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ABSTRACT 
Formation energy plays a crucial role in material development, serving as a key metric for understanding material stability 
and behavior. In this study, machine learning algorithms, namely Random Forest Regressor (RFR) and Gradient Boosting 
Regressor (GBR), were employed to predict the formation energy of copper-based ternary alloys. The models were 
implemented using the Scikit-Learn library within the Anaconda distribution. A composition-based featurizer, Magpie 
elemental properties, from the Matminer toolkit, was utilized to represent the alloy's features. The results demonstrate that 
the composition-based featurizer effectively captures the relationship between alloy composition and formation energy. 
Among the models, GBR outperformed RFR, explaining 94% of the variance in formation energy using only five features, 
compared to 92.5% explained by RFR, which required ten features. These findings highlight the efficiency and accuracy 
of GBR in predicting formation energy with fewer input features. This work underscores the potential of machine learning 
models, particularly the GBR, as powerful tools for accelerating material discovery and design. By enabling reliable and 
efficient predictions, these models provide a pathway to streamline material development processes. 
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INTRODUCTION 
The search for novel materials with desired properties is 
the foundation of material science and engineering. The 
alloying phenomena has served as robotic tool to develop 
new materials with desired properties. The materials 
characteristic can be enhanced or manipulated by varying 
the thermal processing routes such as micro-granules, 
atmospheric conditions, cooling rates, etc. (Dhungana et 
al., 2023). Among numerous material systems, ternary 
copper-based (Cu-based) alloys have their own diverse 
range of applications due to their high mechanical strength, 
electrical conductivity, and thermal conductivity (Inoue et 
al., 2001; Kosec & Milosev, 2007). Cu-based ternary alloys 
such as Cu-Al-Mn, Cu-Al-Ni, Cu-Al-Be, etc. are  known as 
shape memory alloys (SMAs), can restore their shape when 
heated over a specific temperature (Jani et al., 2014; Mazzer 
et al., 2022). This phenomenon is caused by a martensitic 
phase transformation, which occurs when a martensitic 
phase nucleates and grows from an austenitic phase under 
shear-dominant diffusion less solid-state conditions. 
Among them Cu–Zn, Cu–Al, and Cu–Sn alloys, both with 
and without ternary additives, have demonstrated promise 
because of their exceptional thermal and electrical 
conductivity, ease of production, and good shape recovery 
(Dasgupta, 2014). Moreover, Cu-based ternary alloys like 
Cu-Sn-Ag, Sn-Cu-Bi, Sn-Cu-La, Sn-Cu-Y, etc. are used as 
lead-free solders in electronic industries to replace Pb 
containing Sn-Pb solders (Huang et al., 2022; Islam et al., 
2005; Ohnuma et al., 2000; Xia et al., 2006).  

 
Moreover, the equilibrium energies, such as formation 
energy, cohesive energy and Gibbs free energy determine 
the stability and spontaneity of different inter-metallic 
complexes. Being more specific, due to the complex 
interplay of constituent elements and their interactions, the 
formation energy of the alloy is influenced thereby 
obstructing the design and development of the alloy. 
Formation energy is an important thermodynamic 
parameter that indicates the binding energy of the 
condensed state of the alloy. For the development and 
utilization of Cu-based alloys, the prediction of formation 
energy plays an important role (Zhou et al., 2022). With the 
development of computer technology, researchers mostly 
use density functional theory (DFT) for the prediction of 
formation energy. However, there are still some difficulties 
due to the time-consuming and intensive computation 
costs of DFT. Recently, machine-learning models (MLM) 
have emerged as robust tools for the prediction of material 
properties. Therefore, the MLMs have been employed to 
predict the formation energies of Cu-based ternary alloys 
have been MLMs in present work.  
 
