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ABSTRACT 

Network flow over time is an important area for the researcher relating to the traffic assignment problem. Transmission 

times of the vehicles directly depend on the number of vehicles entering the road. Flow over time with fixed transit times 

can be solved by using classical (static) flow algorithms in a corresponding time expanded network which is not exactly 

applicable for flow over time with inflow dependent transit times. In this paper we discuss the time expanded graph for 

inflow-dependent transit times and non-existence of earliest arrival flow on it. Flow over time with inflow-dependent 

transit times are turned to inflow-preserving flow by pushing the flow from slower arc to the fast flow carrying arc. We 

gave an example to show that time horizon of quickest flow in bow graph G
B
 was strictly smaller than time horizon of 

any inflow-preserving flow over time in G
B
 satisfying the same demand. The relaxation in the modified bow graph turns 

the problem into the linear programming problem.  
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INTRODUCTION  

Due to increasing population and the economic activities 

ever day, numbers of vehicles are increasing rapidly. But 

limited capacity of roads causes major traffic problem in 

most of the cities. To solve this problem, a better traffic 

management system and route guidance is essential. 

Dynamic network flow theory, traffic simulation, models 

based on fluid dynamics, control theory and variational 

inequalities are common approaches to study the problem. 

Simulation optimization is the process of finding the best 

input variable values from among all possibilities without 

explicitly evaluating each possibility. The objective of 

simulation optimization is to minimize the resources spent 

while maximize the information obtained in a simulation 

experiment. Fluid dynamics is specially based on 

differential equations. It defines continuous dynamic 

behavior of fluids or traffic flow in small size network 

only. Similarly, optimal control theory is an approach to 

the dynamic optimization without being constrained to 

interior solutions. However, it calculates on 

differentiability. 

Time is an essential component for the flow of vehicles 

that travel through a road network. Thus, transmission 

time plays an important role on the vehicle rout problems. 

In this paper, we focus on flow-dependent transit times for 

the purpose of our study. Actually, flow dependent transit 

times can be divided in two ways: inflow-dependent 

transit times and load-dependent transit times. We focused 

our study in inflow-dependent transit times. In inflow-

dependent transit times, transit time on arc only depends 

on the current rate of inflow in to that arc (Kӧhler et al. 

2002). In the context of road traffic, this assumption 

means that the time needed to drive through a street 

depends on the number of cars entering the road at that 

moment in time. That is, transit time is a function of 

inflow rate. In load-dependent transit times, total amount 

of flow on the arc is used as input of the transit time 

function (Kӧhler & Skutella 2005). 

An important application of flow over time problem is 

evacuation planning problem. In continuous time setting, 

different dynamic network flow problems have been 

solved for evacuation planning problems. The continuous 

dynamic flow was studied and continuous contraflow 

models were introduced (Pyakurel & Dhamala 2015, 

2016, 2018, Dhamala & Pyakurel 2013). Efficient 

algorithms were presented to solve maximum dynamic, 

quickest and earliest arrival contraflow problems using 

natural transformation of Fleischer and Tardos (1998) by 

reversing the direction of arcs at time zero. 

This paper is structured as follows: The basic concepts 

and flow models were given in first section. This section 

was followed by flow models of flow over time with 

inflow-dependent transit times which is presented by fan 

graph and bow graph. Next section included 

approximation to the quickest flow problem and non-

existence of earliest arrival flow with inflow-dependent 

transit times. This was followed by modified bow graph 

and quickest inflow preserving flow. Finally the last 

section included concluding remarks.  

FLOW MODELS 

Network flows are related with directed graphs G = (N,A), 

where N stands for nodes and A for arcs. Each arc a ∈ A 

has positive capacity denoted by ua and a non-negative, 

left-continuous and non-decreasing transit time function 

τa: [0, ua] → R
+
. Note that the non-decreasing function τ 

is left continuous if and only if sup{τ (x
’
)|x

’
< x} = τ (x). If 

arc   a = (v,w) ∈ A then we denote head(a) for head node 
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w and tail(a) for tail node v  of arc a.  Actually, the transit 

time τa of an arc a is the amount of time it takes to reach 

from the tail to the head of that arc.  In general, a flow 

entering arc a at time θ arrives at head (a) at time θ + τa. 

