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ABSTRACT 

Inverse Galois problem (IGP) states whether any finite group is realizable as a Galois group over the field K. It is the 
question of the structure and representation of the Galois group and also questions its epimorphic images. So, it is called 

an inverse Galois problem. For K=ℚ (the field of rational number), it is called a classical inverse Galois problem (CIGP). 
This paper reviews the positive answer to the classical inverse Galois problem (CIGP) for all finite abelian groups and 
some finite non-abelian solvable groups. We also discuss this problem (CIGP) for some finite non-solvable groups in this 
paper. This problem still remains to solve, but if we find the true value of the statement ‘All subgroups of order m of the 

symmetric group (Sm) for all m are realizable as Galois group over ℚ’ then its truth value gives the answer of CIGP. We 
check this statement for m=1,2,3,4 and 5 in this paper, where we get that this statement is true. If this statement is true, 
then CIGP has a positive answer. But if this statement is false then CIGP has a negative answer. 
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INTRODUCTION 
Evariste (Adams, 2010) Galois was born on October 25, 
1811, in France. He was the first son of Nicholas Gabriel 
Galois and Adelaide Marie Demante. Evariste Galois was 
political activist as well as a mathematician by whom 
necessary and the sufficient condition for polynomial to be 
solvable by the radicals had been found. He is known as 
the creator of Galois theory because he developed basic 
theory which links group theory and field theory. He did 
all his remarkable works in the field of mathematics when 
he was teenager. We have to say with dejection that he 
passed away at his tender age. One of the disasters in the 
scientific world was the loss of the great intelligent 
mathematician Evariste Galois at his tender age. His life 
was not happy one because his new mathematical concepts 
were not got liking by anyone during his brief lifetime and 
he faced rejection everywhere. His theory is one of the 
revolutionary concepts of mathematics, but his theory was 
neither accepted nor noticed during his brief life time. So, 
his struggleful life always motivates us for studying Galois 
theory. 
 
Inverse Galois problem (Jensen et al., 2002) (IGP) asks us 
that whether every finite group is realizable as Galois group 
over the field K. On another word, it asks us that if there 

exists Galois extension 𝑁  over 𝐾 such that a finite group 

T is isomorphic to the Galois group 𝐺𝑎(𝑁:𝐾). It is the 
question on structural and representation of Galois group 
and question on its epimorphic images. So, it is called as 
inverse Galois problem. If we take field K as field of 
rational number, then IGP is called as classical inverse 
Galois problem (CIGP). The classical inverse Galois 

problem developed early in 19𝑡ℎ century during studying 
polynomials and roots. 
 

(Handlock, 1978; Jensen et al., 2002) Hilbert began 
systematic study of CIGP and he presented it early in 19th 
century. It still remains to solve but some of its partial 
results have been derived. Hilbert firstly stated Hilbert 
irreducibility theorem and proved it in 1892 A.D. He used 
this theorem to prove CIGP for all symmetric groups and 
alternating groups. Thus, he solved classical inverse Galois 
problem for symmetric groups and alternating groups in 
1892 A.D by using of Hilbert irreducibility theorem. 
 
 Kronecker firstly stated Kronecker-Weber theorem in 
1853 A.D (Washington, 1982). But his proof was 
incomplete. In 1886 A.D, Weber proved this theorem, but 
his proof had also some gap. In 1896 A.D, Hilbert proved 
Kronecker-Weber Theorem. Hence, he proved CIGP for 
all finite abelian groups. 
 
Shafarevich’s theorem (Shafarevich, 1954; Shafarevich, 
1989) states that every finite solvable group is realizable as 

Galois group over ℚ. Shafarevich proved this theorem in 
1954 A.D. But Alexander Schmidt pointed out a gap in his 
proof which was fixed by Shafarevich in 1989 AD. Hence, 
he solved classical inverse Galois problem for all finite 
solvable groups. So, mathematicians started to look over 
CIGP for finite non-solvable groups where they got 
positive answer of CIGP for particularly many non-
solvable groups such as Am, m>4 and Sm, m > 4, Sporadic 
groups etc. but it remains to know the answer of this CIGP 
for many finite non-solvable groups such as Mathieu group 

𝑀23. 
 
MATERIALS AND METHODS 
Definition 1 (Gallian, 2015) A group T is said to be 

solvable if T has a series of the subgroups of T i.e. {ℯ} = 
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𝑇0 ⊂ 𝑇1 ⊂ 𝑇2 ⊂ 𝑇3 ⊂ 𝑇4 ⊂ . . . ⊂  𝑇𝑚 such that each 𝑇𝑖 is 

normal subgroup of 𝑇𝑖+1 and 
𝑇𝑖+1

𝑇𝑖
 is abelian for 0≤ 𝑖 ≤ 𝑚. 

 

Definition 2 (Gallian, 2015) Let 𝑚 be a positive integer 

and for 𝑖=1, 2… 𝑘,  𝑠𝑖  (𝑠𝑖 < 𝑚) is a positive integer which 

is relatively prime to 𝑚. A cyclotomic polynomial 𝜚𝑚(𝑡) 
of degree 𝑘 is defined by 

𝜚𝑚(𝑡) =∏(𝑡 − 𝜅𝑠𝑖

𝑘

𝑖=1

) 

Where 𝜅 = 𝑒
2𝜋𝑖

𝑚  
 

Theorem 3 (Gallian, 2015) Let  𝑦(𝑡) ∈  𝕀[𝑡]. If 𝑦(𝑡) be an 

irreducible over 𝕀 then 𝑦(𝑡) be an irreducible over ℚ.  
 

Theorem 4 (Gallian, 2015) Let 𝜚𝑚(𝑡) be any cyclotomic 

polynomial. Then 𝜚𝑚(𝑡) is irreducible over 𝕀. 
 

Theorem 5 (Gallian, 2015) Let 𝑇 be an abelian group of 

order 𝑚. If 𝑑 divide integer 𝑚 then there exists subgroup 

of order 𝑑. 
 

Theorem 6 (Neukirch, 1999) For every positive integer 𝑚, 

there exits infinitely many primes 𝑞 such that 𝑞 ≡
1 𝑚𝑜𝑑  𝑚. 
 

Definition 7 (Gallian, 2015) Suppose 𝑋 be a set of 𝑚 
distinct objects. Now, the set of all bijective mappings 
defined on the set X forms a group under composition of 

mapping operation (𝑜). This group is called as finite 

symmetric group of order 𝑚!. It is denoted 𝑆𝑚 . 
 
