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ABSTRACT 

Understanding the present and future spatial and temporal variations of precipitation and temperature is important for 

monitoring climate-induced disasters. Satellite and global reanalysis data can provide evenly distributed climate data; 

however, they are still too coarse to resolve fundamental processes over complex terrains. The study applies global 

climate model CGCM4/CANESM2, to project future maximum temperature, minimum temperature, and precipitation 

across the cross-section of the Gandaki River basin, Nepal. Large scale atmospheric variables of the National Centre for 

Environmental Prediction/National Centre for Atmospheric Research reanalysis (NCEP/NCAR) datasets are downscaled 

using Statistical Downscaling Model (SDSM) under different emission scenarios. For the variability and changes in 

maximum temperature (Tmax), minimum temperature (Tmin), and precipitation for future periods (2020s, 2050s, and 

2080s), three different scenarios RCP2.6, RC4.5, and RCP8.5 of CGCM4 model were performed. The study revealed that 

both the temperature and precipitation would increase for three RCPs (representative concentration pathways) in the 

future. The highest increase in precipitation was found in the arid region compared to humid and sub-humid regions by 

the end of 2100. Similarly, the increase in mean monthly Tmin and Tmax was more pronounced in Jomsom station than 

Baglung and Dumkauli stations. Overall, a decrease in summer temperature and increase in winter temperature was 

expected for future periods across all regions. Further, spatial consistency was observed for Tmax and Tmin, whereas spatial 

consistency was not found for precipitation. 
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INTRODUCTION 

The global near-surface mean air temperature has 

increased by 0.85°
 
C over 1880–2012 and is expected to 

increase between 1.4 and 5.8° C by the year 2100 (IPCC, 

2013). The rising in temperature leads to a large impact on 

the precipitation pattern, melting of snow and ice, and 

increases evaporation, altering soil moisture and runoff. 

As precipitation is a fundamental component in the water 

cycle, its understanding and a comprehensive outlook are 

essential for managing water systems under changing 

climate (Schneider et al., 2016; Daly et al., 2017).  

Climate change has amplified the extreme precipitation 

events, which has become more intensive recently. 

Moreover, these extreme weather events can globally lead 

to several social, economic, and environmental problems 

(Cavalcante et al., 2020). Global mean surface 

temperatures are projected to increase by 0.3–1.7° C, 1.1 

to 2.6° C, 1.4– 3.1° C, and 2.6–4.8° C under RCP2.6, 

RCP4.5, RCP6.0, and RCP8.5, respectively, during 2081–

2100 (Collins et al., 2013). Moreover, global warming 

will accelerate the frequency and magnitudes of ongoing 

climatic extremes (Karki et al., 2017). 

Consistent with the global pattern, South Asia has 

experienced several climatic extremes, and such extremes 

are anticipated to be more frequent in the future (Klein 

Tank et al., 2006). Nepal is a South Asian mountainous 

country experiencing a high rate of temperature increase, 

changing precipitation patterns, with frequent and severe 

occurrences of climate-induced disasters, such as 

landslides, glacial lake outburst floods, flash floods, 

drought (Khadka et al., 2018; Sharma et al., 2020a, 

Hamal et al., 2020a). Thus, understanding the present and 

future spatial and temporal variations of precipitation and 

temperature is important for monitoring climate-induced 

disasters (Bhattarai, 2015; Maharjan & Regmi, 2015). 

Furthermore, such information will be vital for long-term 

planning of mitigation and adaptation strategies at 

regional and national levels (Frias et al., 2012). The 

availability of high spatial and temporal resolution climate 

data is essential for climate studies. However, in Nepal, 

the climate monitoring stations are sparsely and unevenly 

distributed; denser in lowlands and sparse in mountainous 

areas (Kansakar et al., 2004; Hamal et al., 2020b; Sharma 

et al., 2020b). Moreover, the existing stations in high-

elevation areas are situated at the valley bottom and may 

not present the area's actual climatology (Sharma et al., 

2020c). Thus, our knowledge of the climate at high 

elevations, where the hazards are frequent, is still limited. 

Satellite and global reanalysis data can provide evenly 

distributed climate data; however, they are still too coarse 
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to resolve fundamental processes over complex terrains 

(Shrestha et al., 2012; Faiz et al., 2018; Sharma et al., 

2020c). Further, general circulations model (GCMs) can 

estimate future climate change based on these reanalysis 

datasets (Koukidis & Berg, 2009; Khadka & Pathak, 

2016). Despite the availability of GCMs output as the 

most widely used modeling results, this information 

cannot be used directly due to its course spatial resolution. 

