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ABSTRACT 

A two-parameter generalization of Sujatha distribution (AGSD), which includes Lindley distribution and 

Sujatha distribution as particular cases, has been proposed. It's important mathematical and statistical 

properties including its shape for varying values of parameters, moments, coefficient of variation, skewness, 

kurtosis, index of dispersion, hazard rate function, mean residual life function, stochastic ordering, mean 

deviations, Bonferroni and Lorenz curves, and stress-strength reliability have been discussed. Maximum 

likelihood estimation method has been discussed for estimating its parameters.  AGSD provides better fit 

than Sujatha, Aradhana, Lindley and exponential distributions for modeling real lifetime data. 

 

Keywords: Lindley distribution, Hazard rate function, Mean residual life function, Bonferroni and Lorenz 

curves, Stress-strength reliability. 

 

INTRODUCTION 

The probability density function (PDF) and the 

cumulative distribution function (CDF) of Lindley 

(1958) distribution are given by 

   
2

1 ; 1 ; 0, 0
1

xf x x e x
 



   
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 (1.2) 

The density (1.1) is a two-component mixture of 

an exponential distribution having scale 

parameter   and a gamma distribution having 

shape parameter 2 and scale parameter   with 

their mixing proportions
1



 
 and 

1

1 
respectively. Detailed study on its various 

mathematical properties, estimation of parameter 

and application showing the superiority of 

Lindley distribution over exponential distribution 

for the waiting times before service of the bank 

customers has been done by Ghitany et al. 

(2008). Shanker et al. (2015) had critically 

studied the modeling of lifetime data using 

exponential and Lindley distributions and 

concluded that there are several lifetime data 

where these distributions are not suitable from 

theoretical or applied point of view. In recent 

years much work have been done on Lindley 

distribution, its mixture with other distributions, 

extensions, and generalizations by many 

researchers including Zakerzadeh and Dolati 

(2009), Nadarajah et al. (2011), Deniz and Ojeda 

(2011), Bakouch et al. (2012), Shanker and 

Mishra (2013 a, 2013 b), Shanker and Amanuel 

(2013), Shanker et al. (2015), Ghitany et al. 

(2013), Shanker et al. (2016 a, 2016 b, 2016 c), 

Shanker (2016 a), Shanker et al. (2017). 

The PDF and the CDF of Aradhana distribution 

introduced by Shanker (2016 b) are given by 
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Shanker (2016 b) has shown that the Aradhana 

distribution is a three-component mixture of an 

exponential distribution having scale parameter 

 , a gamma distribution having shape parameter 

2 and scale parameter  , and a gamma 

distribution with shape parameter 3 and scale 

parameter   with their mixing proportions 
2

2 2



  
, 

2 2



  
and 

2

2

2  
. Shanker 

(2016 b) has   discussed its important properties 

including its shape for varying values of 

parameters, moments, coefficient of variation, 

skewness, kurtosis, index of dispersion, hazard 

rate function, mean residual life function, 

stochastic ordering, mean deviations, Bonferroni 

and Lorenz curves, and stress-strength reliability 

. Shanker (2016 b) has discussed the applications 

of Aradhana distribution for modeling lifetime 

data using maximum likelihood estimation.  

The PDF and the CDF of Sujatha distribution 

introduced by Shanker (2016 c) are given by  
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3

2
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Shanker (2016 c) has shown that the Sujatha 

distribution is a three-component mixture of an 

exponential distribution having scale parameter  , 

a gamma distribution having shape parameter 2 

and scale parameter  , and a gamma distribution 

with shape parameter 3 and scale parameter   

with their mixing proportions 

2

2 2 2



  
, 

2

2

2 2



  
and 

2

2

2 2  
, respectively. 

Shanker (2016 c) has   discussed its important 

properties including its shape for varying values of 

parameters, moments, coefficient of variation, 

skewness , kurtosis, index of dispersion, hazard 

rate function, mean residual life function, 

stochastic ordering, mean deviations, Bonferroni 

and Lorenz curves, and stress-strength reliability. 