Definition 8 (Gallian, 2015) The set of all even 

permutation 𝜎 ∈  𝑆𝑚 forms a group under same binary 

operation as defined in 𝑆𝑚 . This group is called as 

alternating group. It is denoted by 𝐴𝑚. Its order is 
𝑚!

2
. 

 
Definition 9 (Bhattacharya et al.,1994) The function 
𝑥(𝑠1,𝑠2,…,𝑠𝑚)

𝑦(𝑠1,𝑠2,…,𝑠𝑚)
 is called as symmetric function of 

indeterminates 𝑠1,𝑠2,…,𝑠𝑚 over K if for all 𝜎 ∈  𝑆𝑚 , there 

is K-automorphism mapping 𝜎̅ : 𝐾(𝑠1,𝑠2,…,𝑠𝑚) →

𝐾(𝑠1,𝑠2,…,𝑠𝑚), 𝜎̅  ∈  𝑆̅𝑚 such that 

 

𝜎̅ (
𝑥(𝑠1,𝑠2,…,𝑠𝑚)

𝑦(𝑠1,𝑠2,…,𝑠𝑚)
) =  

𝑥(𝑠𝜎(1),𝑠𝜎(2),…,𝑠𝜎(1))

𝑦(𝑠𝜎(1),𝑠𝜎(2),…,𝑠𝜎(1))
   =

𝑥(𝑠1,𝑠2,…,𝑠𝑚)

𝑦(𝑠1,𝑠2,…,𝑠𝑚)
 

 

Definition 10 (Bhattacharya et al.,1994) Suppose 𝑐𝑖 be the 

coefficient of term 𝑡𝑚−𝑖  in the polynomial  

𝑥(𝑡) =∏(𝑡 − 𝑠𝑖

𝑘

𝑖=1

). 

Now, (−1)𝑖𝑐𝑖  is called as elementary symmetric function 

of indeterminates 𝑠1,𝑠2,…,𝑠𝑚. It is denoted by 𝑙𝑖 and given 

by 𝑙1 = 𝑠1 + 𝑠2 +⋯+ 𝑠𝑚 ,  𝑙2 = 𝑠1𝑠2 +⋯+ 𝑠𝑚−1𝑠𝑚 ,
… ,  𝑙𝑚 = 𝑠1…𝑠𝑚−1𝑠𝑚 . 
 

Theorem 11 (Bhattacharya et al., 1994) Let 𝑥(𝑡) be a 
polynomial of some finite degree over field K having m 

distinct roots in the splitting field N. Then, 𝐺𝑎(𝑁:𝐾) is 
isomorphic to the subgroup of 𝑆𝑚 .  
 

Theorem 12 (Bhattacharya et al.,1994) 𝑥(𝑡) is separable 
and irreducible polynomial of degree m over K if and only 
if Galois group of this polynomial over K is isomorphic to 

transitive subgroup of 𝑆𝑚 . 
 
Theorem 13 (Handlock, 1978; Jensen et al., 2002) Let K 

be the finite extension field of Q. Suppose 𝑥(𝑡, 𝑙) ∈
𝐾(𝑙)[𝑡] = 𝐸(𝑡) is an irreducible polynomial, with 

indeterminates 𝑙 = (𝑡1, … , 𝑡𝑚). Let 𝑁 be the splitting field 

for polynomial 𝑥(𝑡, 𝑙) over 𝐾(𝑙) then there exist infinitely 

many 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑚  ) ∈ 𝐾
𝑚 such that the 

specialization 𝑥(𝑡, 𝑎) ∈ 𝐾[𝑡] is well defined and 

irreducible over K, and can be chosen so that 𝐺𝑎(𝑁: 𝐸) ≅
𝐺𝑎(𝑁′: 𝐾), where 𝑁′  is the splitting field extension for 

𝑥(𝑡, 𝑎) ∈ 𝐾[𝑡] . This theorem is known as Hilbert 
irreducibility theorem. 
 
Definition 14 (Jensen et al., 2002) Suppose that a 

polynomial over field 𝐾 is  𝑥(𝑡) = 𝑎𝑚𝑡
𝑚 +

𝑎𝑚−1𝑡
𝑚−1         +⋯+ 𝑎0 and 𝑥′(𝑡) = 𝑚𝑎𝑚𝑡

𝑚−1 +⋯+
𝑎1 is the derivative of the given polynomial, then 

discriminant of polynomial 𝑥(𝑡) is given by  

            𝑑𝑖𝑠𝑐(𝑥(𝑡)) =
(−1)

𝑚(𝑚−1)

2

𝑎𝑚
𝑅𝑒𝑠(𝑥(𝑡), 𝑥′(𝑡)) 

where 𝑅𝑒𝑠(𝑥(𝑡), 𝑥′(𝑡)) is resultant of  𝑥(𝑡) and 𝑥′(𝑡) 
which is obtained by finding the determinant of Sylvester 

matrix 𝑆𝑦𝑙 = 

(

 
 
 
 
 
 

𝑎𝑚 𝑎𝑚−1 ⋯ 𝑎2 𝑎2 𝑎0 0 ⋯ 0 0
0 𝑎𝑚 ⋯ 𝑎3 𝑎2 𝑎1 𝑎0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑎𝑚 𝑎𝑚−1 𝑎𝑚−2 𝑎𝑚−3 ⋯ 𝑎1 𝑎0

𝑚𝑎𝑚 (𝑚 − 1)𝑎𝑚−1 ⋯ 2𝑎2 𝑎1 0 0 ⋯ 0 0
0 𝑚𝑎𝑚 ⋯ 3𝑎3 2𝑎2 𝑎1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑚𝑎𝑚 (𝑚 − 1)𝑎𝑚−1 (𝑚 − 2)𝑎𝑚−2 (𝑚 − 3)𝑎𝑚−3 ⋯ 𝑎1 0

0 0 ⋯ 0 𝑚𝑎𝑚 (𝑚 − 1)𝑎𝑚−1 (𝑚 − 2)𝑎𝑚−2 ⋯ 𝑎2 𝑎1)

 
 
 
 
 
 

     

 

Theorem 15 (Jensen et al., (2002)) Suppose 𝑥(𝑡) ∈ 𝐾(𝑡) 
sparable polynomial over its splitting field 𝑁  and degree 

of polynomial 𝑥(𝑡) is 𝑚 then 𝐺𝑎(𝑁:𝐾) is the subgroup 

of 𝐴𝑚 iff discriminant of polynomial 𝑥(𝑡) is perfect square 

is 𝐾. 
 