Thus, the downscaling model is required for converting 

the coarser spatial resolution of the GCMs output into a 

fine resolution climatic output variable. There are mainly 

two techniques to downscale the GCMs, i.e., Dynamical 

Downscaling (DD) and Statistical Downscaling (SD). 

Statistical Downscaling Model (SDSM) is a hybrid of a 

regression method and a weather generator (Koukidis & 

Berg, 2009; Mahmood & Babel, 2013). Several previous 

studies have shown that SDSM method has superior 

capability and is suitable for the study region (Sigdel & 

Ma, 2016). 

Nepal's climate is dominated by the southeasterly 

monsoon system and occasionally from the Arabian Sea 

(Hamal et al., 2020c; Sharma et al., 2020d). Due to the 

sharp spatial and temporal variations in rainfall and 

temperature across the cross-section of Nepal, the pattern 

of rainfall and temperature varies in both north-south and 

east-west directions (Shrestha et al., 2017, 2012, 2000; 

Pokharel et al., 2019). Moreover, a large variation of 

temperature and precipitation occurs even over small 

distances due to highly undulating surface topography 

with high mountains and deep valleys. Although there has 

not been comprehensive research in Nepal for temperature 

and precipitation, previous analyses considerably do not 

address the issue of future projection. 

A recent study by MoFE (2019) predicted that mean 

temperature could rise by 0.9–1.1° C and 1.3–1.8° C for 

2016–2045 and 2036–2065, respectively. Khadka et al. 

(2014) used multiple GCMs scenarios. They showed that 

average temperature and precipitation would increase in 

the future at the rate of 0.025° C/year and 4.7 mm/year, 

respectively, in the Tamakoshi basin of Nepal. Similarly, 

a study by WECS (2014) suggested that annual mean 

temperature will increase by 1.4° C, 1.6° C and 2.3° C in 

the 2030s, 2040s, and 2050. Annual precipitation will 

change by – 3, +2, and +5 % during the same period 

compared to 1981–2010 in the Koshi river basin. In 

Marshyangdi river basin (Central Nepal), the annual 

average of maximum temperature was predicted to 

increase by 0.82° C, 1.35° C, and 2.29° C by 2090s, while 

the annual average of minimum temperature was 

projected to increase by 0.87° C, 1.44° C and 2.43° C by 

2090s for RCP2.6, RCP4.5 and RCP8.5, respectively 

(Khadka & Pathak, 2016). Sigdel and Ma (2016) have 

also predicted a significant increase in precipitation 

between 11.68 % and 13.75 % across Nepal's western 

region in the 2050s. Though several studies on the future 

projection of temperature or rainfall using SDSM have 

been done in Nepal, no studies were conducted in Nepal 

using the latest version of CGCM4 under the latest forcing 

scenario. The CGCM2/CANESM2 model is considered 

improved over the previous version. Hence, this study 

aims to analyze the future changes in temperature and 

precipitation over three climatic regions of the Gandaki 

River Basin (GRB), Central Nepal, under different RCP 

scenarios. 

MATERIALS AND METHODS 

Study area 

Nepal is a South Asian mountainous country located 

between 26.36°N–30.45°N and 80.06°E–88.2°E covering 

an area of 147,641.28 km
2
 (Fig. 1). Within a short 

latitudinal range, the country features extreme topography 

with numerous ecological zones  often summarized in 

three bands: the tropical southern plain-the Terai; the 

temperate Middle-Mountains, and the polar High 

Himalaya to the north, and each being associated with an 

extremely complex climatic variation (Karki et al., 2015; 

Karki et al., 2017; Talchabhadel & Karki, 2019). We have 

selected the Gandaki River Basin, a transboundary basin 

lying north-south in the central Himalayan region for the 

current study. It extends from China in the north, through 

Nepal, to India in the south and is bounded by the Karnali 

basin to the west and the Koshi basin to the east, featuring 

wide variation in elevation and climate (Fig. 1a). The 

basin has a total drainage area of 46,300 km
2
 that covers 

72 % in Nepal, 18 % in India, and 10 % in China. The 

Gandaki River is also known as the Narayani in the plains 

of Nepal and as the Gandak in India, where it joins the 

Ganges (Ganga) at Hajipur near Patna. It has seven major 

tributaries (the Kali Gandaki, Seti Gandaki, Madi, 

Marsyangdi, Daraudi, Budhi Gandaki, and Trishuli), of 

which all except the Daraudi and Madi have catchment 

areas with glaciers. There are 1,710 glaciers in the 

upstream catchments (as of 2005), with an area of 2,285 

km
2
 and estimated ice reserves of 194 km

3
 (Bajracharya & 

Shrestha 2011). 