Shanker (2016 c) has discussed the maximum 

likelihood estimation of parameter and showed the 

applications of Sujatha distribution to model 

lifetime data from biomedical science and 

engineer. Shanker (2016 d) has also obtained a 

Poisson mixture of Sujatha distribution namely 

Poisson-Sujatha distribution (PSD) and studied its 

properties, estimation of parameter and 

applications for count data. Shanker and Hagos 

(2016, 2015) have obtained and discussed the size-

biased and zero-truncated Poisson-Sujatha 

distribution and their various statistical and 

mathematical properties, estimation of parameter 

and applications to model count data which 

structurally exclude zero-counts. Recently, 

Shanker (2016 e) has introduced a quasi Sujatha 

distribution (QSD), for modeling lifetime data 

from biomedical science and engineering.  

In this paper, a generalization of Sujatha 

distribution (AGSD), of which one parameter 

Lindley (1958) distribution and Sujatha distribution 

introduced by Shanker (2016 c) are particular cases, 

has been proposed. It's important properties 

including hazard rate function, mean residual life 

function, stochastic ordering, mean deviations, 

Bonferroni and Lorenz curves, stress-strength 

reliability have also been discussed. The estimation 

of the parameters has been discussed using 

maximum likelihood estimation.  Some numerical 

examples have been given to test the goodness of fit 

of AGSD and the fit has been compared with one 

parameter Sujatha, Aradhana, Lindley and 

exponential distributions. 

 

A GENERALIZATION OF SUJATHA DISTRIBUTION 

The probability density function of a generalization 

of Sujatha distribution (AGSD) can be introduced 

as:

   
3

2

4 2
; , 1 ; 0, 0, 0

2

xf x x x e x
    

  

     
 

 (2.1) 
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where   is a scale parameter and   is a shape 

parameter. It can be easily verified that (2.1) 

reduces to the one parameter Lindley (1958) 

distribution (1.1) and Sujatha distribution (1.3), 

introduced by Shanker (2016 c) for  0  and 

1  . It can be easily shown that AGSD is a 

three-component mixture of exponential   , 

gamma  2, and gamma  3, distributions. We 

have 

         4 1 1 2 2 1 2 3; , ; ; 1 ;f x p g x p g x p p g x          

Where,  

2

1 2 2
p



  
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2 2 2
p



  


 
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  2
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 
3 2

3 ; ; 0, 0
2

xx e
g x x


 



    

Since AGSD includes Lindley and Sujatha 

distributions as particular cases, it is   expected to 

give better fit than both Lindley and Sujatha 

distributions for modeling lifetime data from 

biological sciences and engineering.  

Further, for   , the PDF of AGSD (2.1) 

reduces to the PDF of gamma distribution with 

shape parameter 3 and scale parameter  . 

The corresponding cumulative distribution function 

of (2.1) can be obtained as: 

 

 
 

4 2

2
; , 1 1 ; 0, 0, 0

2

x
x x

F x e x   
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  


  

      
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 (2.2) 

 

Graphs of the PDF and the CDF of AGSD are shown in figures 1 (a) and 1 (b) for varying values of 

parameters   and  . 
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Fig. 1 (a) Graphs of the PDF of AGSD for varying values of parameters   and  . 
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Fig. 1 (b) Graphs of the CDF of AGSD for varying values of parameters   and  . 

 

MOMENTS 

The r
th
 moment about origin, r  of AGSD (2.1) can be obtained as: 

    

 
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 (3.1) 

 

The first four moments about origin of AGSD (2.1) are thus obtained as: 
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Using the relationship between moments about mean and the moments about origin, the moments about 

mean of AGSD (2.1) are obtained as   

 
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The coefficient of variation (C.V), coefficient of skewness  1 , coefficient of kurtosis  2  and index 

of dispersion   of AGSD (2.1) are thus obtained as 
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To study the nature of C.V, 1 , 2 and  , their values for varying values of the parameters   and 

have been computed and presented in tables 1,2,3 and 4. 
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Table 1. C.V of AGSD for varying values of parameters θ and α. 