Fundamental Theorem of Galois Theory 16 (Gallian, 

2015) Let us suppose  𝐾 be a field with characteristics 0 or 

a finite field. If 𝑁 be the splitting field for some polynomial 

𝑥(𝑡) ∈ 𝐾[𝑡]. Then the mapping from the set of subfields 

of 𝑁 containing 𝐾 to set of subgroups of 𝐺𝑎(𝑁:𝐾) is 
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given by  𝑀 → 𝐺𝑎𝑙(𝑁:𝑀) is one to one correspondence. 

For any subfield 𝑀 of 𝑁 containing 𝐾, 
a) [𝑁:𝑀] = |𝐺𝑎(𝑁:𝑀)| and [𝑀:𝐾] = |𝐺𝑎(𝑀:𝐾)| 
b) If 𝑀 is the splitting field of some polynomial over K, 

then 𝐺𝑎(𝑁:𝑀) is normal subgroup of 𝐺𝑎(𝑁:𝐾) and 

𝐺𝑎(𝑀:𝐾) is isomorphic to 
𝐺𝑎(𝑁:𝐾)

𝐺𝑎(𝑁:𝑀)
. 

c) 𝑀 = 𝑁𝐺𝑎(𝑁:𝑀). 

d) If S is the subgroup of𝐺𝑎(𝑁:𝐾) then 𝑆 = 𝐺𝑎(𝑁:𝑁𝑠). 
 

Theorem 17 (Gallian, 2015) Every finite group T is 

isomorphic to the subgroup of symmetric group 𝑆𝑚 .  
 
Definition 18 (Griess, 1998) A finite non-abelian simple 
sporadic group of order 10200960 acts transitively on set 

of 23 objects is called 𝑀23. 
 

Lemma 19 (Gallian, 2015)  𝐺𝑎(𝜚(t)/ℚ) ≅ 𝕀𝑚
× . 

 
RESULTS 
Theorem 20 Every group of prime order is realizable as 
Galois group over the field of rational number. 
  

Proof: Suppose 𝑇 be a group of prime order p. Suppose 

𝑎 ∈ 𝑇. By Lagrange theorem, |𝑎| divides |𝑇|. So, |𝑎| must 
be either 1 or p. We suppose that a is not identity element. 

So, |𝑎| = 𝑝. Hence, 𝑇 is a cyclic group. So, 𝑇 ≅ 𝕀𝑝. Since 

p is integer. By theorem 6, there exists prime q such that 

𝑞 − 1 = 𝑝 ×𝑚. Suppose 𝜅 be the primitive 𝑞𝑡ℎ root of 

unity. By theorem 19, Galois group of 𝜚𝑞(𝑡) over ℚ is 

𝐺𝑎(ℚ(𝜅):ℚ) ≅  𝕀𝑞
×. Since 𝑞 − 1 = 𝑝 ×𝑚. By theorem 5, 

there exists a subgroup S of order m of abelian group 

𝐺𝑎(ℚ(𝜅):ℚ) ≅  𝕀𝑞
×. By fundamental theorem of Galois 

theory, there exists an intermediate field L such that 

𝐺𝑎(𝐿:ℚ) ≅
𝐺𝑎(ℚ(𝜅):ℚ)

𝑆
 which is cyclic group of order p. 

Hence 𝐺𝑎(𝐿:ℚ) ≅ 𝕀𝑝 ≅ 𝑇. 

 
Theorem 21 (Washington, 1982) Every finite abelian 

group 𝑇 is realizable as Galois group over the field of 
rational number. 
 

Proof: Suppose 𝑇 be a finite abelian group of order 𝑚. By 

fundamental theorem of finite abelian group,  𝑇 ≅
𝐶𝑚1 × 𝐶𝑚2 ×…× 𝐶𝑚𝑘 and 𝑚 = 𝑚1𝑚2…𝑚𝑘. By 

theorem 6, for each 𝑚𝑖 , there exits distinct prime 𝑞𝑖 such 

that 𝑞𝑖 − 1 = 𝑚𝑖 × 𝑑𝑖 . We know that 𝕀𝑞𝑖
×   is the cyclic 

group of order 𝑞𝑖 − 1. Here 𝑑𝑖 divides 𝑞𝑖 − 1 . By 

theorem 5, there exists subgroup 𝑇𝑖  of order 𝑑𝑖 of 𝕀𝑞𝑖
× .  

Hence 
𝕀𝑞𝑖
×

𝑇𝑖
≅ 𝐶𝑚𝑖 .  

 

Suppose 𝜅𝑖 be the primitive 𝑞𝑖
𝑡ℎ of unity and set 𝜅 =

𝜅1𝜅2…𝜅𝑘 then it is primitive (𝑞1 𝑞2…𝑞𝑘)
𝑡ℎ root of 

unity. By theorem 19 , 𝐺𝑎(ℚ(𝜅):ℚ) ≅ 𝕀𝑞
×. By 

Chinese remainder theorem, 𝕀𝑚 = 𝕀𝑚1𝑚2…𝑚𝑘 ≅

𝕀𝑚1 × 𝕀𝑚2 ×…× 𝕀𝑚𝑘 which implies that 𝕀𝑚
× ≅

(𝕀𝑚1 × 𝕀𝑚2 ×…× 𝕀𝑚𝑘)
×
≅ 𝕀𝑚1

× × 𝕀𝑚2  
× × …× 𝕀𝑚𝑘

× . 

So, we get that    𝐺𝑎(ℚ(𝜅):ℚ) ≅ 𝕀𝑞1
× × 𝕀𝑞2  

× ×

…× 𝕀𝑞𝑘
× .   𝐺𝑎(ℚ(𝜅):ℚ) ≅ 𝕀𝑞1

× × 𝕀𝑞2  
× ×…× 𝕀𝑞𝑘

×  is 

abelian group of order (𝑞1 − 1)(𝑞2 − 1)…(𝑞𝑘 − 1) . 
Here 𝑚𝑑 = (𝑞1 − 1)(𝑞2 − 1)… (𝑞𝑘 − 1) where we 

have  𝑑1 𝑑2…𝑑𝑘 = 𝑑,𝑚1𝑚2…𝑚𝑘 = 𝑚  and 𝑚𝑖𝑑𝑖 =
𝑞𝑖 − 1 for each 𝑖.  By theorem 5, there exists subgroup 