In this study, we have selected three stations representing 

a cross-section across the Gandaki basin, namely 

Dumkauli (Nawalparasi) in the Terai, Baglung in the 

Mountains, and Jomsom in the Upper Mountains (Figs. 1a 

and b). Based on rainfall distribution and agro-ecological 

classification, Jomsom, Baglung, and Dumkauli station 

fall under the arid, sub-humid, and humid regions, 

respectively (Figs. 1c, d and e). A similar approach was 

previously applied in the study of Williams et al. (2004). 

The geographic location of the station is presented in 

Table 1 and Fig. 1a. 

Data 

The observed daily precipitation and temperature data for 

the three stations (Jomsom, Baglung, and Dumkauli) 
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between 1981 and 2005 were obtained from the 

Department of Hydrology and Meteorology, Government 

of Nepal. The missing data of 1 day or 2 days were 

replaced by the average precipitation values of 

neighboring stations using a single best estimator method 

(Eischeid et al., 1995). Further, the observed daily 

precipitation and temperature data were merged in a 

single file from 1981 to 2005 for the predictor selection 

process. 

 

 

Fig. 1. (a, b) Study areas and location of selected three stations, monthly precipitation, and temperature cycle of (c) 

Jomsom station, (d) Baglung station, and (e) Dumkauli station 

Table 1. Location of study stations 

Station Name Station No. Latitude Longitude Elevation (asl) (m) Climate 

Jomsom 601 28°47’ 83°43’ 2744 Arid 

Baglung 605 28°16’ 83°36’ 984 Sub-humid 

Dumkauli  706 28°41’ 83°13’ 154 Humid 

 

The re-analysis data set from the National Centers for 

Environmental Prediction (NCEP)/National Center for 

Atmospheric Research (NCAR) (Kalnay et al., 1996) 

were also used in this study. The data set was available 

daily during the period 1961–2005 at a spatial scale of 

2.8°×2.8° with 26 atmospheric variables. Global Climate 

Model (GCM) output data set with three forcing scenarios 

RCP8.5 (high greenhouse gas emission scenarios), RCP 

4.5 (moderate greenhouse gas emission scenarios) and 

RCP2.6 (low greenhouse gas emission scenarios) derived 

from the CGCM4/CANESM2 climate model, which has 

the same grid resolution as NCEP/NCAR predictor 

variable of 128 X 64 grid boxes. The transformed GCM 

data for 1961–2099 was directly downloaded from 

(http://www.cics.uvic.ca/scenarios/sdsm/select.cgi). 

The widely used statistical downscaling model Statistical 

Down Scaling Model (SDSM) developed by Wilby et al. 

(2002) has been used to downscale GCM data for selected 

three stations. This model used a combination of Multiple 

Linear Regression (MLR) and Stochastic Weather 

Generator (SWG) methods. 

http://www.cics.uvic.ca/scenarios/sdsm/select.cgi
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In the current study, The MLR was used to establish an 

empirical relationship between predictors and predictands 

of interest to generate regression parameters, whereas 

SWG was applied to simulate up to 100 daily time-series 

from predictors of NCEP/NCAR and GCMs based on 

these regression parameters. This method was adopted 

from Mahmood and Babel (2014). Further, downscaling 

of the Maximum Temperature (Tmax), Minimum 

Temperature (Tmin), and Precipitation (PRECP) was done 

using SDSM; first we checked the quality, transformation, 

and screening of probable predictors, then we calibrated 

the monthly sub-model using station scale of Tmax, Tmin 

and PRECP data sets and selected predictors of 

NCEP/NCAR. To generate the present and future time 

series for Tmax, Tmin, and PRECP from the gridded data 

sets (NCEP/NCAR and GCMs (CGCM4/CANESM2)), 

we applied Statistical Analysis for downscaled Tmax, Tmin, 

and PRECP at each station using SDSM. 