Θ 

α 

0.2 0.5 1 2 3 4 5 

0.2 0.668399 0.768226 0.861102 0.935541 0.9632 0.976287 0.983472 

0.5 0.62575 0.708329 0.816497 0.922627 0.96225 0.979208 0.987456 

1 0.604466 0.662392 0.761739 0.892143 0.95119 0.977525 0.989835 

2 0.591771 0.627199 0.702377 0.83666 0.918489 0.96225 0.984948 

3 0.587172 0.612596 0.671749 0.795698 0.886072 0.941606 0.973665 

4 0.584797 0.604609 0.653155 0.765466 0.85773 0.920447 0.959837 

5 0.583347 0.599573 0.640678 0.74246 0.833556 0.900389 0.945247 

 

For a given value of  , C.V increases as the value of   increases. Again for a given value of  3  , C.V 

decreases as the value of   increases. But for 4 5  , C.V increases as the value of  increases between 

0.2 0.5   and decreases for 1  .  

 

Table 2. 1  of AGSD for varying values of parameters θ and α. 

θ            

α 

0.2 0.5 1 2 3 4 5 

0.2 1.193449 1.327366 1.525066 1.739109 1.837044 1.888906 1.91951 

0.5 1.150887 1.201582 1.377838 1.662624 1.809416 1.88468 1.92581 

1 1.145006 1.145839 1.247611 1.535588 1.733747 1.848046 1.912879 

2 1.146979 1.129318 1.154381 1.365976 1.586598 1.745907 1.850452 

3 1.148785 1.130201 1.126373 1.27031 1.475249 1.649093 1.776904 

4 1.149954 1.132836 1.116957 1.21277 1.3934 1.567307 1.706821 

5 1.150749 1.13533 1.11421 1.176244 1.332296 1.499635 1.643745 

 

Since 1 0  , AGSD is always positively skewed. 

 

Table 3. 2  of AGSD for varying values of parameters θ and α. 

θ 

α 

0.2 0.5 1 2 3 4 5 

0.2 4.998199 5.432504 6.255787 7.329721 7.897921 8.223101 8.424354 

0.5 4.882734 4.918002 5.53125 6.845226 7.6754 8.154083 8.435548 

1 4.898384 4.741512 4.974649 6.143984 7.169484 7.859059 8.293729 

2 4.933706 4.741178 4.643535 5.333878 6.323212 7.176 7.813096 

3 4.951698 4.781497 4.579203 4.933269 5.759668 6.607315 7.323125 

4 4.962123 4.815044 4.580071 4.715733 5.380366 6.167697 6.896751 

5 4.968875 4.840695 4.599658 4.59102 5.115984 5.827849 6.538529 
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Since 2 3  , AGSD is always leptokurtic, which means that AGSD is more peaked than the normal curve. 

 

Table 4.  of AGSD for varying values of parameters θ and α 

θ            

α 

0.2 0.5 1 2 3 4 5 

0.2 5.724085 2.514641 1.297619 0.629076 0.404022 0.294351 0.23035 

0.5 5.431358 2.436975 1.333333 0.668831 0.42735 0.308201 0.239049 

1 5.252329 2.31348 1.305556 0.696429 0.452381 0.325758 0.251067 

2 5.137263 2.194638 1.233333 0.7 0.474537 0.347222 0.26821 

3 5.094207 2.140452 1.184524 0.685897 0.479798 0.358059 0.27914 

4 5.071703 2.10976 1.151852 0.669643 0.478205 0.363095 0.286084 

5 5.057875 2.090047 1.128788 0.654605 0.473737 0.364815 0.290385 

 

As long as 0 1   and 0 5  , the nature of AGSD is over-dispersed  2

1    and for 2   and 

0  , the nature of AGSD is under-dispersed  2

1    

 

HAZARD RATE FUNCTION AND MEAN RESIDUAL LIFE FUNCTION 

Let X be a continuous random variable with PDF  f x and CDF  F x . The hazard rate function (also 

known as the failure rate function),  h x  and the mean residual life function,  m x of X are respectively 

defined as  

 
   

 0
lim

1x

P X x x X x f x
h x

x F x 

  
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 
 (4.1) 

and 

 
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1

 1
1 x

m x E X x X x F t dt
F x



             (4.2) 

 

The corresponding hazard rate function,  h x and the mean residual life function,  m x of AGSD (2.1) are 

thus obtained as: 
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         

       

       


     
 

 (4.4)                                                                                        
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It can be easily verified that    
3

2
0 0

2
h f



  
 

 
 and  

 

2

12

2 6
0

2
m

  


   

   
 

. The graphs 

of  h x and  m x  of AGSD (2.1) for different values of its parameters are shown in figures 2 (a) and 2 (b). 