S of order d of 𝐺𝑎(ℚ(𝜅):ℚ)  and by fundamental 
theorem of Galois theory, there exits fixed field N such 

that 𝐺𝑎(𝑁:ℚ) ≅
𝐺𝑎(ℚ(𝜅):ℚ)

𝑆
. Here, we 

have 𝐺𝑎(ℚ(𝜅):ℚ) ≅ 𝕀𝑞1
× × 𝕀𝑞2  

× ×…× 𝕀𝑞𝑘
×  and 𝑆 is 

the normal subgroup of  𝐺𝑎(ℚ(𝜅):ℚ). So, there exists 

normal subgroup 𝑇1 × 𝑇2 ×…× 𝑇𝑘 of  𝕀𝑞1
× × 𝕀𝑞2  

× ×

…× 𝕀𝑞𝑘
×  such that  𝑇1 × 𝑇2 ×…× 𝑇𝑘 ≅ 𝑆 and each 𝑇𝑖 

is normal subgroup of abelian group 𝕀𝑞𝑖
× . Now, 

𝐺𝑎(𝑁:ℚ) ≅
𝐺𝑎(ℚ(𝜅):ℚ)

𝑆
≅
 𝕀𝑞1
× ×𝕀𝑞2  

× ×…×𝕀𝑞𝑘 
×

𝑇1×𝑇2×…×𝑇𝑘 
 ≅

𝕀𝑞1
×

𝑇1
×

𝕀  𝑞2
×

𝑇2
×…×

𝕀𝑞𝑘
×

𝑇𝑘
≅ 𝐶𝑚1 × 𝐶𝑚2 ×…× 𝐶𝑚𝑘 ≅ 𝑇. 

 
Proposition 22 It is false that Galois group of every 

polynomial 𝑦(𝑡) ∈ ℚ[𝑡] over ℚ is abelian group. 
Proof: Yes, it is false that Galois group of every 

polynomial over ℚ is abelian because there exists some 

polynomial over ℚ whose Galois group over ℚ is non-
abelian. For example, the Galois group of polynomial 

 𝑦(𝑡) = 𝑡4 + 5 over ℚ is 𝐺𝑎(ℚ(20
1

4, 𝜄): ℚ) ≅ 𝐷8 . Since 

𝐷8 is not abelian. So, Galois group of 𝑦(𝑡) = 𝑡4 + 5 over 

ℚ is not abelian. Thus, there exists non-abelian Galois 

group 𝐺𝑎(ℚ(20
1

2):ℚ) ≅ 𝐷8. So, it false that Galois 

group of every polynomial over ℚ is abelian group. 
 
Theorem 23 (Shafarevich, 1954) All finite solvable 
groups are realizable as Galois group over the field of 
rational number. 
 
Verification: Let’s separate all solvable groups into 
abelian groups and non-abelian solvable groups. By 
theorem 21, all abelian groups appear as Galois group 
over the field of rational number. Now, we have to 
show that all non-abelian solvable groups appear as 
Galois group over the field of rational number. But 
here we just verify this theorem for only some non-

abelian solvable groups 𝐷8 and 𝑆3.  𝑆3 is nonabelian 

but it is solvable group because we have 𝑆3 ⊂ 𝐴3 ⊂
{𝑒}, where each composition factor is abelian. Let us 

take the polynomial 𝑥(𝑡) = 𝑡3 + 2𝑡 + 2. By 
Eisenstein’s criterion of irreducibility of polynomial, 

𝑥(𝑡) = 𝑡3 + 2𝑡 + 2 is irreducible polynomial over ℚ. 

𝑥′(𝑡) = 3𝑡2 + 2 and its roots are ±
𝜄√2

√3 
  which are not 
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roots of polynomial 𝑥(𝑡). So, it is separable polynomial 
of degree 3. By theorem 12, the Galois group of this 
polynomial over the field of rational number is 

isomorphic to transitive subgroup of 𝑆3. The transitive 

subgroup of 𝑆3 is either 𝐴3 or 𝑆3. Here, discriminant 
of this polynomial is 140 which is not perfect square in 

ℚ . So, Galois group of this polynomial 𝑥(𝑡) = 𝑡3 +
2𝑡 + 2 over  ℚ is isomorphic to 𝑆3, otherwise it 
contradicts theorem 15.  
 

Again, 𝐷8 is nonabelian. But it is solvable group 

because we have 𝐷8 ⊂ 𝑉4 ⊂ {𝑒} where each 

composition factor  
𝐷8

𝑉4
≅ 𝕀2 and 

𝑉4

{𝑒}
≅ 𝑉4  are abelian 

group. The Galois group of polynomial 𝑦(𝑡) = 𝑡4 + 5 

over ℚ is 𝐺𝑎(ℚ(2
1

4, 𝜄)) ≅ 𝐷8.  
 
Proposition 24 It is false that Galois group of every 

polynomial over ℚ is solvable group. 
 
Proof: To prove this, we have to show that there exists 

at least one polynomial over ℚ whose Galois group 

over ℚ  is non-solvable group. 𝑆7 is non- solvable 
group because there is normal series of subgroups of 

𝑆7 i.e., 𝑆7 ⊂ 𝐴7 ⊂ {𝑒}, where composite factor 
𝐴7

{𝑒}
≅

𝐴7 is not abelian.  𝑆7 is realizable as Galois group over 

ℚ because the Galois group [see in details in 

(Bhattacharya et al., 1994)] of polynomial 𝑥(𝑡) = 𝑡7 −
10𝑡5 + 15𝑡 + 5 over ℚ is isomorphic to 𝑆7 which is 
not solvable group. Here exists non-solvable Galois 
group over the field of rational number. Thus, Galois 

group of some polynomials over ℚ are not solvable but 

all solvable are realizable as Galois group over ℚ. 
 
Theorem 25 (Bhattacharya et al., 1994; Handlock, 
1978) Every finite symmetric group is realizable as 
Galois group over the field of rational number. 
 

Proof: Let us construct 𝑥(𝑡, 𝑙) = ∏ (𝑡 − 𝑠𝑖   )
𝑚
𝑖=1 , 

where 𝑙 = (𝑙1, 𝑙2, … , 𝑙𝑚) be the elementary symmetric 

function in 𝑠1, 𝑠2, … , 𝑠𝑚   over ℚ . Suppose that 𝐿 be 

the set of all symmetric function of 𝑠1, 𝑠2, … , 𝑠𝑚  over 

ℚ and 𝐸 be the field of rational function which is 

generated by 𝑙1, 𝑙2, … , 𝑙𝑚 over ℚ . All elementary 

symmetric functions 𝑙𝑖 ∈ 𝐿. So, we get 𝐸 ⊂ 𝐿. Suppose 

𝑁 be the splitting field of polynomial 𝑥(𝑡, 𝑙) over 𝐸. 

