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ABSTRACT 

For a transcendental entire function f, the set of form I ( f ) = {z ∈ ℂ : 𝑓𝑛(z) → ∞  as  n → ∞} is called an escaping set. 
The major open question in transcendental dynamics is the conjecture of Eremenko, which states that for any 
transcendental entire function f, the escaping set I ( f ) has no bounded component. This conjecture in a special case has 
been proved by defining the fast escaping set A ( f ), which consists of points that move to infinity as fast as possible. 
Very recent studies in the field of transcendental dynamics have concentrated on the partition of fast escaping sets into 
maximally and non-maximally fast escaping sets. It is well known that a fast escaping set has no bounded component, 
but in contrast, there are entire transcendental functions for which each maximally and non-maximally fast escaping set 

has uncountably many singleton components. 
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INTRODUCTION 

We denote the set of integers greater zero by  ℕ, the set 

of integers by ℤ,  and the complex plane by ℂ. We assume 

the function  f : ℂ ⟶  ℂ is a transcendental entire 

function (TEF) unless otherwise stated.  For any n ∈ ℕ, 

𝑓𝑛  always denotes the nth iteration of f.  For any z ∈ ℂ, the 

set {𝑓𝑛(𝑧)}𝑛≥0  of iterates of  f  is called the orbit of z.  A 

family ℱ = {f : f is meromorphic on the Riemann 

sphere}forms a normal family if every sequence {𝑓𝑛}𝑛∈ℕ of 
the functions contains a subsequence which converges 

uniformly to a finite limit  or converges to ∞ on every 

compact subset D of  ℂ. The Fatou set F ( f ) of  f  is the 

set of points z ∈ ℂ such that the sequence {𝑓𝑛(𝑧)}𝑛≥0 
forms a normal family in the  neighborhood of z. A 
connected subset of the Fatou set is called a Fatou 
component. The Julia set is the complement of the Fatou set 
in the complex plane, and it is denoted by J ( f ). The basic 
properties and structure of these sets can be found in the 
work of Bergweiler (1993), Carleman (1992), Hua and 
Yang (1998), Milner (2006), Morosawa et al. (1999).  
In recent years, much interest and more effort have been 
devoted to understanding the structure and properties of 
the escaping set I ( f ) of  f which is defined as follows: 
 
Definition 1. Let f be a transcendental entire function. Let us 
define 

I ( f ) = {z ∈ℂ:𝑓𝑛(z) →  ∞  as  n → ∞}. 

This is called an escaping set. Any point z ∈ I ( f ) is called an 
escaping point.  
For a TEF f, the escaping set I ( f ) was first studied by 
Eremenko (1989) together with formulation of the 
following  conjecture. 

 
Conjecture 1. Each component of  I ( f ) is unbounded. 
The conjecture has been proved by using the fast 
escaping set A ( f ), which consists of points whose 
iterates tend to infinity as fast as possible. This set was 
first introduced by Bergweiler and Hinkkanen (1999) and 
defined in the following form by Rippon and Stallard 
(2012). 
 
Definition 2. Let f be a transcendental entire function. The set of 
the form 

A ( f ) = {z ∈ ℂ : ∃ L ∈ ℕ such that |𝑓𝑛+𝐿(𝑧)| ≥
𝑀𝑛(𝑅, 𝑓) 𝑓𝑜𝑟  𝑛 ∈ ℕ} 

is called a fast escaping set, where M (r, f ) = 𝑚𝑎𝑥
|𝑧|=𝑟

|𝑓(𝑧)|,  

r > 0 and 𝑀𝑛(r, f ) denotes iteration of M (r, f ) with respect to r.  

R > 0 is any value such that M ( r, f  ) > r  for  r ≥ 𝑅. 
 
This paper is the most recent study in the field of 
transcendental dynamics and is primarily concerned with 
the partition of the fast escaping set A ( f ). The partition 
of A ( f ) was introduced by Sixsmith (2015) on the basis 
of the following sets. 
 
Definition 3. Let f be a TEF. The set of the form  

A+( f ) ={z ∈ A( f ): ∃ N ∈ ℕ such that | f n (z)|= M(| f n -1 

(z)|, f )  for  n ≥  N} 
is called the maximally fast escaping set and its complement in  A( f 
), that is,  the set 

A-( f ) = A( f ) / A+( f ) 
is called the non-maximally fast escaping set. 
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MATERIALS AND METHODS 
In this section, we discuss fast escaping set and its 
properties and partitions (that is, maximally and non-
maximally fast escaping sets).These properties will be 

useful tools for our further investigations and our desired 
results. 
The fundamental properties of the fast escaping set of a 
transcendental entire function are as follows.

 
 
Theorem 1. For a TEF f, the following statements are hold. 

1. A ( f ) = A ( f n) for  n ≥  2. 

2. A ( f ) ≠ ∅. 
3. A ( f ) is completely invariant. 
4. A ( f ) is independent of R. 

5. J ( f ) ∩A ( f )≠ ∅. 
6. J ( f ) = ∂A( f ). 
7. A ( f ) has no bounded components. 

8. U ⊂ A ( f ) for any Fatou component that meets  A( f ). 

9. 𝑈⊂ A ( f ) for any multiply connected Fatou component  U. 