In this regard, Zhuo et al. employed a support vector model 
to predict the band gap of an inorganic compound using 
only the composition descriptors (Zhuo et al., 2018). 
Olsthoorn et al. used Organic Materials Database (OMDB) 
data for 12500 crystal structures and predicted the band 
gap of 260092 materials in the Crystallography Open 
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Database (COD) by using the kernel ridge regression 
model and the deep learning model SchNet (Olsthoorn et 
al., 2019). Similarly, different researches so far have been 
conducted to predict properties, such as heat capacity 
(Alade et al., 2020; Aldosari et al., 2021; Kauwe et al., 2018) 
and Gibbs free energy (Bitencourt-Ferreira and de 
Azevedo 2018; Desgranges and Delhommelle 2018) with 
high accuracy. Meanwhile, Faber et al. used a MLM to 
calculate the formation energy of 2 million elapsolite 
crystals (Faber et al., 2016). A machine learning algorithm 
(MLA) has been used to predict the formation energy of 
different materials due to their flexibility and reliability 
(Faber et al., 2015; Zhou et al., 2022).  
 
Therefore, the goal of this work is to use MLM to predict 
the formation energy of ternary Cu-based alloys. For this 
purpose, Random Forest Regressor (RFR) and Gradient 
Boosting Regressor (GBR) MLMs, have been employed to 
predict the formation energy of the alloys. In machine 
learning, specific characteristics of data can be described 
by descriptors or features. In this work, only a 
composition-based descriptor of material has been used to 
predict the formation energy. 
 
MATERIALS AND METHODS 
Data collection and preprocessing 
The input dataset for the formation energies of Cu-based 
ternary alloys have been taken from material project 
database which uses DFT approach for the respective 
purpose (Jain et al., 2013). The dataset initially contained 
information about the material ID, structure, band gap, 
composition, chemical formula, and stability of the 
material. The obtained data was preprocessed by selecting 
only the stable materials, removing the duplicates, and 
sorting the data on the basis of their formation energies. 
Then after, our dataset contained 973 rows of data for 
different Cu-based ternary alloys. Before performing 
machine learning analysis, we need to extract the relevant 
feature from the raw data. For this, we implemented the 
Magpie elemental property compositional-based featurizer 
from Matminer to composition column of the dataset 
(Ward et al., 2018). This featurizer transforms the chemical 
composition into a set of numerical features that contain 

information about elemental composition and properties. 
We have then dropped the irrelevant column, which 
contains information about material ID, structure, 
composition, chemical formula, and stability. Finally, our 
dataset contains 973 rows and 134 columns, and then we 
have trained the MLM on this dataset.  
 
Model selection 
Different factors must be considered while selecting MLM 
for particular task, such as nature of the problem, 
complexity of the model, robustness to noise and outliers, 
interpretability, and performance metrics. While 
considering all these factors, we selected two models 
namely RFR and GBR, both of them follow the ensemble 
learning methods. 
 
Random Forest Regressor (RFR) 
It was first introduced by Tin Kam Ho in 1995. It is an 
ensemble method which constructs a forest of decision 
trees on a random subset of the training data and subset of 
features. This property of RFR aided in reducing the over 
fitting and improving the performance of the model. By 
combining the prediction made from multiple trees, RFR 
provides robust prediction by averaging the prediction 
obtained from each tree in the forest. Additionally, the 
versatility of RFR offers robustness to noisy data, high 
performance and provides depth insight to the feature 
importance by measuring the impurity (Breiman, 2001; Ho, 
1995). 
 
Gradient Boosting Regressor (GBR) 
GBR is another powerful ensemble learning method and 
was first introduced by Leo Breiman in 1997. Unlike 
Random Forest, which builds random trees independently, 
Gradient Boosting builds trees sequentially, with each tree 
focusing to minimize the errors made by the previous one. 
This process overall improves the performance by learning 
from the mistakes made by the preceding tree. At each 
iteration, it fits the new decision tree to the residuals of the 
current prediction and minimizes the error. This property 
makes Gradient Boosting the powerful regression 
algorithm that offers superior performance and 
interpretability (Breiman, 1997).