Here, 𝑁 is separable, normal and finite extension over 

𝐸. So, 𝑁 is Galois extension field over 𝐸. By 

fundamental theorem of Galois theory, |𝐺𝑎(𝑁: 𝐸)| =
[𝑁: 𝐸]. By the definition of symmetric function, 𝐿 is 

fixed field of group 𝑆̅𝑚 where 𝑆̅𝑚is the group of ℚ-

automorphism mappings defined on 𝑁. So, [𝑁: 𝐿] ≥
|𝑆̅𝑚| = 𝑚!. But we have [𝑁: 𝐸] ≤ 𝑚! and 𝐸 ⊂ 𝐿. So, 

we get 𝐸 = 𝐿 and [𝑁: 𝐸] = 𝑚!. Hence, we get 

|𝐺𝑎(𝑁: 𝐸)| = [𝑁: 𝐸] = 𝑚!. By theorem 11,  

𝐺𝑎(𝑁: 𝐸) is isomorphic to the subgroup of 𝑆𝑚 . But we 

find that |𝐺𝑎(𝑁: 𝐸)| = 𝑚!. So, we get 𝐺𝑎(𝑁: 𝐸) ≅
𝑆𝑚 . We know that 𝑆𝑚 is transitive subgroup of 𝑆𝑚 . So, 

𝑥(𝑡, 𝑙) is irreducible polynomial over 𝐸. By Hilbert 

irreducibility theorem, there exists 𝑎 ∈ ℚ𝑚  and 

irreducible polynomial 𝑥(𝑡, 𝑎) ∈ ℚ(𝑡) such that 

𝐺𝑎(𝑁: 𝐸) ≅ 𝐺𝑎(𝑁′: ℚ) where 𝑁′ is the splitting field 

of 𝑥(𝑡, 𝑎) over ℚ. Hence, 𝐺𝑎(𝑁′: ℚ) ≅ 𝑆𝑚 . 
 
Proposition 26 (Jensen et al., 2002) The discriminant 

of polynomial 𝑥(𝑡) = 𝑡𝑚 + 𝑎𝑡 + 𝑎  over ℚ  is 

(−1)
𝑚(𝑚−1)

2 𝑎𝑚−1(𝑎(1 − 𝑚)𝑚−1 +𝑚𝑚). 
 

Proof: we have 𝑥(𝑡) = 𝑡𝑚 + 𝑎𝑡 + 𝑎 and 𝑥′(𝑡) =
𝑚𝑡𝑚−1 + 𝑎. By definition 14, the discriminant of 𝑥(𝑡) 

is given by (−1)
𝑚(𝑚−1)

2 det(𝑠𝑦𝑙), where we have 

𝑆𝑦𝑙 =

(

 
 
 
 
 
 

1 0 ⋯ 0 𝑎 𝑎 0 ⋯ 0 0
0 1 ⋯ 0 0 𝑎 𝑎 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0 0 0 ⋯ 𝑎 𝑎
𝑚 0 ⋯ 0 𝑎 0 0 ⋯ 0 0
0 𝑚 ⋯ 0 0 𝑎 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑚 0 0 0 ⋯ 𝑎 0
0 0 ⋯ 0 𝑚 0 0 ⋯ 0 𝑎

 

)

 
 
 
 
 
 

   

Here, we find the determinant of this matrix 𝑆𝑦𝑙.  
At first step, we apply 𝐶𝑚 ← 𝐶𝑚 − 𝑎𝐶1 and 𝐶𝑚+1 ←
𝐶𝑚+1 − 𝑎𝐶1 on determinant matrix of 𝑆𝑦𝑙. So, we get 

det(𝑆𝑦𝑙) =

|

|

|

1 0 ⋯ 0 0 0 0 ⋯ 0 0
0 1 ⋯ 0 0 𝑎 𝑎 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0 0 0 ⋯ 𝑎 𝑎
𝑚 0 ⋯ 0 𝑎 −𝑚𝑎 −𝑚𝑎 0 ⋯ 0 0
0 𝑚 ⋯ 0 0 𝑎 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑚 0 0 0 ⋯ 𝑎 0
0 0 ⋯ 0 𝑚 0 0 ⋯ 0 𝑎

|

|

|

  

 

then we expand it along 𝑅1. So, we get 
 

det (𝑆𝑦𝑙) =

|

|

|

1 ⋯ 0 0 𝑎 𝑎 ⋯ 0 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 1 0 0 0 ⋯ 𝑎 𝑎
0 ⋯ 0 𝑎 −𝑚𝑎 −𝑚𝑎 0 ⋯ 0 0
𝑚 ⋯ 0 0 𝑎 0 ⋯ 0 0
⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 𝑚 0 0 0 ⋯ 𝑎 0
0 ⋯ 0 𝑚 0 0 ⋯ 0 𝑎

|

|

|

 

 

We do this same process up to (𝑚 − 1)𝑡ℎstep as we 

did at first step. Now, we get that det(𝑆𝑦𝑙) = 
 

|
|

𝑎 − 𝑚𝑎 −𝑚𝑎 0 … 0 0
0 𝑎 − 𝑚𝑎 −𝑚𝑎 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 𝑎 − 𝑎𝑚 −𝑎𝑚
𝑚 0 0 … 0 𝑎

|
|  

 

We expand it along 𝐶1. So, we get 
 

det(𝑆𝑦𝑙) = (𝑎 − 𝑎𝑚) |

𝑎 − 𝑎𝑚 −𝑚𝑎 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 𝑎 − 𝑎𝑚 −𝑎𝑚
0 0 … 0 𝑎

|

+  m(−1)𝑚+1 |

𝑎 − 𝑎𝑚 −𝑚𝑎 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 𝑎 − 𝑎𝑚 −𝑎𝑚
0 0 … 0 𝑎

| 
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 det(𝑠𝑦𝑙) = 𝑎(𝑎 − 𝑎𝑚)𝑚−1 + (−1)𝑚+1𝑚(−𝑎𝑚)𝑚−1 =
𝑎𝑚−1(𝑎(1 −𝑚)𝑚−1 +𝑚𝑚)  

 By definition 14,  disc(x(t)) = (−1)
m(m−1)

2 𝑎𝑚−1(𝑎(1 −

𝑚)𝑚−1 +𝑚𝑚) . 
Theorem 27 (Jensen et al., 2002) All alternating group are 

realizable as a Galois group over  ℚ. 
 

