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ABSTRACT 

This article attempts to describe the continued fraction expansion of  viewed as a Laurent series . As the 

behavior of the continued fraction expansion of  is related to the solvability of the polynomial Pell’s equation  

 where,  is monic quadratic polynomial with  and the solutions  must 

be integer polynomials. It gives a non-trivial solution if and only if the continued fraction expansion of   is 

periodic. 
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INTRODUCTION 

Number theory is a collection of areas of pure 

Mathematics. The objective of number theory is the study 

of integers. The theory of Pell’s equation has a long 

history as can be seen from the huge amount of references 

collected in Dickson (1950) from the two books on its 

history by Konen (1901) and Whitford (1912). So, Pell’s 

equation is studied in number theory. 

Diophantine equation of the form 

                                                                 (1) 

Where,  is a positive integer, not perfect square, is 

known as the classical Pell’s equation (Niven et al., 

1991). Geometrically, the set of integer solutions  

is the set of intersections of a hyperbola with the lattice 

in integers. Integer solutions of the equation (1) were 

well understood by the contributions of Euler, Lagrange 

and others. 

Pell’s equation was studied by Brahmagupta (598-670) 

and Bhaskara (1114-1185) in Arya (1991). It is often said 

that Euler (1707-1783) mistakenly attributed 

Brounckers (1620-1684) work on this equation to Pell. 

The original algorithm is for solving Pell’s equation 

after Euclid’s algorithm. 

Let  be a solution to equation (1), then  

 

 
Hence, x/y is the best approximation to irrational 

number  in Burton (1980). It follows that all solutions 

of the equation (1) can be found among the convergent 

to . Let  be the length of the period of 

expansion . 

If  is odd, then all positive solutions 

are . If  is even, then 

 where  and ,  is 

convergent of the continued fraction expansion 

of   in Kumundury and Romero (1998). 

Lagrange (1768) was first to prove that the equation (1) 

has infinitely many solutions and it gives a non-trivial 

solution in Niven et al. (1991). 

Theorem 1 (Niven et al., 1991) 

If is the fundamental solution of Pell’s 

equation; , where d is a positive integer, 

not a perfect square. Then, all positive solutions are 

given by  for where  and  are the 

integers defined by . So, 

the value of  and  are determined by expanding the 

power and equating the rational parts and the purely 

irrational parts. The first solution  is called the 

fundamental solution to Pell’s equation and solving the 

Pell’s equation means finding the value of  for a 

given . Also, Tekcan (2011) provided a formula for the 

continued fraction expansion of  for some specific 

values of  with , then considered the integer 

solutions of the equation (1). So, we consider the 

continued fraction expansion  can be defined in 

many ways depending on the base field (Mollin (1997; 

Ramasamy, 1994). 
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Preliminaries 

Sign function 

Let  be variable. Then the sign function is denoted by 

 and defined by 

 

Thus, sign function takes a value and returns whether 

that value is positive, negative and zero. 

Polynomials over a field 

Let  be a field. A polynomial over  is 

 

Where,  and  is indeterminate in 

Nagell (1951). Let  denote the set of all 

polynomials over . The degree of a polynomial  is 

the largest power of  whose coefficients  are non-

zero. It is denoted by . In this case,  is called 

the leading term  and  is leading coefficient. A 

polynomial is monic if its leading coefficients are equal 

to one. 

Periodic 

An infinite sequence (an)n≥1 is periodic if there exists a 

positive integer s such that an+s = a for all n ≥ 1. In this 

case, the finite sequence (a1,a2,…,as) is called a period 

of the original sequence. It is denoted by 

   

Polynomial Pell’s equation 

Diophantine equation is a polynomial equation with two 

or more unknowns in which only integer solutions are 

studied. The Diophantine problems consist of unknown 

variables involved in finding the integer solutions that 

work correctly for all the equations. 

Diophantine equation of the form 

                                                             (2) 

Where,  and  are polynomial with integer coefficients 

and D is monic quadratic polynomial with integer 

coefficients is known as polynomial Pell’s equation. 

Clearly, if degD = 0, then . Since the 

set of solutions of Pell’s equation in integers is well 

understood, we may assume in the sequel 

that . The polynomial Pell’s equation has no 

solutions if  is an odd number. Therefore, we 

assume that  is an even number, so 

that . Also, if  is a non-trivial solution, 

then so are  and . Sometimes the 

expression  is called a solution of equation 

(2), where   is also a solution of equation (2) in 

Dubickas and Steuding (2004). Given  is 

monic quadratic polynomial with , it is 

known that the equation (2) is solvable in   if and 

only if the periodic of the continued fraction of  is an 

even degree in Malyshev (2004). 

Continued fraction expression of  define on the 

base field 

The general theory of Pell’s equation based on 

continued fraction and algebraic manipulations with the 

form  was developed by Lagrange (1766-1769) 

in Serret (1867). Today, continued fractions of real 

numbers remain an important research topic in number 

theory and other branches of mathematics. 

