catechu 

seeds renders them particularly suitable for 

carbonization and activation processes [15]. 

These constituents contribute to the formation 

of a robust carbonaceous framework with well-

developed porosity, making the material ideal 

for diverse applications such as adsorption, 

catalysis, and energy storage [14]. 

To the finest of our knowledge, a little 

exploration has been done on how activating 

chemicals plays crucial role on the ability of 

activated carbons made from Acacia catechu 

seeds to perform adsorption process and the 

distribution of the pore in the surface. In this 

work, iodine and methylene blue number 

methods were employed to quantitatively 

evaluate the microporous and mesoporous 

nature of the synthesized material. The aim of 

this study was the inherent biomass of Acacia 

catechu seeds, which demonstrated exceptional 

adsorptive properties. Finally, Acacia catechu 

seeds showed exceptional high methylene blue 

and iodine adsorptive capabilities by KOH 

activating agent than NaOH. 

Materials and Methods 

Collection and Pre-carbonization of 

Precursor 

The Acacia catechu seeds were obtained in 

June of 2021 from the Garambesi region, 

Rainas-7, Lumjung district, Nepal. The collected 

seeds were subjected to shade-drying for a 

three-month. The dried substance was ground 

into a fine powder using Herbal Disintegrator 

(FW 177) at Amrit Campus. The material was 

then subjected to pre-carbonization process. 

Specifically, 60 g of previously ground seed 

material was placed in a muffle furnace for 

pyrolysis at 300 °C for three hours. The pre-

carbonized materials derived from Acacia 

catechu seed is labeled as ACSP-0. 

Activation of the materials 

The preparation process began by 

accurately mixing 10 g of pre-carbonized Acacia 

catechu seed powder with an equimolar quantity 

of potassium hydroxide (KOH) and sodium 

hydroxide (NaOH), separately. The mixture was 

ground into a fine paste using an agate mortar 

and pestle for two hours to ensure uniformity. It 

was then transferred into a ceramic boat and left 

to stabilize at room temperature for 24 hours. 

Subsequently, the material was subjected to 

heat treatment at 600 °C under a nitrogen 

atmosphere. The resulting activated carbon was 

neutralized with 1M hydrochloric acid (HCl) 

followed by repeated washing with distilled 

water. As-prepared activated carbon (AC) was 

dried in a hot air oven at 80 °C for eight hours, 

followed by a vacuum drying for six hours to 

remove any residual moisture. The dried AC was 
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agitated into a fine powder using an agate 

mortar, producing activated carbon suitable for 

further characterization. The activated carbon 

derived at temperature of 600 °C using chemical 

activators KOH and NaOH were labeled as 

ACSK-6 and ACSN-6, respectively.  

Iodine Number (IN) 

The micro-porosity of the activated carbon 

materials was evaluated by determining the 

iodine number (IN). For this analysis, a 1 g of 

carbonaceous material (ACSP-0, ACSK-6 and 

ACSN-6) were added to each of three conical 

flasks containing 5 mL of 5% hydrochloric acid 

(HCl). The samples were meticulously soaked by 

the acid through swirling, and the solution was 

then boiled and cooled to room temperature. 

Later, 10 mL of 0.1 N iodine solution was added 

to each flask, and the solution was shaken for 

15 minutes using a shaker at 200 RPM. After 

allowing the solution to settle, it was filtered 

using filter paper. The filtrate was titrated 

against standardized 0.1 N sodium thiosulphate 

solution. A few drops of freshly prepared starch 

indicator were added when the solution turned 

straw yellow, resulting in a dark blue color. The 

titration continued until the solution became 

colorless. The iodine number was calculated 

using the following formula: 

Iodine Number = 
Amount of I2in mg adsorbed by AC

Weight of AC taken in g
 

O
x

m
=  

[(126.93 N1V1) −(
(V1 +VHCl)

VF
)×(126.93 N2V2) 

Mc
..(1)  

Here, N1 = Normality of iodine solution, V1 = 

Volume of iodine solution, VHCl = Added volume 

of 5% HCl, VF = Filtrate volume used in titration, 

N2 = Normality of sodium thiosulfate solution, V2 

= Consumed volume of sodium thiosulfate 

solution and, MC = Mass of activated carbon, 
x

m
 

= iodine absorbed per gram of carbon, (mg/g). 