We say that any flow over time has time horizon T if no 

flow is entering an arc a after the time T − τa. 

Similarly, the transit time of a path P in G with static 

flow x is defined as . In case of 

constant transit time of a path P, it is simply denoted by 

. Source nodes has supply D ≥ 0 and sink node t has 

demand D ≤ 0. Nodes that are neither source nor sink are 

called intermediate nodes. For the node v, we denote δ
+
(v) 

and δ
−
(v) for the set of arcs leaving and entering the node 

v respectively. Sometimes we consider flows with costs. 

Then, each arc a ∈ A has associated cost coefficients ca ≥ 

0, where ca is interpreted as the cost per flow unit for 

sending through the arc. 

Static network flow: A static network flow x: A → R
+
 in 

G assigns to every arc a, a non-negative flow value xa 

which satisfies the flow conservation  

  

 

The static flow x is called feasible, if it satisfies the 

capacity constraints 0 ≤ , for all arcs  

The value of an s-t flow x is defined as 

 

In case of the flow with cost, the cost of a static flow x is 

defined as    

Continuous flow over time: The continuous flow over 

time f in G is a Lebesgue measurable function fa : A×R
+
 

→ R
+
, for every a ∈A.  Here, fa(θ) is the rate of flow per 

unit time that enters arc a at time  θ. Clearly fa(θ) = 0 for  

θ  0. If the flow is allowed to storage at intermediate 

nodes, we write it as 

 

for all ζ ∈ [0, T ) and v ∈ N \ {s, t}. An equality holds for 

v ∈ N \ {s, t} at time ζ = T. The flow f is said to be 

feasible if 0 ≤ fa(θ) ≤ ua  for all θ ∈ R
+
 and a ∈ A. The flow 

over time f satisfies supplies and demands if  

 

for every v ∈ {s, t}. The value of s-t flow over time f is 

given by 

Here,  | f |  is the total amount of flow leaving the source 

node s until time T. Due to flow conservation, this value is 

equals to the total amount of flow arriving in the sink 

node t until time T. The cost of s-t flow over time f is 

defined as                            

Temporally repeated flow: Let x be a feasible static flow 

over time in G with path decomposition (xp)p∈P, where P 

is a set of paths such that the transit time τp of every path p 

∈P is bounded above by T. The temporally repeated flow f 

with transit time (τa)a∈A  and time horizon T, as in (Hall et 

al. 2003a, 2003b), is defined as follows:   

1. For every path p ∈ P, flow f enters path p ∈ P at 

constant rate xp starting at time zero and ending at 

time          T − τp(x). 

2. The transit time of every arc a ∈ A is fixed to τa, i.e., 

at every point in time θ ∈ [0, T), flow units entering 

arc a at time θ reaches head (a) at time θ + τa. 

The value of a temporally repeated s-t flow f with 

underlying static flow (xp)p∈P  is given by 

 

Discrete flow over time: Assume that all transit times are 

integral values. A discrete flow over time f in G assigns to 

every arc a ∈ A, a function fa: A × Z
+
 → R

+
. We say that 

the flow over time f has time horizon T, if no flow is  

entering an arc a after the time T-1-  i.e., fa(θ) = 0 for 

all . Flow conservation constraints are 

as similar to the continuous flow over time except the 

integral over time is replaced by the sum. It is modeled as 

 

for all ζ ≤ T−1 and v ∈ N \ {s, t}. Also the equality holds 

for v ∈ N \ {s, t} at time T-1. The flow f is said to be 

feasible if 0 ≤ fa(θ) ≤ ua for all θ ∈ Z
+
 and a ∈ A. The 

discrete flow f satisfies supplies and demands if  

 

for every v ∈{s, t}. The cost of a discrete flow over 

time f is defined as  

Time expanded graph: For a graph G = (N,A) with 

integral transit times on arcs and integral time horizon T, 

the  T-time expanded graph of G, denoted by G(T), is 

obtained by creating T copies of N which are labeled as 
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N(0), N(1), .... , N(T-1) together with θ
th 

copy of node v 

denoted by v(θ),  θ ∈{0,1,....,T−1}. For every arc a = 

(v,w) A and 0 ≤ θ < T - τa, there is an arc a(θ) from v(θ)  

to w(θ + τa) with the same  capacity as arc a. If the storage 

of flow at node v N is allowed, we include an infinite 

capacity holdover arc from v(θ) to v(θ +1) for all 0 ≤ θ < 

T-1, which models the possibility to hold flow at node v. 

