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Abstract

This study proposes new distribution which is generated from exponentiated-exponential-X 
family of distribution. It is explored various shape and behavior of the observed distribution 
through probability density plot, hazard rate function and quantile function. Further we have 
investigated some mathematical properties, estimation of the parameters and associated 
confidence interval using maximum likelihood estimation (MLE) method of the exponentiated-
exponential-logistic distribution (EELD).

Keywords: Exponentiated-exponential-X family, Hazard function, Logistic distribution, 
MLE.
 

Introduction

In the last few years, new generated families of continuous distributions have attracted several 
statisticians to develop new models. To describe the real world phenomena, we generally use 
statistical distribution. Since real data are usually complex and they have a variety of shapes, 
existing distribution do not always provide an adequate fit. Hence investigating new distribution 
and studying their behavior and flexibility are of interest of researchers for last decades. To 
improve the flexibility of the statistical model, the families are obtained by introducing one or 
more additional shape parameter(s) to the baseline distribution.
 In probability and statistical modeling these families have been broadly studied in several 
areas as well as produced more flexibility in many applications. Some of the generating family 
of the distributions are: Beta-generated (Eugene et al., 2002), Gamma-generated-G family was 
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defined by (Zografos & Balakrishnan, 2009), the gamma-exponentiated exponential distribution 
by (Ristic & Balakrishnan, 2011), a new family of generalized distribution was introduced by 
(Cordeiro & de Castro, 2011), exponentiated generalized class introduced by (Cordeiro et al., 
2013), Weibull-G by (Bourguignon et al., 2014), Similarly, Kumaraswamy Weibull-G was 
defined by (Hassan and Elgarhy, 2016), exponentiated Weibull-G family by (Hassan & Elgarhy, 
2016), additive Weibull- G family by (Hassan & Hemeda, 2016), exponentiated extended-G 
(Elgarhy et al., 2017), generalized additive Weibull-G (Hassan et al., 2017), power Lindley-G 
(Hassan & Nassr (2018) and Muth-G (Almarashi & Elgarhy, 2018). Elgarhy et al. (2019) have 
defined Type II half logistic exponential distribution. Abdulkabir and Ipinyomi (2020) have 
introduced a three parameter Type II half logistic exponentiated exponential distribution.
 Alzaatreh et al. (2013) has introduced a beta-exponential-X family whose probability 
density function (PDF) and cumulative density function (CDF) are,

   (1.1)

 and     (1.2)

respectively, where I  is incomplete beta function. When 1b =  in (1.1) and (1.2) it reduces to 
exponentiated-exponential-X family with PDF and CDF,

   (1.3)

 and      (1.4)
 respectively.

The Exponentiated-Exponential-Logistic Distribution (EELD)

In probability theory and statistics, the logistic distribution is a important continuous probability 
distribution. Its cumulative distribution function is the logistic function, which appears in 
logistic regression. It resembles the normal distribution in shape but has heavier tails (higher 
kurtosis). The logistic distribution is a special case of the Tukey lambda distribution. The 
probability density function (PDF) and cumulative density function (CDF) of standard logistic 
distribution are
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      (2.1) 

 and    (2.2) 

respectively. After plug in PDF and CDF of standard logistic distribution in (1.3) and (1.4) we 
get PDF and CDF of new distribution exponentiated-exponential-logistic (EEL) distribution 
and they can be defined as

    (2.3)
 

 and   (2.4)

Special cases of EELD

I. When λ = 1, the EELD in (2.3) reduces to type-I generalized logistic distribution given 
by (Johnson et al. 1995).

II. When α = λ = 1, in (2.3) it reduces to standard logistic distribution.
Figure 1
Plots of the Probability Density Function (left panel) and Cumulative Density Function (right 
panel) for Different Values of α and λ
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Reliability/ Survival function

The survival function is a function that gives the probability that a patient, device, or other 
object of interest will survive beyond any specified time. The survival function is also known 
as the survivor function or reliability function. Let T be a continuous random variable with 
cumulative distribution function F (t) on the interval [0, ∞). Its survival function or reliability 
function is: 

