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ABSTRACT

The max flow problem means to send as much flow as possible from source to 
the sink satisfying the following two conditions: the capacity of each edge is 
greater than or equal to its flow and inflow and outflow are same throughout 
the network for every node except source and sink. Those problems which are 
related to maximum flow are called maximum flow problems. The maximum flow 
problem has its wide    applications in real life situation like airline scheduling, 
communication networks; electrical power etc. Various algorithms are there to 
solve this problem in the literature. In this paper, we present comparative study of 
the existing algorithms to maximum flow problem.
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Introduction
The maximum flow problem (MFP) is one of the basic problems in the network 
optimization. There are four types of network model: Shortest-path model, Minimum 
spanning tree model, Maximal-flow model and Minimum-cost capacitated network 
model. Among these four models, we have restudied on the Maximal-flow model. The 
objective of this model is to find the maximum number of flow that can be sent from 
source to sink through the different edges of the network. The network consists nodes 
and arcs. Arcs connect the nodes.

At first, the maximal flow problem was studied by Ford and Fulkerson [1962] and 
solved this problem by using the augmenting path algorithm by them. In 1962, Ford 
and Fulkerson gave well known Ford-Fulkerson algorithm [1962] to find the maximum 
flow in a flow network. Ford-Fulkerson uses depth-first search to find the augmenting 
paths through a residual graph. Edmond and Karp [1972] gave two labeling algorithms: 
first augments flow along shortest augmenting paths which runs in O(nm2) time and 
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second augments flow along paths with maximum residual capacity which runs in 
O(m2logU) time. Dinic  [1970] introduced the concept of shortest path network, called 
layered network, and showed by constructing blocking flows in layered network, and 
the maximum flow can be obtained in O(n2m) time. Karzanov [1972] introduced the 
concept of pre-flows and showed that an implementation that maintains pre-flows and 
pushes flow from nodes with excess obtains a maximum flow in O(n3) time. Cherkasssky 
[1977] presented further improvement of Karzanov's algorithm runs in O(n2m

1
2) time. 

Gabow incorporated scaling technique into Dinic's algorithm [1970] and developed an 
O(nmlogU) time algorithm. Goldberg and Tarjan suggested First In First Out (FIFO) and 
highest label pre-flow algorithms ran in O(n3) and O(nm log (n2/m)) time using simple 
data structures and dynamic tree data structures respectively. Derigs and Meier [1989] 
implemented several versions of Goldberg and Tarjan's algorithm and then they found 
that Goldberg and Tarjan's algorithm is substantially faster than Dinic's and Karjan's 
algorithms. Similarly, Anderson and Setubal [1992] find different versions like First In 
First Out, Highest Label, Stack to be the best for different classes of networks and queue 
implementations to be about four times faster than Dinic's algorithm [1970]. After Ford 
and Fulkerson [1962], many researchers have improved several algorithms for solving 
maximum flow problems. Maximum flow problem is used in many applied fields like 
Computer Science, Transportation, Scheduling, Telecommunication, Management, 
Logistics and other branches of Operations Research.

In this paper, we have restudied some of the existing maximum flow algorithms and 
compared their performance. This paper has been organized as follow: Section 2 includes 
formulation of maximum flow problem; Section 3 includes solution techniques; Section 
4 includes the comparison of the approaches and Section 5 includes the concluding 
remarks.

Mathematical Formulation
Let G be the directed graph containing N and A as the sets of nodes and arcs that is edges 
respectively with positive integer capacity cij ∀ (i, j) ∈ A. Also, let |N| = n and |A| = m.  
Suppose that the graph does not contain multiple arcs and ∀ (i, j) ∈ A, ∃ ∀ (j,i)∈A, 
possibly having zero capacity. We define A(i) = {(i, j) ∈ A : j ∈ N} and U = max.{cij,  
(i, j) ∈ A}. Mathematically, the maximum flow problem is stated as follow:

Maximize the flow value v,

Subject to

i∈V
(xij - xji) = 0 ∀ j ∈ V - {s,t} ⋯⋯(1)

i∈V-(s)
xsi = v ⋯⋯(2)

i∈V-(t)
xit = v ⋯⋯(3)
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Where V stands for the set of nodes; A stands for the set of edges; suffices I and j stand 
for the intermediate nodes; v stands for the total flow value of the problem; xij stands for 
the flow from a node i to the another node j and cij stands for the capacity on the arc (i, j).  
The unique nodes s and t are called the source and sink or destination respectively. 
Equation 1 represents the flow conservation; Equations 2 and 3 represent the net flow 
out of source and into the sink respectively. The main objective of this problem is to 
maximize the flow value in the network.