Methylene Blue Number (MBN) 

The adsorption capacity of activated carbon 

was evaluated using the methylene blue 

adsorption technique through batch adsorption 

experiments. Herein, 0.1 g sample of 

carbonaceous materials (ACSP-0, ACSK-6 and 

ACSN-6) were treated with 75 mL of a methylene 

blue solution of 100 ppm concentration. The 

mixture was agitated at 200 RPM for 4.5 hours 

using a shaker at 25 °C, followed by a 24-hour 

equilibration period. Afterward, the solution was 

filtered through Whatman filter paper (No. 42), 

and the residual methylene blue concentration 

in the filtrate was measured with a 

spectrophotometer (Labtronics, LT-2802). The 

amount of methylene blue adsorbed (𝑞𝑡), 

expressed in milligrams per gram of adsorbent 

(mg/g) at a specific time (t), was calculated 

using the following formula: 

𝑀𝐵𝑁 =
(𝐶𝑜 − 𝐶𝑒)𝑉

𝑊
 … (2) 

Where, C0 and Ce are the initial and 

equilibrium concentrations of methylene blue 

solution in milligrams per liter (mg/L or ppm), 

respectively. W represents the mass of the 

adsorbent in grams (g), and V is the volume of 

the solution in liters (L). 

Results and Discussion 

Study of functional group 

Functional group present in the 

carbonaceous material was studied in terms of 

Fourier Transform Infra-red (FTIR) spectroscopy. 

The surface characteristics and adsorption 

capabilities of activated carbons are 

significantly affected by the existence of oxygen-

containing surface functional groups [16]. The 

FTIR spectra of as prepared activated carbon 

samples are depicted in Fig. 1. The FTIR spectra 

of all the samples demonstrate notable 

similarity despite being produced using different 

activating agents. Prominent bands are 

observed in wavenumber between 800-1700 cm-
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1 [17]. The band around 1700 cm−1 corresponds 

to the stretching vibrations of -C=O bonds, 

indicative of carbonyl groups presents in the 

activated carbon derived from Acacia catechu 

seeds. Similarly, the strong band at 1425 cm−1 

is attributed to the stretching vibrations of C-C 

bonds, while the band observed at 

approximately 1600 cm−1 suggests stretching 

vibrations of highly conjugated carbonyl groups 

(C=O) associated with aromatic ring systems 

[18]. The absorption bands between 1100 and 

1200 cm−1 signify C–O bond stretching, and the 

weak band slightly above 3000 cm−1 across all 

samples points to unsaturated alkenyl C=C 

stretching vibrations. Additionally, the bands in 

the 860–600 cm−1 range denote aromatic C–H 

bending vibrations [19]. A weak vibration band 

near 3740 cm−1 is associated with the O-H bond 

stretching vibrations of phenol or alcohol groups 

[20]. The FTIR spectra indicates the presence of 

residual oxygenated surface functional groups, 

such as lactones, carboxyls, carbonyls, and 

hydroxyls, in all activated carbon samples [21]. 

 

Fig. 1: FTIR spectra of various carbonaceous 

materials (ACSP-0, ACSK-6 and ACSN-6). 

X-ray diffraction (XRD) characterization 

The structural purity and crystallinity of 

KOH-activated carbon and NaOH-activated 

carbon were evaluated using X-ray diffraction 

(XRD) analysis. The diffraction patterns 

demonstrated the phase purity of the samples, 

characterized by broad peaks typical of carbon 

materials, with no evidence of residual 

activating agents, confirming the synthesis of 

pure activated carbon. XRD patterns for ACSP-

0, ACSN-6, and ACSK-6, recorded over a 2θ 

range of 10° to 90°, are presented in Fig. 2. 

Notably, all samples displayed broad and sharp 

XRD pattern, including a prominent broad peak 

at 2θ ≈ 24.6°, corresponding to a d-spacing 

value of approximately 0.33 nm and the (002) 

plane, indicative of the graphitic structure of the 

carbon materials. Additionally, a smaller peak 

observed at 2θ ≈ 43.7° further corroborates the 

carbonaceous nature of the samples, consistent 

with prior studies [22]. 

 

Fig. 2: XRD of Pre-carbonized sample, carbonization 

with NaOH and carbonization with KOH. 

Iodine and methylene blue number 

The performance of activated carbon is 

commonly evaluated using methylene blue (MB) 

and iodine (I) adsorption methods, as they 

provide valuable insights into pore size and 

structure. Iodine adsorption assesses the 

capacity to adsorb smaller molecules due to 

iodine's small molecular size [23]. In contrast, 

methylene blue number primarily measures 

molecules with mesoporous size [24].The iodine 

number value of the sample is illustrated in the 

bar-graph, Fig. 3 (a). The sample activated at 
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600 °C using KOH (ACSK-6) exhibits the highest 

iodine number value of 1269.62 mg/g as 

compared to NaOH activated carbon at the same 

temperature (972.71 mg/g ). It is clear that the 

micropore development within the surface of the 

as prepared activated carbon not only depend 

upon activation temperature. The activating 

agent employed for activation and their specific 

action also plays crucial role. 