Figure 1(b) represents time expansion of Fig. 1(a) for time 

horizon T = 6. Upward holdover arcs are included in time 

expanded graph, if storage at intermediate nodes is 

allowed, otherwise they are omitted. 

 

Fig. 1. (b) represents the T-time expansion of network (a) 

for time horizon T = 6 

Flow-dependent transit times 

Inflow-dependent transit times: The main objective of 

this section was to study about flow over time with 

inflow-dependent transit times, which is an extension of 

the flow over time with fixed transit times. Transit times 

are fixed in flow over time with fixed transit times so that 

the flow on arc a progresses at constant speed. Here, in 

inflow-dependent transit times (Kӧhler et al. 2002), 

transit times experienced by an infinitesimal unit of flow 

on an arc is determined when entering this arc and only 

depends on the inflow rate at that moment of time. In the 

flow over time with inflow-dependent transit times, flow 

entering arc a at time θ arrives head (a) at time θ + 

τa(fa(θ)). In particular, the transit time of an arc only 

depends on the current flow rate.  In time dependent flow, 

all arc must be empty from time T on, so for all arcs a A 

and θ R
+
 we have θ + τa(fa(θ)) < T  whenever  fa(θ) > 0. 

Flow conservation, in this case, is modeled as 

 

for all  and N {s,t} and equality holds for 

 at time . The flow over time f 

satisfies the supply and demands if 

  

for v ∈ {s, t}. The value of s-t flow over time f is given by 

 

The value of a temporally repeated flow f with flow-

dependent transit times (τa)a∈A and underlying path 

decomposition (xp)p∈P  is given by 

 

Fan graph: Mostly flow over time problems can be 

solved by static flow algorithms in time expanded graphs. 

As    defined in Kӧhler et al. (2002), fan graph G
F 

is 

generalized time-expanded graph, in which transit time 

indirectly depends on the current flow rate. To focus the 

step function character of transit time function, it is 

denoted here by  instead of τa. To compute the flow 

over time with inflow-dependent transit times in G, 

classical network flow algorithm for static flow problem 

is applied in G
F
. 

As defined in time expanded graph, fan graph G
F
 is also 

defined on the same set of nodes { = 0, 1, 

....., T-1}.  For every θ {0, 1, ...., T-1}, we  define a fan of 

arcs leaving vθ, which represents all possible transit times 

of arc a = (v,w) and is expanded according to the transit 

time function. For example, take a single arc a = (v,w) 

with transit time τa  as 1, 3 and 7 if the flow is at most 2,  4 

and 6  units, respectively, as shown in Fig. 2(a). Figure 

2(b) shows the fan at θ = 0 consisting capacitated 

horizontal arcs and uncapacitated arcs pointing upward. 

Similarly, Figure 2(c) shows the fan graph of arc a as a 

time expanded graph having infinite capacity from vθ to 

vθ+1 for all v N and θ = 0, 1, ....., T-2,  which allow to 

hold flow at a node v. 

Although choice of transit times and capacities are 

according to the given transit time functions, the transit 

time experienced in the fan graph do not completely 

reflects inflow-dependent transit times. In this example, if 

the flow is entering arc a at constant rate 6, then by transit 

time function, every 6 unit flow should traverse arc a with 

transit time τa = 7. But in the fan graph, first 2 unit flows 

traverse the arc with transit time 1, another 2 units with 

transit time 3 and rest 2 units with transit time 7. Hence 

only last 2 unit flow is experiencing the correct transit 

time 7. 

