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ABSTRACT 
The article begins first with the history and the development of the law of the iterated logarithm, abbreviated LIL. We 
then discuss the LIL in the context of independent random variables, dyadic martingales, lacunary trigonometric series, 
and harmonic functions. Finally, we derive a LIL for a sequence of dyadic martingales. 
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INTRODUCTION  
The LIL is a celebrated law in the various domains of 
mathematics. There has been a tremendous amount of 
work on the LIL in various contexts in mathematics. In 
the theory of probability, the LIL operates roughly in 
between the central limit theorem and the law of large 
numbers. Some of the contexts where the LIL has been 
established are independent random variables, 
martingales, harmonic functions, lacunary trigonometric 
series, Brownian motion, Gaussian process, Bloch 
functions to name just a few. We first begin with the 
context where the first LIL was introduced, and this will 
be followed by the various historical developments on it. 
In order to do so, we need to recall some definitions and 
theorems. 
 
Definition 1.1 The decimal and dyadic expansion of a 
number N is [0,1) are: 

  N = ∑
Xn

10n
;   Xn ∈∞

n=1

{0,1,2, … . . ,9}  N = ∑
Xn

2n
∞
n=1  ; Xn ∈ {0,1} 

Then N is said to be a normal number with base 10 and 2 

respectively if  lim
𝑛→∞

𝜔𝑘
𝑛 (𝑁)

𝑛
=  

1

10
    and lim

𝑛→∞

𝜔𝑘
𝑛 (𝑁)

𝑛
=  

1

2
 

where  𝜔𝑘
𝑛 (𝑁) is the number of times the digit 𝑘 , 0 ≤

𝑘 ≤ 9  appear in the expansion of N. 
Here is the result of Borel on the normal numbers. 
 

Theorem 1.2 (Borel). For a number t ∈ [0, 1) in its 

expansion, let 𝑁𝑛(𝑡) denote the number of times 1 appear in the 

first n-places. Then we have 𝑙𝑖𝑚
𝑛→∞

𝑁𝑛(𝑡)

𝑛
=  

1

2
 for a.e. t in Legesgue 

measure.  
 
The above theorem of Borel gives the rate of 
convergence, and this rate was later on improvised by 
many mathematicians, namely Hausdorff, Hardy and 
Littlewood and Khintchine. The exact rate of 
convergence was given by A. Khintchine (Khintchine, 

1924). This result of Khintchine is considered as the 
earliest LIL in the theory of probability. His result is: 
 

Theorem 1.3 (Khintchine). For a number 𝑡 𝜖 [0,1), let 

𝑁𝑛(𝑡) denote the number of times 1 appear in the binary 
expansion of t in the first n-places, then  

lim
𝑛→∞

𝑠𝑢𝑝
|𝑆𝑛|

√2𝑛 log 𝑙𝑜𝑔𝑛
= 1 

 
The above theorem is the primitive LIL result in the 
theory of probability and is called Khintchine’s LIL. The 
reason behind the name “law of the iterated logarithm” 
has been given to this law is due to the iteration log logn. 
Then this LIL result of Khintchine was later generalized 
by N. Kolmogorov in the bigger context of independent 
random variables. After the result of Kolmogorov, the 
LIL got much attraction and the mathematicians started 
to think about the analogue of this result in various other 
directions. The areas where a tremendous amount of 
research has been conducted on the LIL are independent 
random variables, lacunary trigonometric series, dyadic 
martingales and harmonic functions. We discuss the result 
on these contexts in detail. We begin with LIL in the 
context of independent random variables. 
 
THE LIL FOR INDEPENDENT RANDOM 
VARIABLES 
N. Kolmogorov (Kolmogorov, 1929)  was the one who 
revolutionized the LIL. To this end, we first record his 
LIL result for the independent random variables. Slightly 
abuse of language, we use i.d.r.v for random variables 
which are independent and identically distributed with 
mean zero and variance one and we write c.d.f. for 
common distribution function. 
 

Theorem 2.1 (Kolmogorov,1929). Let 𝑆𝑛 =
∑ 𝑋𝑖  

𝑛
𝑖=1 𝑤ℎ𝑒𝑟𝑒 𝑋𝑛 is i.d.r.v. Assume that            |𝑋𝑛|2 ≤
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𝜀𝑛 𝑛

log log 𝑛
  for some constants 𝜖𝑛 → 0. Then for a.e. 

𝜔, lim
𝑛→∞

𝑠𝑢𝑝
|𝑆𝑛|

√2𝑛 log 𝑙𝑜𝑔𝑛
= 1 

 
The above result is Kolmogorov’s LIL and is considered 
as principal accomplishment in the theory of probability. 
In 1941, Hartman-Winter (Hartman & Winter, 1941)  also 
obtained a LIL for identically distributed independent 
random variables. This result is also popularly known as 
limsup LIL. 
 

Theorem 2.2 (Hartman-Winter, 1941). Let {𝑋𝑘}𝑘≥1 be a 

sequence where 𝑋𝑘 is i.d.r.v. and 𝑆𝑛  denotes the 𝑛𝑡ℎ partial sums 

of the random variables, then 𝑙𝑖𝑚
𝑛→∞

𝑠𝑢𝑝
𝑆𝑛

√2𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔𝑛
= 1 almost 

surely. 
K.L. Chung (Chung, 1948) then introduced the liminf 
version of the above result. We now state the theorem by 
Chung. 
 