Similarly, the methylene blue number (MBN) 

was determined by measuring the change in 

methylene blue concentration before and after 

adsorption by the as-prepared AC. The 

absorbance was measured using 

spectrophotometer. The methylene blue number 

values indicate the mesopore content in the 

activated carbon [25], [26]. The maximum 

wavelength for the solution was observed by 

taking the absorbance within the wavelength of 

visible range (500-800 nm). The wavelength at 

which maximum absorbance of MB solution 

observed was found to be 665 nm. The 

methylene blue adsorption value for the KOH-

activated carbon sample (ACSK-6) is higher 

(238.62 mg/g) compared to ACSN-6 (185.12 

mg/g) and ACSP-0 (94.60 mg/g), as shown in 

Fig. (b). The higher value of the MBN suggests 

the presence of high number of mesopores 

within the carbon matrix. Among the tested 

samples, the adsorption capabilities of iodine 

and methylene blue follow the order: ACSK-

6 >ACSN-6 >ACSP-0. Higher temperatures 

generally enhance the removal of volatile 

components from the precursor material and 

facilitate the opening of pores. At the meantime, 

activating agents react with the chemical 

contents of the precursor and produce gases like 

CO, CO2 [27]. The development of micropores 

and mesopores is higher in KOH-activated 

carbon compared to NaOH-activated carbon due 

to the greater chemical reactivity of KOH, which 

facilitates deeper penetration into the carbon 

matrix and promotes more effective gasification 

reactions [28]. KOH forms highly reactive 

intermediates, such as potassium carbonate 

and metallic potassium, which catalyzes the 

formation of pores more efficiently than sodium-

based intermediates [29], [30]. Additionally, the 

smaller ionic radius and better mobility of 

potassium ions allow for uniform pore 

distribution and greater structural expansion of 

the carbon framework. KOH activation also 

occurs within an optimal temperature range 

(600–800°C), enhancing gas evolution and pore 

development [30]. These factors collectively 

result in a higher surface area and greater 

microporosity and mesoporosity in KOH-

activated carbon compared to NaOH-activated 

carbon [31]. 

 

Fig. 3: Bar graph demonstrating (a) iodine number 

and (b) methylene blue number of samples (ACSP-0, 

ACSN-6 and ACSK-6). 

Field Emission Scanning Electron 

Microscopy (FESEM) 

The morphological structure of the carbon 

materials was examined by FESEM. Fig. 4 (a-c) 

depicts the FESEM image of ACSP-0, ACSN-6, 

and ACSK-6 at magnification of 100 nm. These 

images highlight the significant influence of 

activating agents on the surface topology and 

porosity of the carbon samples. The pre-

carbonized char, shown in Fig. 4 (a), features a 

relatively smooth surface with minimal porosity, 

indicating that the sample almost devoid of 

porous nature. The NaOH-activated carbon in 
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Fig. 4 (b) shows a distribution of small and 

uneven pores across its surface, suggesting a 

moderate level of activation [32]. In contrast, the 

KOH-activated carbon, illustrated in Fig. 4 (c), 

exhibits a highly porous interconnected 

structure compared to others, indicating a 

higher degree of activation and pore 

development. However, the pore distribution is 

not entirely uniform, reflecting the localized 

nature of the activation process. The differences 

in pore structures between NaOH and KOH 

activation highlight their distinct mechanisms 

[31]. The KOH activation involves structural 

breakdown by etching the carbon surface 

followed by gasification of the lignocellulosic 

contents that escape out from carbon matrix, 

leaving behind a porous structure [33]. In 

comparison, NaOH activation promotes a less 

intensive reaction, resulting in smaller and less 

developed pores [34]. 

 

Fig. 4: Morphological study: FESEM image of (a) 

ACSP-0 (b) ACSN-6, and (c) ACSK-6, respectively. 

Conclusions 

This study investigated the potential of 

utilizing waste Acacia catechu seeds to produce 

nanoporous activated carbon through a simple 

chemical activation method, using KOH and 

NaOH as activating agents independently at 

600°C. The carbonaceous materials as prepared 

were characterized using FTIR, XRD, FESEM, 

iodine number and methylene blue number 

analysis. This study highlights the critical role 

of KOH in producing activated carbon (ACSK-6) 

with well-developed porosity, which is attributed 

to its high reactivity, efficient ion diffusion, and 

catalytic gasification effects exhibiting higher 

iodine and methylene blue number of 1269.62 

mg/g and 238.62 mg/g, respectively compared 

to other samples (ACSN-6 and ACSP-0). This 

finding is also consistent with the FESEM 

analysis. These studies confirmed the superior 

adsorption capacity of KOH-activated carbon 

compared to its NaOH-activated counterpart. 

Overall, the lignocellulosic contents prevalent in 

Acacia catechu seeds makes them an excellent 

precursor for activated carbon production, and 

the use of KOH not only enhances pore 

formation but also ensures economic feasibility, 

making it a preferred choice for industrial 

applications as an efficient adsorbent material. 
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