  
Table 1. Hyperparameter used for tuning, and the best parameter obtained for two models 

Model Hyperparameter used for tuning Best parameter 

RFR 

Bootstrap = [True, False] 
max_depth = [1,2,3,4,5,6,7] 
min_samples_leaf = [1,2,3,4,5,6,7] 
max_leaf_nodes = [None, 5, 10, 20, 50] 
max_samples = [0.5, 0.75, 0.85] 
n_estimators = [10,20,30,40,50,100,150,200] 

Bootstrap = True 
max_depth = 7  
max_leaf_nodes = 50 
max_samples = 0.85          
min_samples_leaf = 2 
n_estimators = 40 

GBR 

n_estimators = [10,30,50,70,100,150] 
max_depth = [1,3, 5, 7] 
min_samples_split = [2, 5, 7,10] 
min_samples_leaf = [1, 2, 3,4] 

max_depth = 3 
min_samples_leaf = 2 
min_samples_split = 2 
n_estimators = 150 
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Feature Selection and Hyperparameter 
At first, we divided the dataset into training and testing set 
with test size of 0.2. After that we train the MLM with its 
default hyperparameter on training set using scikit learn 
(Buitinck et al., 2013; Pedregosa et al., 2011) in Anaconda 
distribution (Anaconda Inc., 2020). We then used the 

inherent characteristics of RFR and GBR algorithms to 
identify the best features for the model. For RFR and 
GBRs, we have identified the top 10 and 5 features, 
respectively. The important features of the models are 
shown in Figures 1 and 2.

 
   

 
 

Figure 1.  Feature importance for GBR. 

 
 
The selected features have the potential to maintain a 
balance between computational complexity and 
dimensionality reduction, hence improving model 
predictions and interpretability. Furthermore, 
hyperparameters are the parameters that improve the 
performance of the model. In ML, a crucial step is to 
identify the parameters that best suit an accurate prediction 
of desired properties of materials. We have implemented 

GridSearchCV to tune the hyperparameters for both the 
models. The details of the hyperparameters used to tune 
and the best parameters obtained for both models are 
presented in Table 1. We then evaluated the performance 
of the models using the 10-fold cross-validation technique 
and metrics, such as mean absolute error (MAE), mean 
squared error (MSE), root mean squared error (RMSE), R2, 
and adjusted R2 which are listed in Table 2. 

 
 

 
 

Figure 2. Feature importance for RFR. 

 



Machine Learning Model to Predict the Formation … 

112 

 

RESULTS AND DISCUSSION 
One important method for obtaining the electronic 
structure and material properties using density functional 
theory is the use of traditional computational approaches, 
such as first-principles calculation, molecular dynamics 
simulations, finite element method simulations, etc., which 
treat electrons as the primary object of study. This process 
eliminates the need for empirical and semi-empirical 
parameters and enables precise material calculations 
(Zhang et al., 2024). Because of their simulation nature or 
certain presumptions, the aforementioned computational 
simulation tools rely on theoretical models that deviate 
from actual experimental research to varying degrees. 
Thankfully, the emergence of machine learning methods 
can make up for the limitations of theoretical models. 
Using the training set-a collection of data with specific 
attributes chosen at random from the acquired dataset-
machine learning approaches typically build some models 
and train the models in accordance with the related 
algorithms (Zhang et al., 2024).   
 

Therefore, we have divided the entire above mentioned 
input dataset into two parts, including training dataset 
(80%) and testing dataset (20%). The model we 
implemented to predict the formation energies of Cu-
based ternary alloys show remarkable performances by 
using only the Magpie Elemental Property Featurizer. The 
RFR, after performing hyperparameter tuning, shows 
robust capabilities for predicting formation energy. The 
10-fold cross-validation model achieved 0.91 in the 
training set and 0.85 in the testing set. The lower values of 
MAE, MSE, and RMSE show that the predicted values 
have a minimal deviation from actual values. Figure 2 
shows the comparison between actual values and predicted 
values of formation energy. Furthermore, the value of R2 
and adjusted R2 are found to be 0.925 in the testing set, 
which shows that the model has the ability to explain 
approximately 92.5% of the variance of formation energy. 
Due to the involvement of large dataset, the results 
obtained from the work could not be tabulated and 
presented in the work. In this regard, only the accuracy 
levels between the training dataset and predicted dataset 
are displayed in Table 2.