Solution Techniques
We have described here solution techniques which are used to solve the maximum flow 
problems as:

Breadth First Search (BFS) Algorithm
BFS [2014] is a graph traversing (traversing means visiting each and every vertex and 
edge exactly once in a well-defined order) algorithm. In this method, we start traversing 
from any vertex and then traverse the graph layer wise to exploring the neighbouring 
connected nodes. Then we move towards the next level neighbouring nodes. If the given 
graph is un-weighted, then we can use this algorithm which is very simple and fast. The 
time complexity of BFS is O(m + n), where n and m are number of nodes and number 
of edges respectively.

Depth First Search (DFS) Algorithm
It is an algorithm for traversing or searching tree or graph data structures. The algorithm 
starts at the root node (selecting some arbitrary nodes as the root node in the case of 
a graph) and explores as far as possible along each branch before backtracking. DFS 
[2014] is a recursive algorithm which uses the backtracking (backtracking means when 
we are moving forward and there are no one nodes along the current path then we move 
to backwards on the same path to find node to traverse) idea. All nodes are visited on 
the current path till all the unvisited nodes have been traversed after which the next path 
will be selected. The time complexity of DFS is O(m + n), where n and m are number 
of nodes and number of edges respectively.

Largest Augmenting Path Algorithm
A path from source to sink is said to be augmenting whose edges either non-full forward 
or non-empty backward edges. In Largest Augmenting Path Algorithm [1972], first we 
select a path from source to sink, we find minimum capacity or bottleneck capacity along 
the selected path and then send that minimum capacity to sink. Its time complexity is 
O(F.E), where F is total flow value and E is number of edges respectively.

Dinic Algorithm
Dinic's algorithm [1970] is a strongly polynomial maximum flow algorithm with 
running time O(n2m). It proceeds by constructing shortest path network, called layered 
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networks and by blocking flows in these networks. It is extremely fast in practice and 

works even better on the bipartite graphs giving a time complexity O((mn)
1
2) due to the 

algorithm's reduction to Hope-croft Karp. The algorithm was originally invented by 
Yefim Dinitz in 1969 and published in 1970. The algorithm was later modified slightly 
and popularized by Shimon Even [1976]. The introduction of the concepts of the level 
graph and blocking flow enable Dinic's algorithm to achieve its performance. It can be 
shown that the number of edges in each blocking flow increases by at least 1 each time 
and thus there are at most (n - 1) blocking flows in the algorithm, where n is the number 
of vertices in the network. 

Layer Updating Method
Layer updating is the method proposed by To-Yat Cheung [1980] with the main ides is to 
maintain, by updating without destruction, a two way layered sub-networks throughout 
the whole process. On the basis of current flow pattern (construct two sun-networks) is 
called layered sub-network and referent sun-network of the original network. 

Karzanov Algorithm
It is a pre-flow push algorithm, but pushes flow from the source to the sink using 
layered networks instead of distance labels. Karzanov [1972] describes a pre-flow 
based algorithm to construct a blocking flow in a layered network in O(n2) time. This 
repeatedly performs two operations: push and balance. The push operation pushes the 
flow from one layer an active node to the next layer very near to the sink in the layered 
network and the balance operation returns the flow that can't be sent to the next layer to 
the nodes in previous layer it came from. This algorithm repeatedly performs forward 
and reverse passes on active nodes. In a forward pass, the algorithm examines active 
nodes in the decreasing order of the layers they belong to and preforms push operations. 
In a backward pass, the algorithm examines active nodes in the increasing order of 
the layer they belong to and performs balance operations. The algorithm terminates 
where there are no active nodes. This algorithm constructs a blocking flow in a layered 
network in O(n2) time and hence the running time of the algorithm is O(n3).

Dinic-Karzanov Algorithm 
Dinic-Karzanov Algorithm [1976] is the combination of Dinic [1970]and Karzanov 
[1972] methods but this method is same as the Karzanov method. In this method, the 
layered sub-network is replaced by Dinic's referent sub-network throughout all the 
advance and balance operations. 

Kinariwala-Rao Algorithm
Kinariwala-Rao [1977] uses the flow switching method which is complicated and 
lengthy. It is alternate approach to the maximum flow problem based upon the concept 
of redistribution of flows so as to maximize the flow from the source to the sink. In this 
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method, flow conservation is achieved by decreasing the flow along those eliminating 
paths which connect a vertex with more outgoing flow than incoming flow to another 
vertex with more incoming flow than outgoing flow. Flow switching means, flow refers 
to velocity or physical movement of gas, steam, or liquid within a pipe that triggers the 
flow switch.  When  there  is no flow present,  the  velocity  either  drops  or completely  
stops, in either case, the  switch  will revert  to its original  position. The flow switching 
is used in water treatment systems, additive or blending systems, air supply systems and 
duct type heating etc.