We write a continued fraction as 

 

For the classical continued fractions with , the 

partial quotients  are integers, positive for  in 

Olds (1963). Instead, one may also take  to be 

polynomials, non-constant for  to build the 

continued fraction of a Laurent series in . The role 

of the nearest integer is then played by the polynomial 

part of the Laurent series. We now explain how to 

compute  as a Laurent series in . 

Let F be an arbitrary field and  be the 

field of Laurent series in  over . This is an 

extension field of in  the field of rational function 

of . So, the usual theory of continued fraction carries 

over , with the polynomials in  playing the role of 

the integers. 

Let  be the field of Laurent series in  

over . 
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Then , where for all 

 and  such that  (Webb, 

2006) 

The degree evaluation  of  is , and absolute 

value  of  is . So, we define the non-

Archimedean absolute value by  

Thus,   for  

Thus, , 

where,  is integer part of , for the integral part or 

polynomial part of  was used by Artin (1924), and 

Baum and Sweet (1976) for their continued fraction. 

We construct a continued fraction expansion of a 

Laurent series in Baum and Sweet (1976) as follows; 

For, , a continued fraction for  is obtained 

by putting  and recursively for . Putting 

. The algorithms terminates, 

if for some . This happens if and only if  

is a rational function. Then 

 

 

 

 

So, we write convergent to  as  

where 

 and 

 

So, the determinant of the given matrix 

 

, for  

Since, , for all , where 

 is the sign of the leading coefficient of . 

Thus,  

 

Hence ,    

 

MATERIALS AND METHODS 

In general Pell’s equation (1) always has non-trivial 

solutions   when  is a positive integer, not a perfect 

square. The major objective is to determine the 

polynomial  for which equation (2) has non-trivial 

solutions in   where  is monic 

quadratic polynomial with . It is a 

descriptive study where the proposition is proved 

through theorem and examples by using number 

theoretic approach. The main result of the polynomial 

Pell's equation was based on a review and discussion of 

the previously published documents. 

RESULTS 

Solvability of Polynomial Pell's equation 

We begin by exploring some well-known basic 

properties of the Pell’s equation over polynomials, 

usually called the polynomial Pell's equation. We also 

explain how to write square roots of polynomials in  as 

Laurent series  and use this to show that the group 

of solutions of the polynomial Pell’s equation has 

ranked at most one. It was first considered to study the 

integration in elementary terms of certain algebraic 

functions (Abel, 1826). He showed that the periodicity 

of the continued fraction is equivalent to the existence 

of a non-trivial solution  of the 

polynomial Pell's equation (2). Also, it was shown that 

 is Pellian if and only if continued fraction expansion 

of  is periodic and Pell’s equation has a non-trivial 

solution (Abel, 1826). Solving the Pell's equation in 

  has been studied by Mollin (1997). Dubickas and 

Steuding (2004) reported the polynomial solutions of 

the equation (2). The solutions  are 

trivial solutions. All other solutions are non-trivial. The 

main difficulty in solving polynomial Pell’s equations is 

to determine whether non-trivial solutions exist or not. 

Chowla (1982) asked for the solutions of the equation 

(2) in  for . Nathanson (1976) 

proved that there are no non-trivial solutions of the 

equation (2) when, . If, , then 

there are non-trivial solution of the equation (2) and  he 

found that the sequences of polynomial given by 
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Where, , for all  and showed that 

the only integer polynomials which satisfy the equation 

(2) are the form  and for , he gave 

another family of solutions in Nathanson (1976).  These 

polynomials can be expressed as Chebyshev 

polynomials in Pastor (2001). Gaunct (1990) proved a 

similar result for a cubic analog of equation (2). 

Hazama (1997) studied the polynomial Pell’s equation 

using the twist of a conic by another conic. Webb and 

Yokota (2003) found that the necessary and sufficient 

condition for which the equation (2) has a non-trivial 

solution when  is monic polynomial, 

where and . 

Such result is generalized when  in Webb 

and Yokota (2004), where  is prime without any 

condition of . In this case, the authors also 

determined the solutions. Then, Yokota (2010) found 

that a necessary and sufficient condition for the solution 

of the polynomial Pell’s equation, when . 

Langhlin (2018) focused on the relation between 

polynomial solutions of Pell’s equation and 

fundamental units of real quadratic fields. Zapponi 

(2016) studied polynomial solution of the equation (2) 

in . If  is a perfect square, then equation (2) has no 

non-trivial solution. For 

 

 

 

 

Example: A trivial solution of an equation 

 is  

Example: A non-trivial solution of an equation 

 is  

Let  be a monic quadratic polynomial in . 

Suppose that the period of the continued fraction 

expansion of . Then the polynomial Pell’s equation 

(2) has no non-trivial solutions  (Yokota, 

2010). 

Similarly, for large value of D, Polynomial Pell’s 

equation (2) may obviously have small integer solutions 

in Waldschmidt (2016). 

Example: For D = m
2 

−1 with m ≥ 2, the number p = 

m, q = 1 satisfy the equation (2) 

Example: For D = m
2 

± m with m ≥ 2, 

the number p = 2m ± 1, q = 2 satisfy the equation (2) 

Example: For D = t
2
m

2 
± 2m with m ≥ 1 and t ≥ 1, the 

number p = t
2
m, q = t satisfy the equation (2) 

On the other hand, relatively small value of D may 

leads to large fundamental solutions. 