Theorem 2.3 (Chung, 1948). If F is c.d.f. of a sequence i.d.r.v. 

{𝑋𝑛; 𝑛 ≥ 1} with variance 𝜎2, and also assume 𝐸(|𝑋|3) <

∞. Then lim
𝑛→∞

𝑖𝑛𝑓√
log 𝑙𝑜𝑔𝑛

𝑛
  max

1≤𝑗≤𝑛
|𝑆𝑗| =

𝜎𝜋

√8
  with probability 1.  

 
We note that the above result was obtained with the extra 
assumption of finite third moment. Under the same 
assumption of Hartman-Winter, Xia Chen [29] 
established a LIL where he has considered the limit 
instead of limit supremum. 
 

Theorem 2.4 (Chen, 2015). Let {𝑋𝑘}𝑘≥1 denote a sequence of 

i.d.r.v. and 𝑆𝑘  denotes the 𝑘𝑡ℎ partial sums of the random 

variables, then lim
𝑛→∞

1

√2𝑛 log log 𝑛
  max

1≤𝑘≤𝑛

𝑆𝑘

√𝑘
 = 1 almost surely. 

 
In connection with the independent random variables, we 
state another LIL for Ornstein-Uhlenbeck process  
(Chen, 2015). For this, we first recall the definition: 
 

Definition 2.5.  Let {𝑋(𝑡); 𝑡 ≥ 0}, be a stationary, 
centered and continuous Gaussian process. Then it is 
called one dimensional Ornstein-Uhlenbeck process if 

𝐶𝑜𝑣(𝑋(0), 𝑋(𝑡)) = 𝑒−
𝑡

2, 𝑡 ≥ 0.  
 

Theorem 2.6 (Chen, 2015). Let {𝑋(𝑡); 𝑡 ≥ 0} be an 
Ornstein-Uhlenbeck process. Then  

𝑙𝑖𝑚
𝑡→∞

1

√2 𝑙𝑜𝑔 𝑡
 𝑚𝑎𝑥

𝑠≤𝑡
𝑋(𝑠) = 1 almost surely. 

 
 
THE LIL FOR PARTIAL SUMS OF LACUNARY 
SERIES 
The context of lacunary trigonometric series is considered 
as the first context in analysis where the LIL was 
introduced. We remark that the sums of lacunary series 
exhibits the behaviors which are similar to independent 

random variables. Due to this reason, they are also called 
weakly dependent random variables. We first begin with 
the definition: 
 

Definition 3.1 (Lacunary Series). A 𝑞 − lacunary series is 
a series of the form given by  𝑆𝑚(𝜃) =  ∑ (𝑎𝑘𝑐𝑜𝑠 𝑛𝑘𝜃 +𝑚

𝑘=1

𝑏𝑘𝑠𝑖𝑛 𝑛𝑘𝜃) satisfying lacunary condition 
𝑛𝑘+1

𝑛𝑘
 > 𝑞 > 1.  

 
Inspired by the LIL of Kolmogorov, Salem and Zygmund 
obtained the analogue result for lacunary series. The LIL 
introduced by Salem and Zygmund is considered as the 
opening result in the analytic setting (Banelos & Moore, 
1991). We next record their theorem: 
 

Theorem 3.2 (R. Salem and A. Zygmund, 1950). Let 𝑆𝑚 

denote a 𝑞 −lacunary series and the 𝑛𝑘 be positive integers. Write 

𝐵𝑚
2 =  

1

2
∑ (|𝑎𝑘|2 + |𝑏𝑘|2) 𝑚

𝑘=1   and    𝑀𝑚 = max
1≤𝑘≤𝑚

(|𝑎𝑘|2 +

|𝑏𝑘|2)
1

2.  If lim
𝑚→∞

𝐵𝑚 = ∞  𝑎𝑛𝑑 𝑆𝑚 satisfying 𝑀𝑚
2 ≤

𝐾𝑚
𝐵𝑚

2

𝑙𝑜𝑔𝑙𝑜𝑔(𝑒𝑒+ 𝐵𝑚
2 )

 for 𝐾𝑚 ↓ 0.  

Then 𝑙𝑖𝑚
𝑚→∞

𝑠𝑢𝑝
𝑆𝑚(𝜃)

√2𝐵𝑚
2 𝑙𝑜𝑔 𝑙𝑜𝑔𝐵𝑚

≤ 1 𝑎. 𝑒. 𝜃 𝜖 𝑇, unit circle. 

Note that ∫ 𝑆𝑚(𝑥)𝑑𝑥 = 0 
𝜋

−𝜋
and 𝜎 = 𝐵𝑚 =

√
1

2
∑ (𝑎𝑘

2 + 𝑏𝑘
2)𝑚

𝑘=1 .  

 

We note that in the assumption 𝑛𝑘 is a positive integer. In 
the case of integer, Erdös and Gal (1955) generalized the 
result of Salem and Zygmund. They considered a special 
form of the series and attained the LIL as follow: 
 

Theorem 3.3 (Erdös & Gal, 1955). Let 𝑛𝑘 be integers and 

𝑆𝑚 be a lacunary series given by 𝑆𝑚(𝜃) =  ∑ 𝑒𝑥𝑝(𝑖𝑛𝑘𝜃)𝑚
𝑘=1  

and are integers. Then 𝑙𝑖𝑚
𝑚→∞

𝑠𝑢𝑝
𝑆𝑚(𝜃)

√𝑚 𝑙𝑜𝑔 𝑙𝑜𝑔𝑚
= 1  for a. e. 𝜃 in 

the unit circle where a. e. stands for almost every. 
 