Ford-Fulkerson Algorithm
The Ford–Fulkerson algorithm, a greedy algorithm for maximum flow that is not in 
general strongly polynomial. Ford-Fulkerson gives many basic facts about the maximum 
flow problem.  In particular, the maximum flow value is equal to the minimum cut 
capacity and this theorem is called the max-flow min-cut, and that a flow is called 
maximum if and only if no augmenting path is found, called the augmenting path 
theorem. We introduce the Ford-Fulkerson augmenting path algorithm [1972], and 
give its implementation using the labelling method. They use the algorithm to prove 
the integrality theorem, which states that a maximum flow problem with integral arc 
capacities has an integral optimal solution.

Goldberg-Tarjan Algoriyhm (or, Push-Relabeling Algorithm)
The push relabel algorithm given by A.V. Goldberg and R. E. Tarjan [2014] works by 
manipulating the pre-flow in a graph. First step is saturating all the edges exiting the 
source. Next step is moving the excess into nodes that are estimated to be very near to 
the target. If at some point the excess of a node cannot reach the target, the excess is 
moved back into the source.  At last, the pre-flow is therefore an actual flow and is the 
maximum flow.

Shortest Augmenting Path Algorithm
The shortest augmenting path algorithm (SAP) is given by Edmonds and Karp [1977] 
and Dinic [1970]. It is shown that the augmenting path length in SAP is non-decreasing 
monotone, and at most m augmenting paths of length k,k∈(1,n-1), are found by the 
algorithm. Thus the number of iterations of the algorithm is at most (n-1)m = O(n3). 
This bound is tight by Zades, N. [1973] and concludes with a discussion of the 
implementation of the SPA by using BFS for finding shortest augmenting paths. The 
time complexity of the resulting method is O(nm2 ). However, SAP can be discovered 
in an average of O(n) time.

Generic Pre-flow Push Algorithm
The pre-flow-push algorithms [1995] maintain a pre-flow and proceed by examining 
the active nodes, i.e., nodes with positive excess. The main idea of the algorithm is to 
select an active node and to attempt to send its excess near to the sink.  As sending flow 
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on admissible arcs pushes the flow near to the sink, the algorithm always pushes flow 
on admissible arcs. If the active node being examined has no admissible arc, then we 
increase its distance label to create at least one admissible arc. If active nodes are not 
found then the algorithm terminates.

Highest Label Pre-flow Push Algorithm
This algorithm always pushes flow from an active node with the highest distance label. 
Let d⋆ = max{d(i):i is active}. The algorithm first examines nodes with distance label 
d⋆ and pushes flow to nodes with distance label d⋆-1, and these nodes, in turn, push 
flow to nodes with  distance labels equal to d⋆-2, and so on, until  either the algorithm 
relabels a node or it has exhausted all the active nodes. When it has relabelled a node, 
the algorithm repeats the same process.  Goldberg and Tarjan [2014] obtained a bound 
of O(n3) on the number of non-saturating pushes performed by the algorithm. After that, 
Cheriyan and Maheshwari [1989] showed that this algorithm actually performs O(n2 m)  
non-saturating pushes and this bound is tight.

Lowest Label Pre-flow Push Algorithm
The lowest-label pre-flow push algorithm always pushes the flow from an active node 
with the smallest distance label. Its implementation is same as the highest-label pre-
flow push algorithm.  This algorithm performs O(n2 m) non-saturating pushes and runs 
in O(n2 m) time.

First In First Out (FIFO) Pre-flow Push Algorithm
This algorithm examines active nodes in the FIFO order and maintains the set of active 
nodes in a queue called QUEUE.  It selects a node i from the front of QUEUE for 
examination. The algorithm examines node i until it becomes inactive or it is relabelled. 
Later, node i is added to the rear of QUEUE. The algorithm terminates when QUEUE 
becomes empty. Goldberg and Tarjan [2014] showed that the FIFO implementation 
performs O(n3) non-saturating pushes and can be implemented in O(n3) time.