Bow graph: As described in Kӧhler et al. (2002), the 

bow graph denoted by G
B 

= (N
B
, A

B
), arises from the 

original graph by expanding arc a ∈ A according to its 

transit time function. In bow graph G
B
, every arc e ∈ A

B 

has capacity ue and a constant transit time τe ∈ R
+
. For the 

definition, let us consider an arc a ∈ A with capacity ua 

with break points 0 = u0 < u1,.... < um = ua  and 
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corresponding transit times τ1 < τ2 < ….. < τm, where 

τa
s
(x) = τi  for x ∈ (ui−1, ui]. This means that flow 

entering the arc a at the rate x ∈ (ui−1, ui] needs τi time 

unit to traverse arc. To construct bow graph of an arc a, 

we replace it by arcs of two types: bow arcs denoted by 

b1, b2, .... ,bm and regulating arcs denoted by r1, r2, .... 

,rm. The bow arcs are uncapacitated, and they represent 

all possible transit times of arc a. The transit times of 

bow arc bi is given by τi , i = 1, 2, ...., m.  The regulating 

arcs have zero transit time and they limit the amount of 

flow entering the bow arcs. Their capacities are chosen 

according to the breakpoints of transit time function 

τa
s
(xa), that is, the capacity of arc ri is set to ui, i = 1, 2, ...., 

m.  The set of regulating arcs and bow arcs of an arc a ∈ A 

is denoted by . For every arc e ∈ , we denoted by 

a(e) as the corresponding arc a in A. The size of is 

linear in the number of breakpoints of . In bow graph, 

nodes in N
B 

corresponding to nodes in N are original 

nodes and the remaining nodes are artificial. Figure 3(b) 

represents the expansion of an arc a according to transit 

time function using bow graph in Fig. 3. Note that fan 

graph is the time-expanded graph of the bow graph. 

 

Fig. 2. An expansion of single arc a=(v,w) with given transit times by definition of fan graph  

     

Fig. 3. An expansion of single arc a=(v,w) according to 

transit time function by definition of bow graph 

Relaxation: Flow entering arc a at time θ and traversing 

the arc a with transit time τi  in the original  graph G also 

enters the expansion of arc a in G
B  

at time θ and 

traverses in time τi, using the corresponding bow arc bi. 

Let f be a flow over time in G with inflow-dependent 

transit times ( )a∈A and time horizon T. Then, it can be 

interpreted as a flow over time with constant transit times 
  

with the same time horizon T in G
B
. According to the 

transit time function, flow entering the arc a at time θ in 

the original graph G with flow rate fa(θ) reaches head(a) 

at time θ + fa(θ)). We use the similar behavior in the 

bow graph by sending flow onto the arc e ∈  with 

transit time (fa(θ). 

For bow arcs b1, .....,bm in ,  let i ∈{1, 2, ...., m} be 

chosen such that (fa(θ)) = τi. We define a flow over 

time 
 
on the expansion of arc a by setting fe

B
(θ) = 

fa(θ) if e is either a bow arc bi  or a regulating arcs rj 

with . For all other arcs we set fe
B
(θ) = 0. That is, 

 

Clearly, obeys capacity constraints and flow 

conservation at all intermediate nodes. From the definition 

of bow graph, we have the following conclusion: Let f be 

a flow over time with inflow-dependent transit times 

( a∈A in G that sends D units of flow from s to t within 

the time T. Then flow over time  in G
B 

(with constant 

transit times) sends D units of flow from s to t within time 

T. This means that every flow over time in G can be 

regarded as a flow over time in G
B 

but the converse may 

not be true. The reason is that, in flow-dependent transit 

times flow entering the arc at the same time arrives the 

head of arc simultaneously but in bow graph flow allowed 

to split up along the bows of different transit times. So 

only a portion of flow experience the correct transit time 

prescribed by given transit time function. We can state this 

property as follows:  If sends flow along the i
th 

bow 

arc bi with index j ≤ i, we have . That is, 

the flow fills the bows from bottom to top. This is 

because, if j ≤ i, the transit time of arc bj is smaller than 

the transit time of arc bi. Therefore, shifting flow from bi 

to bj improves the value of the objective function of x
B
. 

Definition (Inflow-preserving flow): Let be a flow 

over time in G
B
. Then flow is inflow-preserving if 

for every original arc a A and at every point in time 

θ, the flow  sends flow into at most one bow arc e 

∈ .  
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Now by definition of inflow-preserving flow, we have the 

following fact: Every inflow-preserving flow over time  

 in G
B 

with time horizon T corresponds to a flow over 

time f in G with inflow-dependent transit times ( )a∈A 

and time horizon T, and vice versa. It is to be noted that 

the time horizon of quickest flow in G
B 

can be strictly 

smaller than time horizon of any inflow-preserving flow 

over time in G
B 

satisfying the same demand. 