In 1955, M. Weiss while doing here Ph.D. was able to 
obtain the counterpart of Kolmogorov’s LIL in the above 
context in full entirety. This result of M. Weiss (Weiss, 
1959) is considered as a remarkable result in this area. She 
obtained this with other remarkable results in early age. 
Unfortunately, she died at early age. We next record her 
result: 
 
Theorem 3.4 (Weiss, 1959).  Let 𝑆𝑚(𝜃) =

 ∑ (𝑎𝑘𝑐𝑜𝑠 𝑛𝑘𝜃 + 𝑏𝑘 sin 𝑛𝑘𝜃)𝑚
𝑘=1  be a 𝑞 −lacunary series and 

𝑛𝑘 be integers. Then under the same assumption of Kolmogorov, we 
have  

𝑙𝑖𝑚
𝑚→∞

𝑠𝑢𝑝
𝑆𝑚(𝜃)

√2𝐵𝑚
2 𝑙𝑜𝑔 𝑙𝑜𝑔𝐵𝑚

= 1  for a. e. 𝜃 in the unit circle. 

 
In all above results of LIL for the given trigonometric 
series, they only considered only the partial sums up to 

the 𝑛𝑡ℎ term. In contrast to these result, Salem and 
Zygmund obtained a LIL where they used the remainder 
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after n-term of the lacunary series. Their LIL result 
(Salem & Zygmund, 1950) for this remainder or tail sums 
is: 
 

Theorem 3.5 (Salem & Zygmund, 1950). Let 𝑆𝑁
~(𝜃) =

∑ (𝑎𝑘 𝑐𝑜𝑠 𝑛𝑘𝜃 + 𝑏𝑘 𝑠𝑖𝑛 𝑛𝑘𝜃)∞
𝑘=𝑁  be given lacunary series 

where 𝑐𝑘
2 = 𝑎𝑘

2 + 𝑏𝑘
2 satisfying ∑ 𝑐𝑘

2 < ∞.∞
𝑘=1  Set 𝐵𝑁

~ =

(
1

2
∑ 𝑐𝑘

2∞
𝑘=𝑁 )

1

2
 and 𝑀𝑁

~ =  𝑚𝑎𝑥
𝑘≥𝑁

|𝑐𝑘|. Assume 𝐵1
~  <  ∞ and 

that 𝑀𝑁
~2  ≤ 𝐾𝑁 (

𝐵𝑁
~2  

𝑙𝑜𝑔𝑙𝑜𝑔
1

𝐵𝑁
~

) for some sequence of numbers 𝐾𝑁 ↓

0 as 𝑁 → ∞. Then 𝑙𝑖𝑚
𝑁→∞

𝑠𝑢𝑝
𝑆𝑁

~(𝜃)

√2𝐵𝑁
~2𝑙𝑜𝑔𝑙𝑜𝑔

1

𝐵𝑁
~

≤ 1 for a.e. 𝜃 in the 

circle of radius one.   
 
We remark that the result depends on the tail sums 

instead of 𝑛𝑡ℎ sums and this type of LIL is considered as 
tail LIL. Moreover, we note that the result obtained 
above has only the upper bound and no lower bound has 
been of the result has been given. The other inequality of 
the lower bound of the tail LIL was obtained by Ghimire 
and Moore (Ghimire and Moore, 2014) under the similar 
assumption. Their result is: 
 

Theorem 3.6 (Ghimire and Moore, 2012). Let 𝑆𝑚 denote 
the sum of series given by 𝑆𝑚(𝑥) = ∑ 𝑎𝑘cos (2𝜋𝑛𝑘𝑥)𝑚

𝑘=1  
satisfying 

𝑛𝑘+1 

𝑛𝑘
≥ 𝑞 > 1 𝑎𝑛𝑑 ∑ 𝑎𝑘

2 < ∞.∞
𝑘=1  Suppose max

𝑘≥𝑁 
𝑎𝑘

2 =

𝑜 (
1

2
∑ 𝑎𝑘

2∞
𝑘=𝑁

𝑙𝑜𝑔𝑙𝑜𝑔
1

√1
2

∑ 𝑎𝑘
2∞

𝑘=𝑁

).  

Then for a.e. x, 𝑙𝑖𝑚
𝑛→∞

𝑠𝑢𝑝
|∑ 𝑎𝑘cos (2𝜋𝑛𝑘𝑥)∞

𝑘=𝑛 |

√
2 

1

2
∑ 𝑎𝑘

2∞
𝑘=𝑁    𝑙𝑜𝑔𝑙𝑜𝑔

1

√1
2

∑ 𝑎𝑘
2∞

𝑘=𝑁

≥ 1 

 
THE LIL FOR DYADIC MARTINGALES 
A counterpart of Kolmogorov’s LIL in the context of 
dyadic martingale was obtained by W. Stout. Before we 
state the main result, we first recall the definition of 
dyadic martingale: 
 

Definition 4.1 (Dyadic martingales). Let 𝔉𝑛 denote the 

𝜎 − algebra generated by the dyadic intervals of the form 

[
𝑗

2𝑛 ,
𝑗+1

2𝑛 ) on [0,1). Then a sequence of integrable 

functions {𝑓𝑛}𝑛=0
∞  is called dyadic martingales if it 

satisfies: 𝑓𝑛 ∶ [0,1) → ℝ such that for every n, 𝑓𝑛 is 𝔉𝑛 − 

measurable and 𝐸(𝑓𝑛+1|𝔉𝑛) = 𝑓𝑛for all 𝑛 ≥ 0. We write 

𝑑𝑘(𝑥) = 𝑓𝑘(𝑥) − 𝑓𝑘−1(𝑥), 

𝑆𝑛
2𝑓(𝑥) = ∑ 𝑑𝑘

2(𝑥),

𝑛

𝑘=1

  𝑆2𝑓(𝑥) = ∑ 𝑑𝑘
2(𝑥).