10. 𝐽(𝑓) = 𝐴(𝑓) ∩ 𝐽(𝑓) 
 
Rippon and Stallard (2005) proved statement (1), (5) and 
(6); Bergweiler and Hinkkanen (1999) proved statements 
(2), (3), and (4); and Rippon and Stallard (2012) also 
proved statements (7), (8), (9), and (10) respectively in 
[Theorems 1.1, 1.2, 4.4, 5.1(c)].The result (7) is an 

important one and is considered the strongest result in 
the direction of Eremenko's conjecture. 
 
The following results are due to Sixsmith [Theorems 2, 3] 
(2015), which are nothing other than the properties of 
maximally and non-maximally fast escaping sets. 

 
Theorem 2. Let f be a TEF. Then the following statements are hold. 

1. A+ ( f )  and  A-( f )  are completely invariant sets. 

2. A- ( f ) ∩ J ( f ) ≠ ∅. 

3. If U is a simply connected Fatou component of f that meets A ( f ), then  U ⊂ A- ( 
f ) . 

4. If f is a multiply connected Fatou component of f, then U ∩ A- ( f ) ≠ ∅. 

5.  A- ( f )   is dense in J ( f )  and  J ( f ) ⊂ ∂A- ( f ). 

6. If $ A+ ( f ) ∩ J ( f ) ≠ ∅, then A+ ( f )  is dense in  J ( f )  and  J ( f ) ⊂ ∂A +( 
f ). 

7. If A +( f ) ∩ F ( f ) = ∅ , then  J ( f ) = ∂ A- ( f ). 

8. If  A+ ( f ) ∩ J ( f ) ≠ ∅ and  A+ ( f  ) ∩ F ( f ) = ∅, then  J ( f ) = ∂ A+ ( f ). 
 
The proof of the statement (1) follows from the 
Definition.3, the statement (2) is proved by using new 
covering results for annuli, and it is used to construct 
point in A- ( f ) ∩ J ( f ) in the case of TEF with no 
multiply connected Fatou component. The rest of the 
statements are followed by the well-known distortion 
lemma of Bergweiler [Lemma 7] (1993) and Rippon and 
Stallard [Lemma 10] (2011).  
 
The statement (7) of Theorem 1 may not hold for the sets 
A+ ( f )  and  A- ( f ), a quite contrasting result due to 
Sixsmith [Theorem 4] (2015). He reached to the following 
conclusion by considering the function of Hardy (1909). 
 
Theorem 3. There is a TEF f such that  

1. A+ ( f )  is uncountable and totally disconnected. 
2. A- ( f ) has uncountably many singleton components and 

at least one unbounded component. 
 

Actually, Sixsmith [Example 5] (2015) defined a family of 
transcendental entire functions by 

Fα (z) = α exp (𝑒𝑧2
 + sin z) for α > 0 

 
The function f-1 considered by Hardy (1909). Theorem 3 
follows from the function fα (z) on the basis of the 
following results. 
 

Theorem 4.  For the function Fα (z) = α exp (𝑒𝑧2
+ sin z) for α 

> 0, we have 
1. A+ ( f ) is uncountable and totally disconnected, 
2. if α  >  0  is sufficiently small, then there are 

uncountably many singleton components of  A- ( f ) with 
at least one unbounded component. 

 
For the proof, we refer to [Lemma 5.1, 5.2] Sixsmith 
(2015). 
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RESULTS AND DISCUSSION 
In this section, we show our results as further 
investigations of maximally and non-maximally fast 
escaping sets of a transcendental entire function. 
 
Further investigation on Maximally Fast Escaping 
sets  
In this subsection, we attempt to identify additional 
structure and properties of the sets A+ ( f ). Inspection 
lead us to believe that the set is at most A+ ( f ) a small 
subset of  A ( f ) . This type of inspection is really true and 
such a result is obtained on the basis of the following 
definition. 
 
Definition 4. Let f be a TEF. The set of the form 

ℳ ( f ) = {z ∈ ℂ : | f (z)| = M (|z|, f )} 
is called the maximal modulus set,  and it consists of points where 
function  f  attains maximum modulus. 
 
This set is formally defined by Taylor (2000) but was 
already used by Valiron (1949). It was proved that the set 

ℳ ( f ) consists of, at most, a countable union of maximal 
curves, which are analytic except at their endpoints. On 
the basis of this result, a maximally fast escaping set A+ ( f 
) enjoys  the following additional result. 
 
Theorem 5. Let f be a TEF. Then A+ ( f ) is contained in a 
countable union of curves, which are analytic except at their 
endpoints.  
 

Proof: If z ∈ A+( f ), then there exists N ∈ ℕ  such that   f 
n(z) ∈ℳ ( f )  for  n ≥ N, according to Definition 4. 