To discard the missing records and outliers in the 

observed data sets, a quality control function was 

performed in SDSM. Then screen variable operation was 

applied to select appropriate sets of observed predictors 

from the suite of NCEP/NCAR reanalysis data sets based 

on scatter plots, correlation, partial correlation statistics, 

and p-value (Wilby & Dawson, 2007). For the calibration 

and validation, the observed station scale data (Tmax, Tmin, 

and PRECP) were divided into two periods, i.e., from 

1981 to 1996 for calibration and from 1997 to 2005 for 

validation. 

SDSM offers three different sub-models: monthly, 

seasonal, and annual for the downscaling of predictands 

(Tmax, Tmin, and PRECP) from the large-scale predictors 

(Koukidis & Berg, 2009; Mahmood & Babel, 2013). The 

monthly sub-model derives 12 different regression 

equations (one for each month), whereas the seasonal sub-

model generates four different regression equations (one 

for each season), and the annual sub-model creates a 

single regression equation for all 12 months having same 

model parameters. A monthly sub-model was used in this 

study due to significant monthly variations in Tmax, Tmin, 

and PRECP at different stations within the study region. 

Moreover, SDSM provides two methods for optimization; 

Dual Simplex and Ordinary Least Squares (Wilby & 

Dawson, 2007). Although both methods provide 

comparable results, we chose Ordinary Least Squares, as 

this method provides more efficient results and were 

suitable for the study region's topographic nature. 

Further, in the validation process, the same predictors' 

variables screened in respective stations were used in the 

next time frame to validate the calibrated model. 

Furthermore, biases were checked and corrected before 

the generation of future and present time series for 

temperature and precipitation data. Eqs (1) and (2) were 

used for the bias correction of daily temperature (Tmax and 

Tmin) and precipitation (PRECP) data, respectively. 

                               (1) 

 
                         (2) 

Where, Tc and Pc are the corrected future daily time series 

of temperature and precipitation data, respectively. Tuc 

and Puc are uncorrected future daily time series of 

temperature and precipitation data downscaled by SDSM, 

respectively. Tm, Pm and To, Po is the long term mean 

monthly temperature and precipitation data during control 

simulation and observed period (i.e., 1981-2005). 

After bias correction, systematic daily time-series data 

representing the present climate from screened sets of 

NCEP/NCAR predictors were generated through a 

weather generator. The downscaled data were then 

compared with observed records to confirm its accuracy. 

Finally, future time series of Tmax, Tmin, and PRECP were 

simulated on daily time-step under RCP2.6, 4.5, and 8.5 

emission scenarios. The performance of SDSM for the 

future along with downscaled results were discussed for 

future periods; 2020s (2010–2039), 2050s (2040–2069), 

and 2080s (2070-2100) under RCP2.6, RCP4.5, and 

RCP8.5 emission scenarios, respectively. Additionally, 

various statistical operations were performed based on a 

downscaled projected time series of Tmax, Tmin, and PCP to 

predict the changes in the study area's observed 

climatology. 

RESULTS AND DISCUSSION 

Screening of predictors 

Screening of suitable predictors for downscaling 

predictands is one of the most critical steps in statistical 

downscaling (Wilby et al., 2002; Wilby & Dawson, 

2007). The predictors can be different for different 

geographical regions depending on the predictor's 

properties and the predictand to be downscaled (Anandhi 

et al., 2008). Both qualitative (e.g., scatter plots) and 

quantitative (e.g., the value of explained variance for 

different months; correlation (R
2
) and p-values methods 

were used to identify the most suitable sets of predictors 

at an individual station. The list of predictors variables 

selected for this study is shown in Table A1. 

Calibration 

The observed data series from 1981–2005 was divided 

into two sub-periods, i.e., 1981–1996 and 1997–2005, for 

model calibration and validation. Following the user 

manual of SDSM 4.2, when using NCEP/NCAR 

reanalysis data as predictors, a threshold of the wet day 

was set as 0.3 mm, and fourth root transformation was 

adopted to convert the original precipitation time-series to 

a normal distribution (Wilby et al., 2002). 
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The ordinary least squares method was used for 

optimization, whereas no transformation was done in 

temperature data, although a threshold value of 0 was 

selected for temperature. The several statistical measures: 

coefficient of determination (R
2
), root mean square error 

(RMSE), Mean Absolute Percentage Error (MAPE), and 

Mean Absolute deviation (MAD) are used to compare 

observed data with downscaled data during the calibration 

and validation period. 