𝑛

𝑘=1

 

 
Asymptotic behavior of dyadic martingales is controlled 
by the square function defined above. For the long-term 
nature of dyadic martingales, we first note the result of 
Burkholder and Gundy (Burkholder & Gundy, 1970): 

{𝑥 ∶ 𝑆𝑓(𝑥) < ∞} =𝑎.𝑠  {𝑥 ∶ lim 𝑓𝑛 𝑒𝑥𝑖𝑠𝑡𝑠}. 
 

One can note that asymptotic behavior of {𝑓𝑛} is nice on 

the set {𝑥 ∶ 𝑆𝑓(𝑥) < ∞}. But how does it behave on the 

complement of the above set? Precisely, the function {𝑓𝑛} 

is unbounded almost everywhere on the set {𝑥 ∶ 𝑆𝑓(𝑥) =
∞}. Nevertheless, we can obtain the size of growth of 

| 𝑓𝑛| on this complement set. The growth of | 𝑓𝑛| on the 

set where 𝑆𝑓(𝑥) is infinity was entirely answered by W. 
Stout (Stout, 1970). 
 

Theorem 4.2 (Stout, 1970). Let {𝑓𝑛}𝑛=0
∞  denote a dyadic 

martingale sequence on the interva [0,1) then we have, 
 

lim
𝑛→∞

𝑠𝑢𝑝
|𝑓𝑛(𝑥)|

𝑆𝑛𝑓(𝑥)√2 log log 𝑆𝑛𝑓(𝑥)
 ≤ 1 

a.e. on a set with {𝑓𝑛} unbounded. 
 
Now we discuss another direction where the LIL due to 
Salem and Zygmund was extended: S. Takahashi 
(Takahashi, 1963) extended the result of Salem and 

Zygmund by considering a function 𝑓 satisfying 𝑓(𝑥 +

1) = 𝑓(𝑥), ∫ 𝑓(𝑥)𝑑𝑥 = 0.
1

0
 Moreover, let 𝑛𝑘 satisfy gap 

condition. Suppose that 𝑓 𝜖 𝐿𝑖𝑝𝛼, 0 ≤  𝛼 ≤ 1. Then the 
LIL result obtained by Takahashi is: 

(4.1)  lim
N→∞

sup
∑ f(nkt)N

k=1

√N log log N
≤ Ca. e. 

 
This result of Takahashi has been further generalized by 
Dhompongsa (Dhompongsa, 1986), Takahashi 
(Takahashi, 1988) himself, and Peter (Peter, 2000). In the 
new generalization, they have taken wide class of 
functions and considered the weak lacunary condition in 
contrast to regular condition. 
 
In 2012, Moore and Zhang generalized the LIL of 
Takahashi with same gap condition but with larger class 

of functions 𝑓. Precisely, they considered Dini 

continuous function 𝑓. We first define Dini continuous 
function: 
 
Definition 4.3 (Dini Continuous). A Dini continuous 

function is a function 𝑓 on ℝ𝑛 that satisfies: 
(4.2)  

∫
𝜔(𝑓, 𝛿)

𝛿
𝑑𝛿 < ∞

1

0

 

 
Moore and Zhang (Moore & Zhang, 2012) extended the 

result in the case when the function 𝑓 is Dini continuous. 

Assuming 𝑓 satisfying Dini continuous and 𝑛𝑘 satisfies 
the lacunary condition. They obtained a constant 

𝐶(𝑛, 𝑞, ∫ 𝜔(𝛿)𝑑𝛿)
1

0
  and  

lim
𝑚→∞

𝑠𝑢𝑝
| ∑ 𝑎𝑘𝑓(𝑛𝑘𝑥 + 𝑐𝑘)𝑚

𝑘=1 |

√𝐴𝑚
2 𝑙𝑜𝑔𝑙𝑜𝑔𝐴𝑚

2
≤ 𝐶    𝑎. 𝑒. 
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The above result gives the upper bound result. The other 
inequality of the result was also obtained by Moore and 
Zhang (Moore and Zhang, 2014). Under the similar 
conditions as in the upper bound result and with some 
extra conditions, they obtained the following LIL result. 

  

lim
𝑚→∞

𝑠𝑢𝑝
| ∑ 𝑎𝑘𝑓(𝑛𝑘𝑥 + 𝑐𝑘)𝑚

𝑘=1 |

√𝐴𝑚
2 𝑙𝑜𝑔𝑙𝑜𝑔𝐴𝑚

2
≥ 𝐶    𝑎. 𝑒. 

 
We remark that in both the upper and lower bound 

result, the authors have not assumed the 𝑛𝑘 to be 
integers. Moreover, they have not considered any 

periodicity on the function𝑓. The best possible values of 
the bounds (C and c is still unknown and are open 
problem in this direction. 
 