Capacity Scaling Algorithm (CSA)
Capacity Scaling Algorithm was originally suggested by Gabow [1985]. Ahuja and Orlin 
[1988] subsequently developed a variant of this approach which is better empirically. 
The main idea behind the CSA is to augment flow along a path with sufficiently large 
residual capacity such that the number of augmentations is sufficiently small. The CSA 
uses a parameter ∆ and with respect to a given flow x, defines the ∆ - residual network 
as a sub-graph of the residual network where the residual capacity of every arc is at least 
∆. We denote the ∆- residual network by G(x, ∆). The capacity scaling algorithm has the 
following three representative operations: Relabels, Augmentations and constructing  
∆- residual networks. The running time of the capacity scaling algorithm is O(nm log U).
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Excess Scaling Algorithms (ESA)
Excess-scaling algorithms [1988] are special implementations of the generic pre-flow 
push algorithms and incorporate scaling technique which dramatically improves the 
number of non-saturating pushes in the worst case. The essential idea in the (original) 
excess scaling algorithm is to assure that each non-saturating push carries sufficiently 
large flow so that the number of non-saturating pushes is sufficiently small. The 
algorithm defines the term sufficiently large and sufficiently small iteratively. 

Let emax= max{e(i):i active} and ∆ be an upper bound on emax. We refer to a node i with 

e(i) ≥ 
∆
2  ≥ 

emax

2  as a node with large excess, and a node with small excess otherwise 
initially, ∆=2[logU] , i.e. the largest power of 2 ≤ U.

Original Scaling Algorithm
The original excess scaling algorithm performs a number of scaling phases with different 
values of the scale factor ∆. In the ∆ - scaling phase, the algorithm selects a node i with 
large excess, and  among such nodes selects a node with  the smallest distance  label, and 
performs push / relabel (i) with the slight modification that during a push on arc (i, j),  
the algorithm pushes min{e(i), rij, ∆-e(j)},  units  of flow. (It can be shown that the above 
rules ensure that each non-saturating push carries at least 

∆
2  units of flow and no excess 

exceeds ∆). When there is no node with large excess, then the algorithm reduces  ∆ 
by a factor 2, and repeats the above process until ∆=1, when the algorithm terminates. 
To implement this algorithm, we maintain the singly linked stacks SLIST (k) for each  
k = 1, 2, … , 2n − 1, where SLIST (k)  stores  the set of large excess nodes with  distance 
label equal to k. We determine a large excess node with the smallest distance label by 
maintaining a variable level and using a scheme similar to that for the highest-label pre-
flow push algorithm. Ahuja and Orlin [2] have shown that the excess scaling algorithm 
performs O(n2logU) non-saturating pushes and can be implemented in O(nm+ n2log U) 
time.

Performance Analysis
The main aim of this paper is to compare the above approaches.  Dinic [1970] and 
Edmonds and Karp [1972] independently showed that an augmenting path obtained 
by the BFS method is the shortest. Karzanov's [1972] max-flow algorithm is based 
on a concept of pre-flow, which is a function on the arcs that may violate, in a certain 
way, the flow conservation condition in nonterminal nodes. The algorithm, called the 
pre-flow method, takes advantages of handling pre-flows on intermediate iterations, 
due to which the running time of reduces to O(n3); here n and m are the numbers of 
nodes and number of arcs. Subsequently pre-flows and the idea of push operations have 
been widely used in other max-flow algorithms, in particular, in Cherkassky's algorithm 
[1977] is slightly faster and in Goldberg's pus-relabel algorithm [1985] of the same 
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complexity O(n3). Similar to Dinic algorithm, the pre-flow algorithm consists of O(n) 
stages, each solving a blocking flow in a layered network. The pre-flow algorithm solves 
the auxiliary problem in O(n2) time, thus yielding the time bound O(n3) for the whole 
algorithm. In fact, the algorithm of finding a blocking flow can be slightly modified so 
as to work with an arbitrary acyclic, not necessarily layered network.

Concluding Remarks
We consider here some of the algorithms related to maximum flow problems and 
compare their performance. There are number of efficient algorithms based on the Ford-
Fulkerson method. Among them, DFS, BFS, and Largest augmentation methods are 
simple to solve the problems and each consist of cycles in which labels are created and 
paths are augmented, if found. The Dinic method is simple to use and is same as the 
BFS method except that a referent is created within each cycle and that a sub-procedure 
path is used for path searching within a referent (i.e. layer). The layer updating method 
is so lengthy, mainly because of the complicated process involved in updating the tree 
structures of the labels. Following sub procedures are used:  advance, candidate, delete, 
update and flow change. The Karzanov method consists mainly of alternative calls to 
two sub procedures advance and balance. The Dinic-Karzanov method is a modification 
of the Karzanov method. An additional sub-procedure is used to create a referent, within 
which the advance and balance operations are confined. The Kinariwala-Rao method 
performs alternatively two processes: flow augmentation by saturating a cut and flow 
conservation by decreasing flow along eliminating paths. A sub-procedure called ELIM 
is used to identify and eliminate all the eliminating paths, each of which connects a 
vertex with excessive outflow to a vector with excessive inflow.
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