Example 1: Let G consists of a path P of length 2 

denoted by a1 and a2 with respective capacities ua1
=2 

and   ua2
= 2. The first arc on P has transit time 

function 

 

The second arc has constant transit time τa2
= 0 (Fig. 

4).  

There exist a flow over time in G
B 

which sends D = 9 

units of flow from s to t within given time T = 5. For, 

using temporally repeated flow which sends flow at rate 1 

into the s-t path containing lower bow arc b1 during time 

interval (0,5) and flow rate 1 into the s-t path containing 

upper bow arc b2 during time interval (0,4). We define an 

inflow-preserving flow over time f in G
B 

which satisfies 

demand 8 within time T = 5. It sends flow at rate 2 into 

bow arc b2 during (0,3), then after it sends flow at the rate 

1 into bow arc b1 until time 5. 

 

Fig. 4. Bow graph according to the transit time function 

of example 1 

Approximation to the quickest flow problem 

Quickest inflow-dependent flow problem is to determine 

an s-t flow over time with inflow-dependent transit times 

that satisfies demand D within minimum time . 

Ford and Fulkerson (1958) assumed  be the minimum 

time horizon and x
B 

be a static flow in G
B 

such that the 

value of the resulting temporally repeated flow in G
B 

is 

 

Since the quickest flow problem on G
B 

can be seen as a 

relaxation of the quickest flow problem with inflow-

dependent transit times on G, the value is the lower 

bound on the optimal time horizon in G. 

Now we are interested in a flow over time in G
B
, which is 

inflow-preserving. As discussed above flow in G
B 

in 

general does not satisfy this condition. One of the reason 

is that flow unit entering the expansion of a A 

simultaneously might experience different transit time in 

due to different transit times on bow arc . So, the 

static flow x
B 

of an arc is to be restricted make sure 

that it does not split among the bow arcs representing 

different transit times.  For this, we use to push the flow 

from fast bow arcs up to the slowest flow carrying bow 

arcs in x
B

. The modified push flow  is defined as 

 

 

In bow graph G
B
, only regulating arcs r1,  ........ ,rm, are 

capacitated, it follows from the feasibility of x
B  

in G
B 

that is feasible as well. Similarly value of the flow 

remains unchanged, that is,  = | |. We denote the 

unique bow arc which carries flow in by b
a 

and 

flow decomposition of into flows on s-t path  in 

G
B
 with flow value . Thus from the construction of 

modified push flow we observe the following: Let a A, 

either no flow  

in is routed through  or the flow in is routed 

through a unique bow arc with transit time 

 In Fig. 5, flows in bow arcs of Fig.  

5(a) are pushed in single bow arc of Fig.  5(b) 

using definition of modified push flow.  

 

Fig. 5. (b) represents the inflow preserving temporally 

repeated flow of origin bow flow of (a) 

Since all flow-carrying arcs carry flow in x
B  

as well 

so the transit time τP of every path is bounded 

from above by the time horizon  of a quickest flow in 

G
B
. Now the path decomposition  of   induces 

a temporally repeated flow  in G
B
 for any time 

horizon . We choose  such that 

 It is very essential 

to note that the flow over time  is inflow-preserving.  
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Lemma1: The value   is bounded from above by . 

Proof: Since  is an increasing function of T.  So it 

is suffices to show that | . 

 

 

 

 

Non-existence of earliest arrival flows 

Earliest arrival flows are those maximum s-t flows over 

time that sends, for each time θ [0, T), the maximum 

amount of flow from s to t.  Although maximum flow for 

a fixed time horizon T exists, it may not be true for each 

θ  [0, T). 

Gale (1959) showed the existence of earliest arrival flows 

for general networks with constant transit times on the 

arcs and, more generally, for networks with time-

dependent (but not flow-dependent) transit times and 

capacities on the arcs. In case of flow-dependent transit 

times there exists an s-t flow over time that sends the 

maximum amount of flow from s to t for any time horizon 

T. But there may not be such a maximum s-t flow that is 

maximal for each θ [0, T ) (Baumann & Kӧhler 

2007). We will show this by the following simple 

example. 