We now discuss the LIL in the context o harmonic 
functions which are considered as an important feature of 
harmonic analysis. In this setting R. Banelos, I. Klemes 
and C. N. Moore (Banelos et al., 1988) obtained the 
counterpart of Kolmogorov’s LIL. To state their result, 
we recall some notations and definitions: 
 
Upper half space and doubly truncated cone respectively 
defined and denoted by  

ℝ+
𝑑+1 = {(𝑦, 𝑠): 𝑦 𝜖 ℝ𝑑  , 𝑠 > 0}  

                                                          Γ𝛼(𝑥, 𝑡) =
{(𝑦, 𝑠): |𝑥 − 𝑦| ≤  𝛼𝑠, 𝑡 ≤ 𝑠 ≤ 1} 

 
Definition 4.4 (Lusin area function). The doubly 

truncated Lusin  area function for a harmonic function 𝑢 
in the upper half space is defined as: 

𝐴𝛼(𝓊)(𝑥, 𝑡) = (∫ 𝑆1−𝑑|∇𝓊(𝑦, 𝑠)|2𝑑𝑦𝑑𝑠
  Γ𝛼(𝑥,𝑡)

)

1

2

 

 
The LIL introduced by them in the setting of harmonic 
function is: 
 

Theorem 4.5 (Banelos, Klemes and Moore, 1988). If 𝑢 is 

harmonic function in ℝ+
𝑑+1, then for a fixed 0 < 𝛽 <

𝛼 𝑎𝑛𝑑 0 < 𝛾 < 1, we have  

𝑙𝑖𝑚
(𝑦,𝑡)→(𝑥,0),(𝑦,𝑡)𝜖𝛤𝛽(𝑥,0) 

|𝓊 (𝑦, 𝑡)|

√𝐴𝛼
2 (𝓊)(𝑥, 𝛾𝑡) 𝑙𝑛 𝑙𝑛(𝐴𝛼(𝓊)(𝑥, 𝛾𝑡))

≤ 𝐶 

for  𝑎. 𝑒. 𝑥 ∈ { 𝑥 ∈  ℝ𝑑 ∶  𝐴𝛼(𝓊)(𝑥) =  ∞}.  C is a positive 

constant such that 𝐶(𝛼, 𝛽, 𝛾, 𝒹). 
 
They also estimated the other inequality of the result. We 
now state their result (Banelos et al., 1988): 
 

Theorem 4.6 (Baneloset al., 1990). Let 𝑢 be a harmonic 

function in ℝ+
𝑑+1 and assume 𝛼 > 0. For 0 < 𝑡 < 1, define 

𝐾𝛼(𝓊)(𝑥, 𝑡) 𝑎𝑠 
 

𝐴𝛼
2 (𝓊)(𝑥, 𝑡) − 𝐴𝛼

2 (𝓊)(𝑥, 2𝑡)

= 𝐾𝛼(𝓊)(𝑥, 𝑡)
𝐴𝛼

2 (𝓊)(𝑥, 𝑡)

𝑙𝑜𝑔 𝑙𝑜𝑔(𝑒𝑒 + 𝐴𝛼
2 (𝓊)(𝑥, 𝑡))

 

and set 
 𝐾𝛼(𝓊)(𝑥, 𝑡) = 1 + lim

𝑡↓0
𝑠𝑢𝑝𝐾𝛼(𝓊)(𝑥, 𝑡). 

Then 
limsup

𝑡 ↓ 0

𝓊(𝑥, 𝑡)

√𝐴𝛼
2 (𝓊)(𝑥, 𝑡)𝑙𝑜𝑔𝑙𝑜𝑔(𝐴𝛼(𝓊)(𝑥, 𝑡))

≥  
𝐶2

√𝐾𝛼(𝓊)(𝑥)
 

 
for 𝑎. 𝑒. 𝑥 𝜖 {𝑥 𝜖 ℝ𝑑 ∶  𝐴𝛼(𝓊)(𝑥) =  ∞ 𝑎𝑛𝑑 𝐾𝛼(𝓊)(𝑥) <  ∞}. 𝐶2 is a 

positive constant depending only on 𝛼 𝑎𝑛𝑑 𝑑. 
 
There are various other settings where a LIL has been 
established. We suggest a paper N.H. Bingham (Bingham, 
1986) to know about various other contexts where a LIL 
has been established. For LIL in Banach space, please 
refer (Ledoux & Talagrand, 1991)For the various results 
on the LIL for random vectors and for some open 
problems in LIL, please refer (Liu & Zhang, 2021). 
Readers are referred to article (Einmahl, 2016) for a LIL 
in the setting of random walk and in the setting of linear 
processes, please refer (Hambly et al., 2003). For LIL in 
the context of Bloch functions, please refer (Prztycki, 
1989) and for Brownian motion, refer Qi and Yan (2018). 
 
MAIN RESULTS 
In this section, we prove a LIL for Rademacher functions 

considering the remainder after 𝑛𝑡ℎ term. We first state 
our result. 
 