Which is equivalent to z ∈ f– n (ℳ ( f )). Thus, A+ ( f ) 

⊂ ⋃ 𝑓𝑖(ℳ ( 𝑓 )).∞
𝑖=0   This shows that A+ ( f ) is 

contained in the countable union of curves, each of which 
is analytic except possibly at its endpoint. 
 
What does it mean to have a maximally fast escaping 
point? We seek an answer from the following 
construction by Sixsmith (2012). Define a function  
RA (z) = max{R ≥ 0: Mn (R,  f ) → ∞ as  n→ ∞ and | f n 

(z)|  ≥  Mn (R, f )  for  n ∈ ℕ} 
 
Note that RA (z) ≥ 0 when right hand side for the 
expression RA(z) is non-empty and otherwise it is set by -
1. 
 
Theorem 6.  Suppose f is a TEF and RA (z) ≥ 0. Then for any 

z ∈ A+ ( f ) , there exists N ∈ ℕ such that 
| f n(z)| = Mn (RA (z), f )  for n  ≥  N. 

 

Proof: Let z ∈ A+ ( f ) , then by Definition 4, there exists  

N∈ ℕ  such that  
|f n (z)| = M (| f n-1(z)|, f ) for n ≥ N 

Set R = | f N-1 (z)|, then Mn (R,  f ) → ∞  as  n→ ∞   and  
| f n (z)| = Mn+1-N (R,  f )  for  n ≥  N . Since RA (z) ≥ 0, 
so that  

MN-1 (0,  f ) ≤  MN-1 (RA, f ) ≤  |f N-1| = R 
 
From this last inequality, there exists R′  ≥ RA (z) such that 
MN-1 (R′ ) = R. Thus  

| f n(z)|= Mn (R′ , f ), for n ≥  N 
 
Since RA(z) = max{R, R′}. Hence, we must RA(z)=  R′ .□  

 
Next, we consider maximally fast escaping set of some 
particular example of TEFs. The following examples are 
cited from the work of Sixsmith (2015). 
 
Example 1. [Example 1, 2  Sixsmith (2015)] Let f (z) = ez. 

Then ℳ ( f )= [0, ∞). We see f (ℳ ( f )) ⊂ ℳ ( f ). By 
Theorem 5, A+ (z) is countable union of analytic curves 

A+ (z)= ⋃ 𝑓−1∞
𝑖=1 ([0, ∞)) 

 

And for the function g(z) = iez, we have  ℳ( f )= [0, ∞), 

but  f (ℳ( f )) ∩ℳ ( f )=∅. So A+(z)=∅. 
 
Example 2. [Example 6, Sixsmith, (2015)]Let g λ (z) = λez 

for 0 < λ < 1/e. Then g λ has an unbounded simply 
connected Fatou component which contains the 
imaginary axis and attracting fixed point and also the 

repelling fixed point  q > 1. Furthermore,   (q, ∞) ⊂  A+( f 
),  where  (q, ∞)  is a component of  A ( f ) . This example 
showed that the unbounded component of the fast 
escaping set is contained in the maximally fast escaping 
set. 
 
Further Investigation on Non-maximally Fast 
Escaping Set  
In this subsection, we divide the non-maximally fast 
escaping set A- ( f ) further  into two sets,  which consist 
of points with extremely fast and moderately fast escape 
rates. By Definition 3, the non-maximally fast escaping 
set looks like 

𝐴−( f ) = {z ∈ A( f ): ∃ N∈ ℕ such that  | f n(z)| > M(| f 
n-1(z)|, f ) for n ≥  N} 

                                                   ⋃{z ∈ A( f ): ∃ N ∈ ℕ 
such that | f n(z)| < M(|f n -1 (z)|, f)  for  n ≥ N} 

 
It is obvious that the set A- ( f )  can be further partitioned 
into the two  sets of the form  

A′ ( f ) = {z ∈A( f ): ∃ N∈ ℕ such that | f n(z)| > M(| f n-

1(z)|, f )  for n ≥  N} 
and 

A’’( f ) = {z ∈A( f ): ∃ N∈ ℕ such that  | f n(z)| < M(| f n-

1 (z)|, f )  for n ≥  N} 
 
We call these sets, respectively, the extremely fast escaping set 
and moderately fast escaping set. Note that that the set A’ ( f )   
consists of points whose rate of escape is extremely fast 
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and the set  A’’( f )  consists of points whose rate of 
escape is moderately fast. The fast escaping set A( f )  can 
now be divided into three disjoint subsets; the maximally 
fast escaping set  A- ( f ), the extremely fast escaping set 
A’( f ),  and moderately fast escaping set  A’’( f ). 
 
CONCLUSIONS 
Mainly, we concentrated on the partition of the fast 
escaping set of a transcendental entire function into two 
subsets, the maximally fast escaping set and the non-
maximally fast escaping set. We found that these sets 
have strong dynamical properties. It was shown by 
Rippon and Stallard that the fast escaping set has no 
bounded components. In contrast, we found that the 
maximally and non-maximally fast escaping sets each 
have uncountably many singleton components.  
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