All three stations showed a good correlation (0.99) 

between observed and downscaled temperature and 

precipitation data, except the Jomsom station's 

precipitation correlation. The higher RMSE and MAD 

values were found at Dumkauli, followed by Baglung and 

Jomsom stations in precipitation, while all three stations 

showed similar values for temperature. In general, 

calibration for Tmax and Tmin was very satisfactory and 

consistent for all stations; however, calibration for 

precipitation was not consistent. This may be related to 

the large number of zero values entered in the multiple 

regressions, and the underlying surface factors are not 

considered in SDSM. 

Validation 

The data set between the periods of 1997 to 2005 were 

used to validate the calibrated model using the same 

predictors and statistical metrics that have been used for 

the calibration period. The Tmax and Tmin validation model 

showed consistent performance over all stations, although 

the validated model of PRECP was not consistent. 

Bias Correction 

Before applying the future downscale Tmax, Tmin, and 

PRECP, we validated the datasets between 1997 and 2005 

using equations 1 and 2. Firstly, obtained biases were 

adjusted to the downscaled daily data by SDSM for 1997–

2005. Secondly, the corrected downscaled data were 

compared with the observed data using different statistical 

metrics (R
2
, RMSE, MAPE, and MAD) and then further 

applied to the future downscaled data. Table 2 and Fig. 2 

show the statistical analysis between bias-corrected and 

not corrected precipitation data at Jomsom station. The 

bias was slightly improved after bias correction with 

increased R
2
 and decreased error. It was noted that values 

of Tmax and Tmin obtained without bias correction were 

close to the observed data than bias-corrected. The 

necessity for bias correction for Jomsom precipitation is 

attributed to the insufficient number of predictor variables 

screened for the model and the complex nature of the 

precipitation variable itself (Salzmann et al., 2007). 

Table 2. Statistical comparison of PCP before and after bias correction in Jomsom during the validation period  

Before bias correction After bias correction 

R2 RMSE MAPE MAD R
2
 RMSE MAPE MAD 

0.90 0.15 20.06 0.12 0.95 0.09 16.48 0.08 

        

 

Fig. 2. Bias corrected values with modeled and observed 

precipitation (PRECP) for Jomsom station during 

1997–2005 

Future projection of precipitation (PRECP) and 

temperature (Tmax and Tmin) 

Future scenarios of daily temperature (Tmax and Tmin) and 

precipitation (PRECP) were generated under RCP2.6, 

RCP4.5, and RCP8.5 forcing scenarios for 2010–2100. 

The future period was divided into the 20s (2010–2039), 

50s (2040–2069), and 80s (2070–2100) to study the 

changing pattern of temperature and precipitation 

concerning the base period (1981–2005). For the analysis, 

daily temperature and precipitation values were averaged 

to obtain annual and monthly values at each station. 

Future change in precipitation 

The precipitation distribution of Nepal showed a strong 

seasonal variation with a large amount of rainfall 

observed in the summer season, while other seasons 

remained relatively dry. Understanding future seasonal 

and annual behavior is, therefore, very important to get a 

deeper insight into future precipitation changes in the 

Himalayas. The future changes in seasonal and annual 

precipitation compared to the base period 1981–2005 

under RCP2.6, RCP4.5, and RCP8.5 scenarios for three 

regions of Nepal are shown in Fig. 3. The seasonal 

changes across three study regions showed a noticeable 

difference in trend and magnitude under different RCP 

scenarios. The enormous change in precipitation is 
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expected during the winter season for all future periods in 

Jomsom (Figs. 3a, b, and c). The seasonal changes in 

Jomsom were marked up in the winter season for future 

periods 20s, 50s, and 80s with values 60.5 %, 84.3 %, and 

111.9 %, respectively, while a decrease in seasonal 

rainfall during spring. In contrast, Baglung will 

experience an increase in rainfall during winter and spring 

season with values 7.4 %, 44.9 %, and 70.3 %, during the 

20s, 50s, and 80s, respectively, while a decrease is 

expected in autumn. In Dumkauli station, the increase is 

expected in spring seasons and the expected decrease in 

winter and autumn precipitation (Fig. 3g, 3h, and 3i). Like 

RCP2.6, increasing/decreasing percentage change in mean 

winter/spring precipitation during the 20s, 50s, and 80s 

was observed under RCP4.5 and RCP8.5 scenarios in 

Jomsom. Baglung and Dumkauli stations also showed 

similar patterns under RCP4.5 and RCP8.5 scenarios for 

all periods. Under RCP2.6, there was an increase in 

precipitation during the spring season in both stations and 

decreased precipitation during autumn at Baglung and 

during winter and autumn seasons in Dumkauli station. 