Example 2: Consider the one-arc network together 

with the simple linear transit time function given by 

τ(x) = 2x for 0 ≤ x ≤ 2 (Fig. 6) and a capacity two. 

We consider a flow model with inflow-dependent transit 

times. Let T = 6 be considered time horizon. When 

sending flows from s to t at a flow rate of 2 in time 

interval (0,2) and at flow rate linearly decreasing  from 2 

to 0 in the time interval (2,6), then the flow of 8 units has 

been reached to the sink t by time T = 6.  In fact, this is the 

maximum amount of flow that can be sent from s to t in 

this time horizon. 

 

Fig. 6. Dynamic network with inflow-dependent transit 

times as in example 2 

To construct an earliest arrival flow, we have to make sure 

that the maximum possible amount of flow has reached 

the sink for any θ (0, T). To show that this is not 

possible for this example we examine just two values of θ. 

Sending flow at the flow rate linearly decreasing from 2 to 

0 in time interval (0,4) shows that an earliest arrival flow 

must send at least 4 units of flow to t up to time θ = 4.  In 

fact, sending any flow  in this time interval at a higher 

flow rate would result in a decrease of the flow value 

reaching t up to time θ = 4. It follows easily that any flow 

sending the maximum amount of flow up to θ = 4 into t 

cannot send more than 5 units of flow into t up to θ = 6. 

However, the maximum flow for time horizon 6 is 8. Thus 

we have the following conclusion:  

Theorem 1: For inflow-dependent transit times, 

earliest arrival flow does not exist in general. 

The modified bow graph 

The modified bow graph, denoted by G
B 

= (N
B
,A

B
), is 

defined on the same node set as G, i.e., N
B 

= N, and is 

obtained by creating several copies of an arc, one for 

possible transit times  on the arc as described in 

previous section. Thus arc a is replaced by creating m 

parallel bow arcs b1, b2, ...., bm. The transit time of bow 

arc bj is τj and capacity uj for j =1, 2, ..., m (Fig. 7).  We 

denote the set of bow arcs corresponding to arc a by 

and refer to  as the expansion of arc a. The cost 

coefficient to every arc e ∈  are identical to those of arc 

a, i.e., ce = ca.  For every arc e , let a(e) denote the 

original arc a. The main difference between this modified 

bow graph and previously defined bow graph is as 

follows: In the modified model, we omit the regulating 

arcs which, in the previous model, limit the amount of 

flow entering the bow arcs. In particular, all bow arcs 

representing the same original arc share capacity. In the 

modified model, capacities are directly assigned to the 

bow arcs. They no longer share capacities. Moreover, we 

include arc costs in the modified model. 

 

Fig. 7. An expansion of single arc a= (v,w) according to 

modified blow graph  

Relaxation: In this section, we discuss the relationship 

between flows over time in the bow graph G
B 

and flows 

over time with inflow-dependent transit times in G. Any 

flow over time  f  with inflow-dependent transit times 

( )a∈A  in G with time horizon T and cost C can be 

interpreted as a flow over time  (with constant transit 

times) in G
B 

with same time horizon T and cost C as 
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follows:  If, in the original graph G, flow is entering arc a 

∈ A at time θ with flow rate  fa(θ), then, in the bow graph 

this flow is sent onto the bow arc e ∈  representing 

transit time  (fa(θ)). Costs are preserved, since the cost 

of every arc e ∈   is identical to the cost of arc a. 

Unfortunately, an arbitrary flow over time  in G
B 

does not corresponds to a flow over time f with inflow-

dependent transit times ( )a∈A in G. In addition, we 

define inflow-preserving property in G
B 

which helps to 

justify the following observation: Every inflow-

preserving flow over time  in G
B 

with time horizon T 

corresponds to a flow over time f in G with inflow-

dependent transit times ( )a∈A  and time horizon T, and  

vice  versa. 

Notice that the set of inflow-preserving flows over time is 

not convex. In particular, it is difficult to compute inflow-

preserving flows directly. Therefore, we consider a 

relaxed notation which can be interpreted as 

convexification of inflow-preserving flows and defined as 

follows: For any bow arc e ∈ A
B
, let λe(θ) =  (θ) /ue 

denote the per capacity inflow rate into arc e. 