  
 

Table 2. Comparison between input and predicted values of formation energies for Cu-based ternary alloys 

Metric 
  

RFR GBR 

Training Testing Training Testing 

10-fold CV Score 0.911520373 0.85095688 0.901155199 0.866228323 

Score 0.965968633 0.928966294 0.967320891 0.942604141 

MAE 0.076778491 0.096609038 0.074965362 0.093351844 

MSE 0.012152652 0.020475518 0.011669758 0.016544399 

RMSE 0.110239066 0.14309269 0.108026655 0.128625031 

R2 0.965968633 0.928966294 0.967320891 0.942604141 

Adjusted R2 0.965524939 0.925105766 0.967109239 0.941085732 

 
Figure 3. Predicted versus actual formation energy using RFR model. 
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Figure 4.  Predicted versus actual formation energy using GBR model. 

 
On the other hand, GBR shows remarkable predictive 
accuracy. With the optimal hyperparameters mentioned in 
Table 1, this model achieves lower values of MAE, MSE, 
and RMSE than RFR. The higher value in R2 and adjusted 
R2 show that the model is performing slightly better than 
the RFR. Figure 4 shows the comparison between the 
predicted and actual values of formation energy per atom 
performed in GBA. Additionally, the adjusted value of R2 
is 0.94 revealing approximately 94% of the variance in 
formation energy is explained by the model. 
 
Further, the performance differences between RFR and 
GBR can be attributed to their inherent algorithmic 
strengths. While RFR is known for its robustness and 
resistance to overfitting, GBR leverages an ensemble of 
weak learners to iteratively minimize errors, leading to 
slightly superior predictions. Both models, however, 
benefit significantly from the use of the Magpie Elemental 
Property Featurizer, which effectively captures the 
compositional features of the alloys. These findings 
underscore the potential of machine learning models to 
accurately and efficiently predict complex material 
properties such as formation energy. The ability of GBR to 
achieve high accuracy with fewer features and lower error 
metrics highlights its suitability for predictive tasks in 
materials science. By providing reliable predictions, these 
models can significantly accelerate the process of material 
discovery and optimization. 
 
CONCLUSIONS 
Both models, Gradient Boosting Regressor and Random 
Forest Regressor, demonstrated exceptional accuracy in 
predicting the formation energy of Cu-based ternary alloys, 
as evidenced by the close alignment of data points around 
the reference line. This strong correlation indicates that the 
models effectively capture the underlying patterns in the 

dataset. Furthermore, the low error metrics reinforce the 
reliability and robustness of the developed models. The 
results highlight the potential of machine learning in 
materials science, particularly in predicting complex 
material properties. Among the tested models, the 
Gradient Boosting Regressor emerged as a standout 
performer, explaining 94% of the variance using only five 
features. In comparison, the Random Forest Regressor 
accounted for 92.5% of the variance, requiring ten features. 
The efficiency and precision of the Gradient Boosting 
Regressor make it a promising tool for material scientists 
aiming to understand and predict material behavior more 
effectively. By enabling faster and more accurate 
predictions, these machine learning models could 
significantly accelerate the process of material discovery 
and design. The Gradient Boosting Regressor, in 
particular, has the potential to streamline research 
workflows and inspire innovative approaches in the study 
of Cu-based alloys and beyond. This study underscores the 
transformative role of machine learning in addressing 
complex challenges in materials science, paving the way for 
data-driven advancements in the field. 
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