The mean annual precipitation prediction under RCP2.6 at 

Jomsom (arid region) station would increase by 14.4 %, 

18.9 %, and 17.2 % for future periods 20s, 50s, and 80s, 

respectively (Fig. 3a). For Baglung (sub-humid region) 

station, the precipitation changes will be 8.27 %, 8.67 %, 

and 14.05 % for future periods 20s, 50s, and 80s, 

respectively (Fig. 3d). At the same time, Dumkauli 

(humid-region) showed relatively less change than the 

other two regions. These results indicated a small change 

in precipitation over the humid region, whereas the 

significantly large change in the arid region under a highly 

optimistic RCP2.6 scenario during all future periods. 

Similar to RCP2.6, prediction under scenario RCP4.5 and 

RCP8.5 showed an increase in precipitation during all 

future periods ranging from 0.3 % to 30 %. For instance, 

under scenario RCP4.5, the changes of annual mean 

precipitation in Jomsom (Baglung) will be 1.72 (4.4) %, 

17.19 (15.8) %, and 30.78 (16.9) %, while prediction for 

Dumkauli will be 0.3 %, 7.08 %, and 15.92 %, for future 

periods 20s, 50s, and 80s, respectively (Figs. 3b, e, and h). 

Likewise, the changes of annual mean precipitation of 

future periods 20s, 50s, and 80s under RCP8.5 scenario in 

Jomsom will be 20.19 %, 55.92 %, and 30.78 %, 

respectively (Fig. 3c); as to Baglung station, the changes 

will be 4.43 %, 20.42 %, and 42.50 %, respectively (Fig. 

3f), while for Dumkauli it will be 4.20 %, 18.72 %, and 

33.90 %, respectively (Fig. 3i). Overall, all three stations 

showed a significant increase in precipitation from low to 

high emission scenarios until the 21
st
 century. 

 

 

Fig. 3. Future precipitation changes in (a, b, c) Jomsom, (d, e, f) Baglung, (g, h, i) Dumkauli under different scenarios 

 

The analysis of downscaled precipitation predicted the 

rise in mean annual rainfall in Gandaki Basin for the 

future periods 20s, 50s, and 80s under all scenarios in 

each station. Dahal et al. (2020) and Rajbhandari et al. 

(2018) also projected an increase in rainfall in Koshi and 

Karnali, and Koshi River Basin, respectively. This 

increase in precipitation may be attributed to an increase 

in the surface temperature, which in turn may raise the 

rate of evaporation, leading to increased precipitation 

(Anandhi et al., 2008). The annual percentage increase in 
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rainfall is the highest in Jomsom (arid region), followed 

by Baglung (sub-humid) and Dumkauli (humid), 

respectively. The largest change in precipitation pattern 

was expected in Jomsom compared to the other two 

regions. A similar changing scenario under H3A2 and 

H3B2 has been previously observed by Sigdel and Ma 

(2016) for Jomsom station. In contrast, Rajbhandari et al. 

(2018) have projected decreased rainfall in trans-

Himalayan region of the Koshi basin.  The seasonal cycle 

further indicated that the winter precipitation over the arid 

region (Jomsom) is more sensitive to climate change. 

Interestingly, the summer precipitation was expected to be 

less susceptible to future climate change than other 

seasons. 

Future changes in temperature 

This study further evaluated the change in mean monthly 

temperature for future periods (the 20s, 50s, and 80s) 

under three different RCPscenarios. The changes in Tmax 

and Tmin in three regions under RCP2.6, RCP4.5, and 

RCP8.5 are shown in Figs. 4-6. The highest increase in 

maximum temperature was predicted in the arid region 

(Jomsom) in comparison to other humid and subhumid 

regions (Fig. 4). The increase in Tmax was predicted from 

February to May in all periods. The Tmax increase in the 

ranges 0.6–1.41° C, 1.02–1.9° C, and 1.8–3.01° C under 

RCP2.6 scenario (Fig. 4a), 0.2–1.2°C, 1.16–2.07°C, and 

2.12–3.18° C under RCP4.5 (Fig. 4b),  and 2.3–4.05° C, 

4.09–5.35° C, and 5.82–6.72° C under RCP8.5 (Fig. 4c) in 

the 20s, 50s, and 80s, respectively. The highest increase in 

temperature (6.72° C) was anticipated in February under 

the RCP8.5 scenario during the 80s. On the contrary, 

substantial decreases in Tmax were expected during the 

summer monsoon period (June to October) under all three 

scenarios for future periods. The highest decrease (above 

–2° C) was observed in September under RCP8.5 in the 

80s (Fig. 4c). 

