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ABSTRACT 
In this analytical and numerical study, we look at the generalized KdV equation by letting different coefficients 
go to zero. Numerical study is carried out by the pseudospectral method. Our study shows that there is no 
difference between the behavior of the solutions in the limiting case and the solutions in the case when the 
corresponding coefficients are exactly zero. 
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INTRODUCTION 
KdV equation which arises in the study of nonlinear 
dispersive wave and was derived in 1895 by Korteweg 
and de Vries to model in shallow canal (Korteweg & 
Vries, 1895). The KdV equation is a nonlinear partial 
differential equation of third order given by  
(1.1) ut + ux + 2uux + δuxxx = 0 
 
In this equation, u = u(x, t) is a scalar function of x and t, 

where x ∈ R and t ≥ 0 and δ is a positive parameter. 
Physically, u represents the amplitude of the wave. The 
possibility of shock waves into the solution is due to 
nonlinear terms. Also, the term δuxxx produces the 
dispersive broadening. 
 
The KdV equation has numerous applications in physical 
sciences and engineering fields. For example, this 
equation is used in plasma physics, ion-acoustic solitons 
(Das & Sarma, 1998), geophysical fluid dynamics, long 
waves in shallow seas and deep oceans (Osborne, 1995; 
Ostrousky & Stepanyants, 1998), modeling waves in cold 
plasma by Kruskal. This equation has been studied by 
various methods such as the Tanh method (Malfliet, 1992), 
the sine-cosine method (Yan & Zhang, 2001), and the 
homogeneous balance method (Lei et al., 2002)  with the 
appropriate initial condition (Gardner et al., 1967) . Fredner 
et al (cited in Gardner et al., 1967) showed the existence and 
uniqueness of solutions of the KdV equation and later 
other method such as FEM (Aksan & Özdes, 2006), FDS 
(Bahadir, 2005), and spectral method (Ma & Guo, 1986) 
were introduced. Also, artificial viscosity was used to 
reduce the round off error of the pseudospectral method 
by the author in (Rashid, 2007). 
 
Kolabaje and Oyewande, in 2012, studied the KdV 
equation both analytically and numerically by using finite 
difference method and the Adomian decomposition 
method. They obtained the approximate solution. They 

also focused on two possible scenarios, the hyperbolic 
tangent initial condition and sinusoidal initial condition, 
and observed that the valid analytical solution is restricted 
to the time values close to the initial time (Kolabaje & 
Oyewande, 2012). 
 
The authors (Saadi et al., 2010) presented a comparative 
study of the Homotopy Perturbation Method (HPM), 
Variation Iteration Method (VIM), and Homotopy 
Analysis Method (HAM) for the semi-analytical solution 
of the KdV equation and focused themselves to the 
efficiency and capability of these methods. The authors 
in (Karczewska et al., 2016) applied the finite element 
method (FEM) to obtain the numerical solution to 
shallow water wave which is closed with the KdV 
equation. This method gives a reasonable description of 
wave dynamics. 
 
Among other methods, Galerkin techniques using cubic 
spline weight and interior functions with quintic 
polynomial boundary functions were used (Alexander & 
Morries, 1979). Also, Soliman in 2004, used the collocation 
method with septic splines to obtain the solution of the 
KdV equation (Soliman, 2004a)  . The numerical solution 
of the KdV equation was obtained by using the 
variational method by the authors in (Soliman, 2006; (Inc, 
2007). The modified Berstein polynomials were used for 
the solitons type solution of it (Zabusky, 1967) and using 
the method of similarity reduction for PDEs were used to 
develop the schemes for solving the KdV equation by the 
authors in (Soliman, 2000; 2004b; Soliman & Ali, 2006). 
 
In Section 2, we explain the pseudospectral method which 
is used to solve the generalized KdV equation. In Section 
3, we present a discussion on the specific cases, Transport 
equation, Burger’s equation, and KdV equation, and let 
the values of coefficients go to zero. Section 4 concludes 
the paper.
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SPECTRAL METHOD FOR THE GENERALIZED KDV EQUATION 
The generalized KdV equation is given by 

(2.1) ut + aux + 2buux + cuxxx − duxx = 0, u(x, 0) = u0(x) 
 

in the (x, t) space,  where a, b, c, and d are parameters. Consider x ∈ [0, 2π], t > 0. The interval is divided into N equal 
parts where N is a power of 2. The discrete transform of u(x, t) is given by 
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Taking the discrete Fourier transform on both sides of (2.1), we get      

(2.2)       ût (k, t) + ikaû(k, t) + ikbuˆ2(k, t) + (ik)3cû(k, t) − (ik)2dû(k, t) = 0.û(k, 0) = uˆ0(k) 
 