Proof: The Galois group of a polynomial 𝑥(𝑡, 𝑙) = 𝑡𝑚 +
𝑙𝑡 + 𝑙 over ℚ(𝑙) is isomorphic to 𝑆𝑚  [its proof is in 

(Jensen et al., 2002)]. Suppose 𝑁 be the splitting field of 

this polynomial over ℚ(𝑙). By proposition 26, the 

discriminant of 𝑥(𝑡, 𝑙) is (−1)
m(m−1)

2 𝑙𝑚−1(𝑙(1 −
𝑚)𝑚−1 +𝑚𝑚) .   
 

When m is a positive odd number, √𝑑𝑖𝑠𝑐(𝑥(𝑡, 𝑙)) =

𝑙
𝑚−1

2   √(−1)
𝑚(𝑚−1)

2 (𝑙(1 −𝑚)𝑚−1 +𝑚𝑚) and  𝑙
𝑚−1

2  ∈

ℚ(𝑙) but 𝑤 = √(−1)
𝑚(𝑚−1)

2 (𝑙(1 − 𝑚)𝑚−1 +𝑚𝑚)

ℚ(𝑙).  ℚ(𝑙)(𝑤) = ℚ(𝑤).  
 

Now, put 𝑙 =
(−1)

𝑚(𝑚−1)
2 𝑤2−𝑚𝑚

(1−𝑚)𝑚−1
 in 𝑥(𝑡, 𝑙).  

 

Thus, we get a polynomial 𝑥0(𝑡, 𝑤) = 𝑡
𝑚 +

((−1)
𝑚(1−𝑚)

2 𝑤2−𝑚𝑚)

(1−𝑚)𝑚−1
 (𝑡 + 1)    over ℚ(𝑙).  

 
Now, discriminant of this polynomial is perfect square in 

ℚ(𝑤). By theorem 15, 𝐺𝑎(𝑁:ℚ(𝑤)) is isomorphic to the 

subgroup of 𝐴𝑚. We have |𝐺𝑎(𝑁:ℚ(𝑙))| = 𝑚! and 

|𝐺𝑎(ℚ(𝑤):ℚ(𝑙))|=2. By fundamental theorem of Galois 

theory, we get |𝐺𝑎(𝑁:ℚ(𝑤))| =
𝑚!

2
= |𝐴𝑚|. Hence, 

𝐺𝑎(𝑁:ℚ(𝑤)) ≅ 𝐴𝑚 . By Hilbert irreducibility theorem, 

there exists 𝑐 ∈ ℚ such that Galois group 𝐺𝑎(𝑁𝑜:ℚ) of 

irreducible polynomial 𝑥𝑜(𝑡, 𝑐) over ℚ  is isomorphic to 

𝐴𝑚 . 

When 𝑚 is positive even number, √𝑑𝑖𝑠𝑐(𝑥(𝑡, 𝑙)) =

𝑙
𝑚

2   √(−1)
𝑚(𝑚−1)

2 ((1 − 𝑚)𝑚−1 +
𝑚𝑚

𝑙
) and 𝑙

𝑚

2 ∈ ℚ(𝑙) but  𝑢 =

√(−1)
𝑚(𝑚−1)

2 ((1 − 𝑚)𝑚−1 +
𝑚𝑚

𝑙
)ℚ(𝑙).  

 

Now,  ℚ(𝑙)(𝑢) = ℚ(𝑢). Put 𝑙 =
𝑚𝑚

(−1)
𝑚(1−𝑚)

2 𝑢2−(1−𝑚)𝑚−1
  in 𝑥(𝑡, 𝑙)   

 

then 𝑥𝑒(𝑡, 𝑢) = 𝑡
𝑚 +

𝑚𝑚

(−1)
𝑚(1−𝑚)

2 𝑢2−(1−𝑚)𝑚−1
(𝑡 + 1) is a 

polynomial over ℚ(𝑢). The discriminant of this 

polynomial is perfect square in ℚ(𝑢). By theorem 15, its 

Galois group 𝐺𝑎(𝑁:ℚ(𝑢)) is isomorphic to  the subgroup 

of 𝐴𝑚. We have |𝐺𝑎(𝑁:ℚ(𝑙))| = 𝑚! and 

|𝐺𝑎(ℚ(𝑢):ℚ(𝑙))|=2. By fundamental theorem of Galois 

theory, we get |𝐺𝑎(𝑁:ℚ(𝑢))| =
𝑚!

2
= |𝐴𝑚|. Hence, 

𝐺𝑎(𝑁:ℚ(𝑢)) ≅ 𝐴𝑚 . By Hilbert irreducibility theorem, 

there exists 𝑎 ∈ ℚ such that Galois group 𝐺𝑎(𝑁𝑒:ℚ) of 

irreducible polynomial 𝑥𝑒(𝑡, 𝑎) over ℚ  is isomorphic to 

𝐴𝑚 . 
 
Hence, every alternating group is realizable as Galois group 
over the field of rational number. 
 

Statement 28:  All subgroups of order 𝑚 of symmetric 

group (𝑆𝑚) for all 𝑚 are realizable as Galois group over the 
field of rational number. 
 
Verification: For m=1, it is trivially true. 

For m=2, subgroup of order 2 of 𝑆2 is cyclic group of 

order two. The Galois group of Galois extension ℚ(2
1

2) 

over ℚ i.e., 𝐺𝑎(ℚ(2
1

2): ℚ) is isomorphic to cyclic group 
of order 2. It is true for m=2.  
 
For m=3, subgroup (having order 3) of symmetric group 

𝑆3 is only one 𝐴3. Let us take polynomial 𝑥1(𝑡) = 𝑡
3 −

3𝑡 + 1 over ℚ. By rational root test, its possible rational 

roots are ±1. But both are not roots of 𝑥1(𝑡). So, it has 
not rational root and it is the polynomial of degree 3. So, 

we get that this polynomial is irreducible over ℚ. This 
polynomial and its first derivative have not any common 
root. So, it is separable polynomial. The discriminant of 

this polynomial is 81 which is perfect square in ℚ.  By 

theorem 12 and theorem 15, its Galois group over ℚ  is 

isomorphic to 𝐴3. Thus, it is true for m=3.  
 