Theorem 5.1 Let  𝑓(𝑡) =  ∑ 𝑎𝑘𝑟𝑘(𝑡),  𝑓𝑛(𝑡) =∞

𝑘=1

∑ 𝑎𝑘𝑟𝑘(𝑡), 𝑆𝑛
′2𝑓(𝑡) =  ∑ [𝑓𝑘(𝑡) −∞

𝑗=𝑛+1
𝑛
𝑘=1

𝑓𝑘−1(𝑡)]2  𝑤ℎ𝑒𝑟𝑒 {𝑟𝑘}𝑘=1
∞  is the sequence of Rademacher 

functions and ∑ 𝑎𝑛
2 < ∞.∞

𝑛=1  For 𝑎 𝜃 > 1, define 

𝑛𝑘 = min (𝑛 ∶  ∑ 𝑎𝑗
2 <

1

𝜃𝑘

∞

𝑗=𝑛+1

) 

Then,  

limsum
𝑘→∞

|𝑓(𝑡) − 𝑓𝑛𝑘(𝑡)|

√2𝑆𝑛𝑘
′2 𝑓(𝑡) log log

1

𝑆𝑛𝑘
′2 𝑓(𝑡)

≤ 1 

for  a.e. t. 
 
Before we start the proof, we first recall the definition of 
Rademacher functions. 
 

Definition 5.2 (Rademacher functions). Let  𝑟𝑘 be a 

function defined on [0,1]  by 𝑟𝑘(𝑥) = 𝑠𝑔𝑛(sin 2𝑘𝜋𝑥)  
where sgn denotes the signum function. Then the 

sequence of the functions given by {𝑟𝑘(𝑥)}𝑘=1
∞  is called 

Rademacher functions. 
 
We can note that the Rademacher function gives the 
value -1 and 1 alternatively and these functions are 
independent, identically distributed random variables with 
zero mean and variance one. Moreover, if we define the 
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weighted sums of these functions taking the real 
numbers, they behave like dyadic martingales.  This 
property will be used in the proof of our main result. 
 

Lemma 5.3 (Borel-Cantelli) Let {𝐸𝑘}𝑘=1
∞  be a countable 

collection of measurable sets for which ∑ 𝑚(𝐸𝑘
∞
𝑘=1 ) <

∞. Then almost all 𝑥 ∈ ℝ belong to at most finitely many 

of the sets 𝐸𝑘
′ 𝑠. 

 
Proof. For the proof, see (Royden & Fitzpatrick, 2010). 
 

Proof of the main result: Note that {𝑓𝑛}𝑛=1
∞  is a 

sequence of dyadic martingale. Clearly ∑ 𝑎𝑖𝑟𝑖
𝑛
𝑖=1 = 𝑓𝑛 is 

measurable function. Moreover, on each 𝑛𝑡ℎ generation 

dyadic subinterval |𝑄𝑛| =  
1

2𝑛, one can show: 

𝐸(𝑓𝑛+1|𝔉𝑛) =
1

|𝑄𝑛|
∫ ∑ 𝑎𝑘𝑟𝑘(𝑥)𝑑𝑥 + 𝑎𝑛+1 ∫ 𝑟𝑛+1(𝑥)𝑑𝑥

𝑄𝑛

𝑛

𝑘=1𝑄𝑛

 

      

=  
1

|𝑄𝑛|
∫ ∑ 𝑎𝑘𝑟𝑘(𝑥)𝑑𝑥 + 0𝑛

𝑘=1𝑄𝑛
 

     
                             = ∑ 𝑎𝑘𝑟𝑘(𝑥) = 𝑓𝑛

𝑛
𝑘=1 . 

 

Fix 𝑛. Define a sequence {𝑔𝑚}  as follows: 

𝑔𝑚(𝑡) = {
0,        𝑖𝑓 𝑚 ≤ 𝑛,

𝑓𝑚(𝑡) − 𝑓𝑛(𝑡),       𝑖𝑓 𝑚 > 𝑛
                                               (5.1) 

 

We first show that  {𝑔𝑚}  is a dyadic martingale. Clearly 

for every m, 𝑔𝑚 is measurable with respect to the sigma 

algebra 𝔉𝑚.  Let 𝑚 > 𝑛. Then using the fact that 𝑓𝑚 is 

constant on the cube 𝑄𝑚 we have, 

𝐸(𝑔𝑚+1  |𝔉𝑚) =
1

|𝑄𝑚|
∫ [𝑓𝑚+1(𝑡) − 𝑓𝑛(𝑡)]𝑑𝑡

𝑄𝑚

=
1

|𝑄𝑚|
∫ 𝑓𝑚+1(𝑡)𝑑𝑡

𝑄𝑚

−
1

|𝑄𝑚|
∫ 𝑓𝑛(𝑡)𝑑𝑡

𝑄𝑚

=
1

|𝑄𝑚|
∫ 𝑓𝑚+1(𝑡)𝑑𝑡 −

𝑄𝑚

𝑓𝑛(𝑡)

= 𝑓𝑚(𝑡) − 𝑓𝑛(𝑡) = 𝑔𝑚(𝑡). 
 

Thus, we have  𝐸(𝑔𝑚+1  |𝔉𝑚) = 𝑔𝑚 . This shows that  

{𝑔𝑚}  is a dyadic martingale. Now we make the used of 
the following inequality whose proof can be found in 
(Ghimire, 2020) 
 

Inequality 5.4.  For a dyadic martingale {𝑓𝑛}  and 𝜆 > 0 
we have  

|{𝑡 ∈ (0,1]: sup
m≥1

|𝑓𝑚(𝑡)| >  𝜆}| ≤ 6 𝑒𝑥𝑝 (
−𝜆2

2||𝑆𝑓||
∞

2 ). 