 

 

Fig. 4. Future change in (a, b, c) maximum temperature (Tmax), and (d, e, f) minimum temperature (Tmin) at Jomsom 

station under RCP2.6 (right panel), RCP4.5 (central panel), and RCP8.5 (left panel) 

 

Besides Jomsom, the increase in Tmax was predicted in 

Baglung and Dumkauli station. In contrast to Jomsom, the 

increase and decrease in temperature were observed 

during winter and pre-monsoon months, respectively, for 

Baglung station (Figs. 5a, 5c, and 5e). Similarly, in 

Dumkauli stations Tmax increased in February and 

decreased in November, followed by June under all 

scenarios (Fig. 5). Further, the Baglung station showed 

similar monthly patterns as Jomsom, except for a slight 

increase in September (Figs. 5 and 6). 

In the case of Tmin, the increase and decrease were 

expected as observed in maximum temperature, but with 

different magnitude and trend (lower panel in Figs. 4-6). 

The greatest change in Tmin was observed at Jomsom 

station in all three scenarios. In contrast to Tmax, an 

increase in Tmin was predicted for an extended period from 

February to August, with the highest increase in May (Fig. 

4). The increase in Tmin is in the range of 0.8–1.6° C, 1.6–

2.26° C, and 2.12–3.74° C under RCP2.6; 0.6–1.5° C, 

1.75–2.5° C, and 2.38–4.31° C under RCP4.5; and 0.6–

1.7° C, 1.8–2.73° C, and 2.52–5.13° C under RCP8.5 

scenario for the future periods of the 20s, 50s, and 80s, 

respectively. 

It is worth to note that a decrease in Tmin is higher in low 

emission scenarios and lower in higher emission scenarios 

in all future periods. Similar patterns were also observed 

at Baglung and Dumkauli stations (lower panel in Figs. 7 

and 8). Besides, both stations have followed a similar 
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pattern with little change in Tmin during the summer 

monsoon seasons under all scenarios. This feature was 

more prominent in Dumkauli station. 

In general, mean monthly temperature scenarios showed 

warmer conditions in the periods of the 20s, 50s, and 80s 

compared with the base period (1981–2005) (Figs. 4-6), 

however, there was a difference in temperature change 

among RCP2.6, RCP4.5, and RCP8.5. Similar significant 

warming towards the end of the century was projected in 

the Koshi river basin (Rajbhandari et al., 2018) and 

Marsyangdi river basin (Khadka & Pathak, 2016). A wide 

range of air temperature changes in different months and 

under different scenarios were anticipated. The mean 

monthly temperature was expected to increase from 

January to July for all three scenarios and decrease in the 

later months in all regions under RCP4.5, and RCP8.5 

scenarios with a slight increase were expected in RCP2.6 

scenario. 

 

 

Fig. 5. Future change in (a, b, c) maximum temperature (Tmax), and (d, e, f) minimum temperature (Tmin) at Baglung 

station under RCP2.6 (right panel), RCP4.5 (central panel), and RCP8.5 (left panel) 

 

Fig. 6. Future change in (a, b, c) Maximum Temperature (Tmax), and (d, e, f) Minimum Temperature (Tmin) at Dumkauli 

station under RCP2.6 (right panel), RCP4.5 (central panel), and RCP8.5 (left panel) 

Further, an apparent elevation-dependent temperature 

change was observed in the study region, i.e., 

lesser/greater temperature change in the lower/higher 

regions. The result also showed that the most significant 

impact of climate change will be in the arid region 

(Jomsom), which lies in the High Mountains' lee-ward 

side. Sigdel & Ma (2016) have also indicated that the arid 

Jomsom region is more sensitive to future climate change. 