For 𝑚 = 4,  subgroups of order 4 of symmetric group (𝑆4) 
are following 
 

• {(1), (12)(34), (13)(24), (14)(23)} ≅ 𝑉4 is 
transitive subgroup of 𝑆4. 

• {(1), (12), (34), (12)(34)} ≅ 𝑉4,   
{(1), (13), (24), (13)(24)} ≅ 𝑉4 and 

 {(1), (14), (23), (14)(23)} ≅ 𝑉4 are non-

transitive subgroup of 𝑆4. 

• {(1), (1234), (1432), (13)(24)} ≅ 𝕀4, 
{(1), (1243), (1342), (14)(23)} ≅ 𝕀4 and 
{(1), (1324), (1423), (12)(34)} ≅ 𝕀4are 

transitive subgroup of 𝑆4. 
 

Let us take polynomial 𝑥2(𝑡) = 𝑡
4 − 3𝑡2 + 4 over ℚ. 

𝑥2(𝑡) = 𝑡
4 − 3𝑡2 + 4 = (𝑡2 +√7𝑡 + 2  )(𝑡2 −√7𝑡 +

2) = (𝑡 + (
√7

2
+
𝜄

2
))(𝑡 + (

√7

2
−
𝜄

2
))(𝑡 − (

√7

2
+
𝜄

2
))(𝑡 −

(
√7

2
−
𝜄

2
)). From this, we find that this polynomial is 
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separable and irreducible polynomial over ℚ, and its 

splitting field over ℚ is ℚ(√7, 𝜄). We can define only four 

ℚ-automorphism mappings on  ℚ(√7, 𝜄)i.e.,  

 

𝜎: √7 → √7, 

         𝜄 → −𝜄   

𝜏: √7 → −√7,  

        𝜄 → 𝜄      

𝜎 ∘ 𝜏: √7 → −√7  

              𝜄 → −𝜄 

 And  𝑖𝑑: √7 →  √7. 

                    𝜄 → 𝜄                                        
 

The Galois group 𝐺𝑎(ℚ(√7, 𝜄):ℚ) = {𝜎, 𝜏, 𝜎 ∘ 𝜏, 𝑖𝑑} is 

isomorphic to 𝑉4. By theorem 12, this Galois group over 

ℚ is isomorphic to transitive subgroup 𝑉4  of 𝑆4. Let us 

take next another polynomial 𝑥3(𝑡) = 𝑡
4 − 3𝑡2 + 4 =

(𝑡2 − 2)(𝑡2 − 3) over ℚ.  This polynomial is reducible 

polynomial and separable over ℚ. The splitting field of this 

polynomial over ℚ is ℚ(√2,√3). Here, we can define 4 

ℚ-automorphism mappings on ℚ(√2,√3) , and they are 

following 
 

𝜎′:√2 → √2,  

     √3 → −√3      

𝜏′: √2 → −√2 , 

    √3 → √3 

 𝜎′ ∘ 𝜏′:√2 →  −√2 and 𝑖𝑑′:√2 → √2 .      

              √3 → √3                  √3 → √3 
 
By theorem 12 and 11, the Galois group of this polynomial 

𝐺𝑎(ℚ(√2,√3):ℚ) is isomorphic to non-transitive 

subgroup of 𝑆4 and 𝐺𝑎(ℚ(√2,√3):ℚ) = {𝑖𝑑′,

𝜎′, 𝜏′ , 𝜎′ ∘ 𝜏′} ≅ 𝑉4 . Again, take another polynomial 

𝑥4(𝑡) = 𝑡
4 + 4𝑡2 + 2. By Eisenstein’s criterion of 

irreducibility of polynomial, this polynomial is an 

irreducible polynomial over ℚ. This polynomial and its 
first derivative have not any common root. So, it is 
separable polynomial. By theorem 12, its Galois group over 
the field of rational number is isomorphic to transitive 

subgroup of 𝑆4. The resolvent cubic polynomial of 𝑥4(𝑡) 
is 𝑡3 − 4𝑡2 − 8𝑡 + 32 = (𝑡 − 4)(𝑡2 − 8). The splitting 

field of this resolvent cubic polynomial is ℚ(√2) and 

[ℚ(√2):ℚ] = 2. So, its Galois group is isomorphic to 

either 𝐷8 or 𝕀4. But, we have 𝑥4(𝑡) = (𝑡
2 + 2 −

√2)(𝑡2 + 2+ √2) which is reducible over ℚ(√2). 

Hence, its Galois group is isomorphic to 𝕀4. Again, it is 
true for m=4.  
 

For m=5, subgroups (having order 5) of 𝑆5 are following 

• {(1), (12345), (13524), (14253), (15432)} ≅
𝕀5 

• {(1), (13245), (12534), (15432), (14352)} ≅
𝕀5 

• {(1), (12354), (13425), (14532), (15243)} ≅
𝕀5 

• {(1), (12435), (145 23), (15342), (13254)} ≅
𝕀5 

• {(1), (12435), (14325), (13542), (15234)} ≅
𝕀5 

 
It is clear that these all subgroups are cyclic group of order 

five. Let us take the cyclotomic polynomial 𝜚 11(𝑡) = 1 +
𝑡 +⋯+ 𝑡10. By theorem 19, Ga(𝜚 11(𝑡)/ℚ) ≅ 𝕀11

× ≅
 𝕀10. We have that 𝕀2 is normal subgroup of 𝕀10. Thus, 

there exists normal subgroup   𝑆   of Galois group 

𝐺𝑎(𝜚 11(𝑡)/ℚ) such that 𝑆 ≅ 𝕀2. By fundamental 

theorem of Galois theory, there is fixed field 𝑁 for 

subgroup 𝑆  such that 𝐺𝑎(𝑁:ℚ) ≅
𝐺𝑎(𝜚11(𝑡)/ℚ )

𝑆
≅
𝕀10

𝕀2
≅

𝕀5. Thus, it is also true for m=5.  
 

Proposition 29  𝑀23 ≅ 𝐺𝑎(𝑁: 𝐿), L is the fixed field for 

subgroup 𝑆 ≅ 𝑀23 of Galois group 𝐺𝑎(𝑁:ℚ) ≅ 𝑆23. 
 