Theorem 2 (Webb & Yokota, 2002) 

Let  be a monic polynomial in , where 

. Suppose that  

. Then  is reduced, 

 and 

, for all . 

Proof 

We want to show that by using induction on  that  is 

reduced, and , for all . Since, 

  with  and 

. If , then 

 and . Since,  is monic,  

and , then  

 

So,  and  .  

This shows that  is reduced and  

 

Suppose   and  Since 

, then we have  

, Since. , 

then we have, . 

Hence,  is reduced and  
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Next, we want to show that , for 

all . We assume that  since 

 

Then, we have  

 

 

 

 

 

Finding polynomial solutions to Pell’s equation is of 

interest as such solutions sometimes allow the 

fundamental units to be determined in an infinite class 

of real quadratic fields as described elsewhere 

(Langhlin, 2018). 

DISCUSSION 

The solution of Pell’s equation has been applied in 

many branches of mathematics. Most basically,  

approximates  arbitrarily closely, where   is 

 the solution for  in Olds (1963). Stormer’s theorem 

applies Pell’s equations to find pairs of consecutive 

smooth numbers and the most significant application of 

the Pell’s equation was done in Matiyasevich (2017). It 

gives every computably enumerable set is Diophantine. 

We formalize theorems related to the solvability of 

Pell’s equation imitating the approach considered in 

Sierpinski (1964) and Dirichlet’s approximation theorem 

to show that  can be arbitrarily close to zero. 

Then there exist infinitely many pairs  

where . Suppose  

is a rational solution of equation (2), if  

and  

We define, 

 

 and  is a subset of  such that . Since  is 

a rational solution of equation (2). Then  and  

are solutions of equation (2). Thus, to determine all 

rational solutions of equation (2), it suffices to all 

solutions in  in Webb and Yokota (2004). Among all 

solutions in T, say  is a fundamental solution if 

and only if its non-Archimedean absolute value satisfies 

the condition  

, for all  

We write  . Then, . 

Theorem 3 (Webb & Yokota (2002) 

If  then  and  for some 

 and . 

Proof 

Since 

 

 

We choose  so that   

It gives 

 and  

If  

Then  

 

 

 

 

, which is impossible. 

Hence,   
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We have,  implies  and 

 are relatively prime and  Implies  

and  are also relatively prime. 

Thus,  and  for some  and  

Theorem 4 (Webb & Yokota, 2002) 

If   and , then, , the 

minimal solution is unique in particular  

Proof 

Let  and   

Then we have   and 

 for some  and  

Since, , , then we have 

, thus,  

Since,  is irrational,  and definition of . 

Then we have  

In particular, if  and  are minimal solution, then 

by definition of a minimal solution, we have  

. 

Theorem 5 (Webb & Yokota, 2002) 

If  is minimal solution, then for any  

for . 

Proof 

If  and  Then, we have, . 

Otherwise, we choose ,  

So, , and 

 is a solution of equation (2). Since  

then either  or  is in , which is 

impossible, since  

So, theorem (4) gives a minimal solution is unique and 

theorem (5) gives every rational solution  can be 

expressed as  for , where  is minimal 

solution. So, to determine the polynomials  for which 

the polynomial Pell's equation (2) has a non-trivial 

rational solution, it suffices to find the minimal 

solution. 

Let  be the minimal solution. Then we claim that  

in  and even through . 

Since  for some , 

where  is minimal solution. 

Note that for any . Then  

and . 

So, we have . 

If  and  are rational solutions of the equation (2). 

Then  and  

So,  

Thus,   

Hence  is a rational solution of equation (2). 

Also, let us consider  is a minimal solution. 

Then the theorem (3) gives  

 for some . 

Suppose  is a polynomial in  where 

  and  

let   

Since    

Where,  

 

 

Hence,  and 

 

 

 

 

Thus,  is a non-trivial rational solution 
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in  Note that this may not be the minimal solution. 

For this  

 

 

 if and only if  

Hence  with  is the 

minimal solution if and only if  

The classical Pell equation can be generalized in a 

natural way to higher degrees. Indeed, we can observe 

that the Pell equation arises considering the unitary 

elements of the quotient filed  where  

is an irreducible polynomial over . Thus, considering 

the unitary elements of 
 
where  is not a cube, we 

get the cubic Pell’s equation  

 for the unknowns  

(Murru, 2019). Thus, it is natural generalizing the study 

of the polynomial Pell’s equation to higher degrees. 

CONCLUSION 

In solving Pell’s equation (1) for various value of , it 

can be observed that some solutions follow a pattern 

when  has a certain character and at other times, the 

solutions for a given  can be quite idiosyncratic. We 

can evaluate all the convergent of the continued fraction 

expansion of   as a Laurent series in  leading to 

the solutions and finding non-trivial solution of the 

equation (2) that follows a pattern in terms of solving a 

polynomial version of Pell’s equation, where  are 

polynomials in one or more variables.  
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