Then applying the inequality 5.4 for this martingale, we 
get  

|{𝑡 ∈ (0,1]: sup
m≥1

|𝑔𝑚(𝑡)| >  𝜆}| ≤ 6 𝑒𝑥𝑝 (
−𝜆2

2||𝑆𝑔||
∞

2 ). 

But 𝑔𝑚(𝑡) = 0 for 𝑚 ≤ 𝑛. Hence  

|{𝑡 ∈ (0,1]: sup
m≥n

|𝑔𝑚(𝑡)| >  𝜆}| ≤ 6 𝑒𝑥𝑝 (
−𝜆2

2||𝑆𝑔||
∞

2 ). 

 

Again 𝑆2𝑔(𝑡) = ∑ 𝑑𝑘
2(𝑡) = ∑ [𝑔𝑘+1(𝑡) − 𝑔𝑘(𝑡)]2 =∞

𝑘=0
∞
𝑘=0

∑ 𝑑𝑘
2(𝑡) =∞

𝑘=𝑛+1 𝑆𝑛
′2𝑓(𝑡) 

 
This gives 

|{𝑡 ∈ (0,1]: sup
m≥n

|𝑔𝑚(𝑡)| >  𝜆}| ≤ 6 𝑒𝑥𝑝 (
−𝜆2

2||𝑆𝑛
′ 𝑓||

∞

2 ). 

i.e.   

(5.2)    |{𝑡 ∈ (0,1]: sup
m≥n

|𝑓𝑚(𝑡) − 𝑓𝑛(𝑡)| >  𝜆}|  𝑒𝑥𝑝 (
−𝜆2

2||𝑆𝑛
′ 𝑓||

∞

2 )         

 

Clearly {𝑡: |𝑓(𝑡) − 𝑓𝑛(𝑡)| > 𝜆} ⊂ {𝑡: sup
m≥n

|𝑓𝑚(𝑡) − 𝑓𝑛(𝑡)| > 𝜆}.  

 
So, we have  

|{𝑡: |𝑓(𝑡) − 𝑓𝑛(𝑡)| > 𝜆}| ≤ |{𝑡: sup
m≥n

|𝑓𝑚(𝑡) − 𝑓𝑛(𝑡)| > 𝜆}| 

Consequently,  

(5.3)           |{𝑡 ∶ |𝑓(𝑡) − 𝑓𝑛(𝑡)| >  𝜆}| ≤ 6 𝑒𝑥𝑝 (
−𝜆2

2||𝑆𝑛
′2𝑓||

∞

2 )  

 

Employing the above inequality (5.3) for 𝑛𝑘, we have  

|{𝑡 ∶ |𝑓(𝑡) − 𝑓𝑛(𝑡)| >  𝜆}| ≤ 6 𝑒𝑥𝑝 (
−𝜆2

2||𝑆𝑛
′2𝑓(𝑡)||

∞

2 ) 

Note that 

𝑆𝑛𝑘
′2 𝑓(𝑡)                        =  ∑ [𝑓𝑗(𝑡) − 𝑓𝑗+1(𝑡)]

2
∞

𝑗=𝑛𝑘+1

= ∑ [𝑎𝑗𝑟𝑗(𝑡)]
2

=  ∑ 𝑎𝑗
2

∞

𝑗=𝑛𝑘+1

∞

𝑗=𝑛𝑘+1

  

This gives: 

|{𝑡 ∶ |𝑓(𝑡) − 𝑓𝑛(𝑡)| >  𝜆}| ≤ 6 𝑒𝑥𝑝 (
−𝜆2

2 ∑ 𝑎𝑗
2∞

𝑗=𝑛𝑘+1

) 

Let ∈ > 0. Then set 𝜆 = √(1 + 𝜖)2 2

𝜃𝑘 log log 𝜃𝑘 

With this 𝜆, the above inequality gives: 

|{𝑡 ∶ |𝑓(𝑡) − 𝑓𝑛𝑘(𝑡)| > (1 + 𝜖)√
2

𝜃𝑘
log log 𝜃𝑘 }|

≤ 6 exp (
−(1 + 𝜖)2 2

𝜃𝑘
log log 𝜃𝑘

2 ∑ 𝑎𝑗
2∞

𝑗=𝑛𝑘+1

) 

Using  

𝑆𝑛𝑘
′2 𝑓(𝑡) = ∑ 𝑎𝑗

2∞
𝑗=𝑛𝑘+1 <  

1

𝜃𝑘, we get 
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|{𝑡 ∶ |𝑓(𝑡) − 𝑓𝑛𝑘(𝑡)| > (1 + 𝜖)√
2

𝜃𝑘
log log 𝜃𝑘 }|

≤ 6 exp (
−(1 + 𝜖)2 2

𝜃𝑘
log log 𝜃𝑘

1

𝜃𝑘

) 

     

                       = 6
1

(log 𝜃)(1+𝜀)2  
1

𝑘(1+𝜀)2 

This can be done for every 𝑛𝑘. So taking summation over 
all k, we get 

∑ |{ 𝑡 ∶ |𝑓(𝑡) − 𝑓𝑛𝑘(𝑡)| > (1 + 𝜖)√
2

𝜃𝑘
log log 𝜃𝑘 }|

∞

𝑘=1

< ∑ 6
1

(log 𝜃)(1+𝜀)2  
1

𝑘(1+𝜀)2

∞

𝑘=1

 