Solving (2.1) in (x, t) space is equivalent to solving (2.2) in interval [0, 2π]. To solve (2.1), we proceed as follows: Given 

initial function u0(x), we first find the discrete values at the N points and get a sequence  1
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The Fast Fourier Transform (FFT) is used to fasten process. After finding the values of   1
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Additionally, we can also use the implicit Euler method. In this case, the formula from t = jh to  
t = (j+1)h is given by  
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Which is due to the implicit Euler formula. After further simplification, we have  
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NUMERICAL RESULTS 
The general wave equation is given by 
 

(3.1) ut + aux + 2buux + cuxxx − duxx = 0, u(x, 0) = f (x), 
 
where a, b, c, d are parameters. If a = b = c = d = 1, the equation (3.1) becomes the KdV equation. Our main study 
focuses on the behavior of the solution of the equation (3.1) as the parameters a, b, c, d tend to zero in various ways. 

 
 
Transport Equation. With b = c = d = 0, the equation (3.1) becomes 
 
(3.2) ut + aux = 0, u(x, 0) = f (x), 
 
which is the transport equation. Here we have created a different set of values of a and observed the scenario as the value of 
a tends to zero. The graphs of the solution for the different values of the parameter are presented in the following Figures 
[ 1], [ 2], [ 3], [ 4], [ 5], [ 6]. 
 
 

  
 

Figure 1. Plot of transport equation with a = 0.01. 

 
 

 
Figure 2. Plot of e nergy and p ower s pectrum. 

 
 
Burger Equation and Viscous Burger Equation. 
When a = 0, b = 1, c = 0, the equation (3.1) takes the 
form 
 
(3.3)              ut + 2uux − duxx = 0, u(x, 0) = f (x) 
 
This equation is called the viscous Burger equation and 

if d = 0, then the equation (3.1) is called the inviscid 
Burger equation. We get the different data sets as values 
of d is varied and we observe the nonlinearity in the 
solution as the value of d tends to zero. Some of the 
graphs of the solutions are presented in the following 
Figures [ 7], [ 8], [ 9], [ 10], [ 11], [ 12], [ 13], [ 14]. 
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Figure 3. Plot of transport equation with a = 0.001. 

 
Figure 4. Plot of energy and power spectrum. 

 
 

  
 

Figure 5. Plot of transport equation with a = 0. 

Figure 6. Plot of energy and power spectrum. 
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Figure 7. Plot of Burger equation b = 0.5, d = 0.005. 

 
 

  
Figure 8. Plot of energy and power spectrum b = 0.5, d = 0.005. 

 
 

Figure 9. Plot of Burger equation b = 0.5, d = 0.0009. 

 
 

 
Figure 10. Plot of energy and power spectrum b = 0.5, d = 0.0009. 
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Figure 11. Plot of Burger equation b = 0.5, d = 0.0001. 

 
 

  
Figure 12. Plot of energy and power spectrum b = 0.5,d = 0.0001. 

 
 

Figure 13. Plot of Burger equation b = 0.5, d = 0. 

 
 

Figure 14. Plot of energy and power spectrum b = 0.5, d = 0. 
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The Linearized KdV Equation. With b = d = 0, the 
equation (3.1) takes the form 
 

(3.4)      ut + aux + cuxxx = 0, u(x, 0) = f (x), 
 
which is known as the linearized Korteweg de Vries 

(KdV) equation. We obtain different data sets for the 
various values of d and observe the nonlinearity in the 
solution as the value of d tends to zero. Some of the graphs 
of the solutions are presented in Figures [ 15], [ 16], [ 17], 
[ 18], [ 19], [ 20]. 

 

  
Figure 15. Plot of KdV equation with a = 1, c = 0.003. 

 
Figure 16. Plot of energy and power spectrum, a = 1, c = 0.003. 

 
Figure 17. Plot of KdV equation with a = 1, c = 0.001. 

Figure 18. Plot of energy and power spectrum, a=1, c=0.001. 
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Figure 19. Plot of KdV equation with a = 1, c = 0. 

 
Figure 20. Plot of energy and power spectrum, a = 1, c = 0. 

 
    
CONCLUSIONS 
The generalized KdV equation is studied thoroughly. 
Then we chose the particular values of constants so as to 
reduce the equation to Transport, Burger’s and KdV 
equations. We used the pseudospectral method to 
observe the nature of solution in two different situations 
when the value of the parameter is zero and another in 
the sense of limit that the value of parameter is zero. We 
found that both cases show a similar phenomenon and 
structure of the solution. 
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