The increase in Tmax was high in Jomsom, followed by 

Dumkauli and Baglung. The maximum increase in Tmax 
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was expected in February in all regions under all RCP 

scenarios, whereas the maximum increase in Tmin was 

expected in May in Jomsom and February in Baglung and 

Dumkauli. Similarly, a more significant change in Tmin 

was also observed in Jomsom than Baglung and Dumkauli 

regions. The study showed that the effect of climate 

change in minimum temperature in lower regions, i.e., 

Baglung and Dumkauli was less evident than Jomsom 

under all RCP scenarios. 

CONCLUSIONS 

This study applied statistical downscaling model (SDSM) 

to downscale the maximum temperature (Tmax), minimum 

temperature (Tmin), and precipitation (PRECP) in the three 

different climatic regions (arid region: Jomsom, sub-

humid region: Baglung, and humid region: Dumkauli) 

across Gandaki River Basin of Nepal. Different 

downscaling scenarios (i.e., RCP2.6, RCP4.5, and 

RCP8.5) are adopted to predict future climatic changes 

(i.e., the 2020s, 2050s, and 2080s) based on past climatic 

records from 1981–2005. The significant findings are as 

follows: 

1. The higher increase in annual precipitation is 

expected in the arid region (Jomsom) than Baglung 

and Dumkauli areas. The precipitation change was 

greatest in the 80s in all seasons except in winter and 

autumn at Jomsom (highest in mid-century 50s). The 

greatest seasonal changes are predicted during the 

winter season in Jomsom-for future periods (the 20s, 

50s, and 80s) with 60.5 %, 84.3 %, and 111.9 %. In 

contrast, increase precipitation was observed during 

winter and spring at Baglung and during spring at 

Dumkauli station under all scenarios.  

2. The highest increase in Tmax and Tmin is predicted in 

the arid region (Jomsom) in comparison to other 

humid and sub-humid regions. Tmax and Tmin may 

increase up to 6.72° C and 5.13° C, respectively, 

under RCP8.5 by the end of the 21
st
 century. 

3. The highest increase in Tmax is expected in February 

for all stations. Meanwhile, an increase in Tmin is 

maximum in May at Jomsom and in February at other 

stations.  Likewise, a decrease in Tmax and Tmin is 

observed in the autumn period (post monsoon) with 

the greatest change in Dumkauli and lowest change in 

Jomsom.        

4. The comparison of precipitation does not show any 

spatial consistencies. In contrast, the mean observed 

Tmax and Tmin compared to simulated Tmax and Tmin 

showed high R
2 

values. The higher correlation of 

mean monthly precipitation between observed and 

simulated values showed the applicability of using 

SDSM for future projection of temperature and 

precipitation across higher to lower Nepal's elevation 

regions. 

5. This study will help the government and 

policymakers analyze and take necessary steps for 

prevention and minimize the losses from extreme 

climate events and agriculture-related disaster. 

Further, this study also paves the way for the study of 

hydrological impacts under future climate change in 

the three climatic zones across Nepal's Gandaki River 

basin. 
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A P P E N D I X  

Table A1. Selected predictors for three regions over the Gandaki River Basin 

Stations 

Predictors 

Tmax Tmin PRECP 

 

ncepmslpgl.dat ncepmslpgl.dat ncepp5_fgl.dat 

 

ncepp5_zgl.dat ncepp1_ugl.dat ncepshumgl.dat 

 

ncepp500gl.dat ncepp5_zgl.dat 

 Jomsom ncepp5zhgl.dat ncepp500gl.dat 

 

 

ncepshumgl.dat ncepp850gl.dat 

 

 

nceptempgl.dat ncepshumgl.dat 

 

  

nceptempgl.dat 

 

 

ncepp1_zgl.dat ncepp5_ugl.dat ncepp1_zgl.dat 

 

ncepp5_fgl.dat ncepp5_vgl.dat ncepp1zhgl.dat 

Baglung ncepprcpgl.dat ncepp850gl.dat nceps850gl.dat 

 

ncepshumgl.dat nceptempgl.dat nceptempgl.dat 

 

nceptempgl.dat 

  

 

ncepp1zhgl.dat ncepp5_zgl.dat ncepp1_vgl.dat 

 

ncepp5_zgl.dat ncepprcpgl.dat ncepp1zhgl.dat 

Dumkauli ncepp500gl.dat nceps500gl.dat ncepp5_fgl.dat 

 

ncepshumgl.dat ncepshumgl.dat ncepshumgl.dat 

 

nceptempgl.dat nceptempgl.dat nceptempgl.dat 
 

  

 