Definition (Weakly inflow-preserving): A flow over 

time  with time horizon T in G
B 

is called weakly 

inflow-preserving if  1 for all a ∈ A and θ 

∈ [0, T). 

Quickest weakly inflow-preserving flows 

Fleischer and Skutella (2002) propose a (2+ )-

approximation algorithm for the quickest multicommodity 

flow problem with bounded cost and constant transit 

times. The method based on an approximate length 

bounded static flow computation. The same approach can 

be applied to the problem of finding a quickest weakly 

inflow-preserving flow over time with bounded cost in the 

bow graph. Here the goal is to determine a weakly inflow-

preserving flow over time in G
B 

which satisfies all 

demands within minimum time T at a cost bounded by C. 

Let be an optimal solution to this problem with 

minimum time horizon T. Consider the static flow x
B
 in 

G
B 

which results from averaging the flow on every 

arc e A
B 

over the time interval [0,T), 

i.e . As proven by Fleischer and 

Skutella (2005), this static flow  

1. satisfies a fraction of    of  the demands covered 

by the flow over time , 

2. has cost    and 

3. is T-length-bounded. 

The later property means that the flow can be decomposed 

into a sum of flows on s-t paths such that the length τ (p) 

of any such path p is at most T. To see this, 

notice that the flow over time  finishes by time T, every 

(infinitesimal) unit of flow in f describes a path in G
B 

of 

length at most T. Taking all such paths yields a T-length-

bounded path decomposition of x
B
.  

Since  is weakly inflow preserving, so is x
B
, i.e., it’s 

per capacity flow values λe= /ue, e ∈A
B
, satisfies 

4.  for every arc a  A. 

Any arbitrary static flow  in G
B 

satisfying 

requirements (1)-(4) can be turned into a weakly 

inflow- preserving flow over time g
B 

in G
B 

meeting the 

same demands at the same cost as within time 2T as 

follows: Send flow into every s-t path p given by the 

length-bounded path decomposition of x at the 

corresponding flow rate xp for exactly T time units, wait 

for at most another T time units until all flow has 

arrived at its destination. Since (θ) /ue is always 

upper-bounded by xe /ue, it follows from property (4) 

that g
B 

is weakly inflow-preserving. Provided that we 

know the optimal time horizon of a quickest weakly 

inflow-preserving flow, we can compute 2-approximate 

solution by solving the static flow problem defined by 

requirements (1)-(4). 

Unfortunately, computing T-length-bound flows is NP-

hard. Yet, as discussed in (Fleischer & Skutella 2002), 

the T-length-bounded multi-commodity flow problem can 

be approximated within arbitrary precision in polynomial 

time by slightly relaxing the length bound T. It is easy to 

generalize this observation to length-bounded, weakly 

inflow-preserving flows.  Let P
T 

be the set of all s-t paths 

in G
B 

whose transit times are bounded from above by T. 

The cost of path   p  P is defined as c(p) = . 

Finding a static flow satisfying (1)-(4) is equivalent to 

solving the following primal linear programme: 

 

 

 

 

If the number of paths in P
T 

and thus the number of 

variables in this linear programme are exponentially large, 

we solve the problem by duality. Now the problem became 

a linear programming problem which can be solved by 

graphical method, simplex method or any other relevant 

methods. Sometimes it may give fractional solutions 

which cannot be acceptable practically. In this case, we 

desire integer solutions which can be obtained by cutting 

plane algorithm or branch and bound method or any other 

relevant method. 



 

 

Flow over time problem with inflow-dependent transit times 

56 

 
 

CONCLUSION 

In this paper, we have studied the existing models of flow 

over times with inflow- dependent transit times which are 

represented by fan graph and bow graph. Together with 

this, it covers the important property of temporally 

repeated flow, inflow-preserving flow and non-existence 

of earliest arrival flow in it. In modified bow graph, 

inflow- preserving flow is turned to weakly inflow-

preserving flow by convexification, which helps to change 

quickest weakly inflow-preserving flow into the linear 

programming problem. Actually flow over time problem 

is not only related to traffic flow problem but is applicable 

in many applications like evacuation planning, 

communication network, internet and production system. 
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