      

 = 6
1

(log 𝜃)(1+𝜀)2 ∑
1

𝑘(1+𝜀)2
∞
𝑘=1  

                                                                  < ∞. 
We now invoke Borel-Cantelli Lemma. Then for a.e. 𝑡, 
there exists N large enough depending on 𝑡 such that for 

all 𝑘 ≥ 𝑁, we get,   

(5.4)               |𝑓(𝑡) − 𝑓𝑛𝑘(𝑡)| ≤ (1 + 𝜖)√
2

𝜃𝑘
log log 𝜃𝑘 =

(1 + 𝜖)√𝜃 √
2

𝜃𝑘+1
log log 𝜃𝑘 

Fix 𝑡. By definition of 𝑛𝑘, we have 𝑆𝑛𝑘
′2 𝑓(𝑡) <  

1

𝜃𝑘.  

This gives  𝜃𝑘 <  
1

𝑆𝑛𝑘
′2 𝑓(𝑡)

 .  

Again, we have 𝑆𝑛𝑘+1
′2 𝑓(𝑡) <  

1

𝜃𝑘+1 .  

But 𝑛𝑘 < 𝑛𝑘+1. Consequently, we have 𝑆𝑛𝑘
′2 𝑓(𝑡) ≥  

1

𝜃𝑘+1. 

Finally, we have  

(5.5)  
1

𝜃𝑘+1 ≤  𝑆𝑛𝑘
′2 𝑓(𝑡) <  

1

𝜃𝑘 

 
Then using (5.4) in (5.5), we have  

|𝑓(𝑡) − 𝑓𝑛𝑘(𝑡)| ≤ (1 + 𝜖)√𝜃√2. 𝑆𝑛𝑘
′2 𝑓(𝑡) log log (

1

𝑆𝑛𝑘
′2 𝑓(𝑡)

). 

Thus for a.e. 𝑡 we have 
|𝑓(𝑡) − 𝑓𝑛𝑘(𝑡)|

√2. 𝑆𝑛𝑘
′2 𝑓(𝑡) log log (

1

𝑆𝑛𝑘
′2 𝑓(𝑡)

)

< (1 + 𝜀)√𝜃. 

This can be done for all 𝜀 > 0 ,  we have  
|𝑓(𝑡) − 𝑓𝑛𝑘(𝑡)|

√2. 𝑆𝑛𝑘
′2 𝑓(𝑡) log log (

1

𝑆𝑛𝑘
′2 𝑓(𝑡)

)

< √𝜃. 

Here as 𝑛 approaches to ∞, we have 𝑘 also approaches to 

∞. If we let 𝜃 ↘ 1, we have  

lim
𝑘→∞

𝑠𝑢𝑝
|𝑓(𝑡) − 𝑓𝑛𝑘(𝑡)|

√2. 𝑆𝑛𝑘
′2 𝑓(𝑡) log log (

1

𝑆𝑛𝑘
′2 𝑓(𝑡)

)

< 1 

 
For almost every t. This proves our result. 
 
APPLICATION OF RADEMACHER 
FUNCTIONS  

In this section, we use sequence of Rademacher functions 
in a law of the iterated logarithm to estimate the size of 

the random walks of a walker. As earlier let {𝑟𝑘}𝑘=1
∞  

denote the sequence of Rademacher functions. Let us 
define: 

𝑓1(𝑡) = 𝑟1(𝑡) 

𝑓2(𝑡) = 𝑟1(𝑡) + 𝑟2(𝑡) 

⋮ 
𝑓𝑛(𝑡) = 𝑟1(𝑡) + 𝑟2(𝑡) + ⋯ + 𝑟𝑛(𝑡) 

One can note that sum function {𝑓𝑛(𝑡)} defines a 
random walk in which walker moves 1 unit to the right if  

𝑟𝑖(𝑡) = 1 and to the left if   𝑟𝑖(𝑡) = −1. Applying a law 
of the iterated logarithm for this function, we have: 

lim
𝑛→∞

𝑠𝑢𝑝 
𝑓𝑛(𝑡)

√2𝑛 log log 𝑛
≤ 1. 

 

We note that for 𝜖 > 0, this gives |𝑓𝑛(𝑡)| ≤

(1 + 𝜖)√2𝑛 log log 𝑛  for sufficiently large n. But the 

worst bound for the function 𝑓𝑛(𝑡) is n i.e. |𝑓𝑛(𝑡)| ≤ 𝑛. 
This shows that the law of the iterated logarithm gives the 

sharper asymptotic estimate i.e. the estimate |𝑓𝑛(𝑡)| ≤

(1 + 𝜖)√2𝑛 log log 𝑛   where for sufficiently large n, the 

factor √2𝑛 log log 𝑛  is much smaller than n. From this 

discussion, we can conclude that in the long run the 

walker will fluctuate in between −√2𝑛 log log 𝑛  and 

√2𝑛 log log 𝑛. 

 
CONCLUSIONS 
We discussed the origin of the law of the iterated 
logarithm and the various directions where the law of the 
iterated logarithm has been developed. We focused on the 
regular and tail law of the iterated logarithm in all existing 
cases. As a main result, we derived a law of the iterated 
logarithm for the  sums of Rademacher functions 
considering the tail sums. We expect to obtain the similar 
law of the iterated logarithm for tail sums in the other 
existing cases also which is our future direction of 
research. 
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