Proof: By theorem 25, there exists Galois extension 𝑁 over 

ℚ such that 𝐺𝑎(𝑁:ℚ) ≅ 𝑆23. By definition 18, 𝑀23 is 

subgroup of 𝑆23. By property of group isomorphism, there 

exists subgroup 𝑆 of  𝐺𝑎(𝑁:ℚ) such that 𝑆 ≅ 𝑀23. By 
fundamental theorem of Galois theory, there exists fixed 

field 𝐿 for subgroup 𝑆 of Galois group 𝐺𝑎(𝑁:ℚ) such that 

𝐺𝑎(𝑁: 𝐿) ≅ S ≅ M23. Here M23 is realizable as Galois 

group over the finite extension field 𝐿 of ℚ. But it still 

remains to show that 𝑀23 is realizable as Galois group over 
the field of rational number. 
 

If possible, suppose that 𝐺𝑎(𝑦(𝑡)/ℚ) ≅ 𝑀23, for some 

𝑦(𝑡) ∈ ℚ[𝑡]. By definition 18, 𝑀23 is the transitive 

subgroup of 𝑆23. By theorem 12, we get that 𝑦(𝑡) is 

irreducible and separable polynomial of degree 23 over ℚ 

which is necessary condition to reach at 𝐺𝑎(𝑦(𝑡)/ℚ) ≅
𝑀23.    
 
Is it possible to reach at sufficient condition 

(𝐺𝑎(𝑦(𝑡)/ℚ) ≅ 𝑀23.)? If we suppose that 𝑦(𝑡) be an 
irreducible and separable polynomial of degree 23 then we 

can’t get  𝐺𝑎(𝑦(𝑡)/ℚ) ≅ 𝑀23, for some 𝑦(𝑡) ∈ ℚ[𝑡]. For 

example, the Galois group of 𝑦(𝑡) = 𝑡𝑚 + 𝑙𝑡 + 𝑙  over 

ℚ(𝑙) is isomorphic to 𝑆𝑚[ detail in (Jensen, 2002)]. By 

theorem 13, there exists infinitely many 𝑎 ∈ ℚ and the 

Galois group of 𝑦(𝑡) = 𝑡𝑚 + 𝑎𝑡 + 𝑎 over  ℚ is 

isomorphic to 𝑆𝑚 . So, the Galois group of the irreducible 

and separable polynomial 𝑦(𝑡) = 𝑡23 + 2𝑡 + 2 over ℚ is 

isomorphic to 𝑆23. Thus, there exists some irreducible 
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separable polynomial of degree 23 over ℚ whose Galois 

group over ℚ is not isomorphic to 𝑀23.  So, by only this 

much condition on 𝑦(𝑡), we can’t assure that 𝐺𝑎(𝑦(𝑡)/
ℚ) ≅ 𝑀23. Now, we have to search also other conditions 

on 𝑦(𝑡) ∈ ℚ[𝑡] which can assure that 𝐺𝑎(𝑦(𝑡)/ℚ) ≅
𝑀23. 
 
DISCUSSION  
The classical inverse Galois problem still remains to be 
solved. By theorem 17, we get positive answer of CIGP if 
the statement 28 is true, but we get negative answer of 
CIGP if the statement 28 is false. We found that statement 
28 is true for m=1,2,3,4 and 5. So, we suppose that 

statement is true for 𝑚 ≤ 𝑘. Now, if we can show that it is 

also true for 𝑚 = 𝑘 + 1 then by mathematical induction, 

it is true for all positive integer 𝑚. So, we claim that 
statement 28 has positive answer for all m and by theorem 
17, we get positive of CIGP. But it still remains to show 

that statement 28 is true for 𝑚 = 𝑘 + 1. On other hand, it 
is found that all solvable groups are realizable as Galois 

group over ℚ and also, we got that some non-solvable 

group such as 𝑆𝑚 ,𝑚 ≥ 4, 𝐴𝑚 ,𝑚 ≥ 4 are also realizable as 

Galois group over ℚ.  But  it remains to know the answer 

of CIGP for many other non-solvable groups such as 𝑀23. 
We showed that 𝑀23 is realizable as Galois group over the 

finite extension field 𝐿 of ℚ, but it still remains to show 

that 𝑀23 is realizable as Galois group over ℚ.  Now, we 

have to search a polynomial over ℚ whose splitting field is 

Galois extension over ℚ , and its Galois group over ℚ is 
isomorphic to 𝑀23. Here, 𝑀23 is transitive subgroup of 

𝑆23, where 𝑀23 acts transitively on the set of 23 objects. 

So, 𝐺𝑎(𝑦(𝑡)/ℚ) ≅ 𝑀23 implies that 𝑦(𝑡) is an irreducible 

and separable polynomial of degree 23 over ℚ which is 

necessary condition to reach at 𝐺𝑎(𝑦(𝑡)/ℚ) ≅ 𝑀23. But 

if we suppose that 𝑦(𝑡) is an irreducible and separable 

polynomial of degree 23 over ℚ, then by only these 

conditions on 𝑦(𝑡), we didn’t assure that 𝐺𝑎(𝑦(𝑡)/ℚ) ≅
𝑀23, for some 𝑦(𝑡) ∈ ℚ[𝑡] because we got some 
irreducible and separable polynomial of degree 23 whose 

Galois group over ℚ is not isomorphic to 𝑀23. For 

example, 𝑦(𝑡) = 𝑡23 + 𝑎𝑡 + 𝑎, for infinitely many 𝑎 ∈
ℚ is an irreducible and separable polynomial of degree 23 

whose Galois group over ℚ is isomorphic to 𝑆23. Thus, it 

is clear that we have to search further conditions on 𝑦(𝑡) ∈
ℚ[𝑡] which can assure that 𝐺𝑎(𝑦(𝑡)/ℚ) ≅ 𝑀23. 
 
CONCLUSIONS 
From above results and discussion, we conclude that 
classical inverse Galois problem for all finite abelian group, 

all finite non-abelian solvable groups (𝐷8, 𝑆3, 𝑆4, 𝑒𝑡𝑐) and 

many non-solvable group (𝐴𝑚 ,𝑚 ≥ 5, 𝑆𝑚  ,𝑚 ≥ 5, 𝑒𝑡𝑐) 
has positive answer. This paper concludes that 𝑀23 is 
realizable as Galois group over the Galois extension field 

𝐿 of ℚ but it remains to show that 𝑀23 is realizable as 

Galois group over  ℚ. So, CIGP still remains to solve for 

𝑀23. 
 
This paper also concludes that CIGP has only partial 
results, but we get its full result if we got answer of question 

“Whether all subgroups of order m of symmetric group 𝑆𝑚 

for all m are realizable as Galois group over ℚ.” 
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