    

     (3.1)

Hazard Function

Suppose that an item has survived for a time t and we desire the probability that it will not 
survive for an additional time dt then, hazard rate function is,

  
(4.1)

Now the hazard function for EEL distribution is

  

(4.2)

Figure 2 
Plots of the Hazard Function of EELD for Different Values of Shape Parameter λ Keeping α  
Constant
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The cumulative Hazard Function

The cumulative hazard function (CHF) of EELD is

  

(4.1.1)

Quantile Function of PC Distribution 

In probability and statistics, the quantile function, associated with a probability distribution of 
a random variable, specifies the value of the random variable such that the probability of the 
variable being less than or equal to that value equals the given probability. It is also called the 
percent-point function or inverse cumulative distribution function.
 Q(p) = F-1(P)
The quantile function is

    (5.1)

For the generation of the random numbers of the EEL distribution, we suppose simulating 
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values of random variable X with the CDF (2.4). Let V denote a uniform random variable in 
(0,1), then the simulated values of X are obtained by setting,

     (5.2)

Skewness and Kurtosis 

The Skewness and Kurtosis are used mostly in data analysis to study the shape of the probability 
distribution or data set. Which can be calculated as follows,

 , and

The coefficient of kurtosis based on octiles given by (Moors, 1988) is

 

Maximum Likelihood Estimation (MLE)

In this section we illustrated the maximum likelihood estimators (MLE’s) of the EEL 
distribution. 
 Let x = (x1, ……xn ) be a random sample of size ‘n’ from EEL (α,λ) the log-likelihood 
function L(α,λ | x) an be written as,

 (7.1)

The maximum likelihood estimators of the parameters have obtained by differentiating (7.1) 
with respect to parameters α and λ and equating to zero, we have

    (7.2)

    (7.3)

After solving these two nonlinear equations (7.2) and (7.3) we will get the maximum likelihood 
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estimator . But these equations cannot be solved analytically and 
statistical software can be used to solve them numerically. We can use iterative techniques 

such as a Newton-Raphson type algorithm to calculate the estimate . For example, optim() 

function in R software can be used to compute  numerically.
 Hence, from the asymptotic normality of MLEs, approximate (1- α )% confidence 
intervals (ACI) for α and λ can be constructed as

   (7.4)
 where Za/2 is the upper percentile of standard normal variate.

Illustration with Real Dataset

Here we present the estimated values of model parameters and approximate confidence 
interval (ACI) by using a real data set. The real data (sorted) set represents the remission times 
(in months) of a random sample of 128 bladder cancer patients used by (Lee & Wang, 2003) 
0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 
2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 
3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 
5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 
6.97, 7.09, 7.26, 7.28,7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 
9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 
12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 
17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 
43.01, 46.12, 79.05.
 The ML estimates are computed by maximizing the log-likelihood function given in 
equation (7.1) directly using optim() function in R software (R Development Core Team, 

2020) and (Mailund, 2017). We obtain â = 1.4159 and 
$l = 0.13232 and the corresponding 

log-likelihood value is l = -418.4075.
Table 1
MLE, SE and 95% Confidence Interval
Parameter MLE SE 95% ACI t-value p-value
alpha 1.4159 0.18031 (1.0625, 1.7693) 7.853 4.07e-15
lambda 0.13232 0.01448 (0.1040, 0.1607) 9.141 < 2e-16
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Conclusion

In this study, we introduced a two parameter new distribution called Exponentiated Exponential 
Logistic (EEL) Distribution generated by a new class of Exponentiated Exponential-X family 
of distribution. We have derived important properties of the EEL distribution like reliability 
function, hazard rate function, quantile function and maximum likelihood estimation of 
parameters and their associated confidence intervals. We have explored the application of EEL 
distribution to a real data set used by earlier researchers. The purposed model demonstrated 
the flexibility in its shape so it may be an alternative model in the fields of reliability/survival 
analysis.
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