 

   

   

   

Fig. 2 (a) Graphs of   h x  of AGSD for selected values of parameters   and  . 
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Fig. 2 (b) Graphs of   m x  of AGSD for selected values of parameters   and  . 

 

t 
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It is also obvious from the graphs of  h x  and

 m x  that  h x  is monotonically increasing 

function of x ,   and   whereas  m x is 

monotonically decreasing function of x ,   and  .  

 

STOCHASTIC ORDERINGS 

Stochastic ordering of positive continuous random 

variables is an important tool for judging the 

comparative behaviour of continuous distributions. 

A random variable X is said to be smaller than a 

random variable Y in the  

(i) stochastic order  stX Y if    X YF x F x for all x  

(ii) hazard rate order  hrX Y  if    X Yh x h x  for all x  

(iii) mean residual life order  mrlX Y  if    X Ym x m x for all x  

(iv) likelihood ratio order  lrX Y  if 
 

 
X

Y

f x

f x
 decreases in x . 

The following results due to Shaked and Shanthikumar (1994) are well known for establishing stochastic 

ordering of distributions 

lr hr mrlX Y X Y X Y      

stX Y
  

 

The AGSD (2.1) is ordered with respect to the strongest ‘likelihood ratio’ ordering as shown in the 

following theorem: 

Theorem: Let X   AGSD  1 1,   and Y   AGSD  2 2,  . If 1 2 1 2and       

(or 1 2 1 2and     ) then lrX Y and hence hrX Y , mrlX Y and stX Y . 

Proof: We have  

 

 

 
 

 1 1 1 2

2 2

3 2 2
1 2 2 2; , 1

; , 23 2
22 1 1 1

2 1

12

X

Y

f x x

f x

x x
e

x x

   

 

    

   

 
    

  
    

  ;  0x           

Now  

 

 

 
 

 1 1

2 2

3 2 2
1 2 2 2; , 1

1 2; , 23 2
22 1 1 1

2 1
ln ln ln

12

X

Y

f x

f x

x x
x

x x

 

 

    
 

   

     
     

      

. 

This gives 

 

 

   

  
 1 1

2 2

2
; , 1 2 1 2

1 2; , 2 2

1 2

2
ln

1 1

X

Y

f x

f x

x xd

dx x x x x

 

 

   
 

 

  
  

   
. 

Thus for 1 2 1 2and      (or 1 2 1 2and     ), 
 

 
1 1

2 2

; ,

; ,
ln 0X

Y

f x

f x

d

dx

 

 
 . This means that lrX Y

and hence hrX Y , mrlX Y and stX Y . 

 

MEAN DEVIATIONS  

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from 

the mean and the median. These are known as the mean deviation about the mean and the mean deviation 

about the median and are defined as: 

   1

0

X x f x dx 


     and     2

0

X x M f x dx


  , respectively, 
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where,  E X   and  Median M X .  

The measures  1 X  and  2 X can be calculated using the following relationships 

         1

0

X x f x dx x f x dx





  


      

       
0

1F x f x dx F x f x dx





   


       
 

   2 2 2F x f x dx


  


   
 

   
0

2 2F x f x dx



   
 (6.1) 

and 

         2

0

M

M

X M x f x dx x M f x dx


    
 

       
0

1

M

M

M F M x f x dx M F M x f x dx



       
 

 2
M

x f x dx


   
 

 
0

2

M

x f x dx  
 (6.2) 

 

Using PDF (2.1) and expression for the mean of AGSD (2.1), we get 

 
      

 

3 3 2 2 2

4 2

0

3 2 1 2 3 1 6
; ,

2

e
x f x dx

              
  

   

       
 

 
  

 
      

 

3 3 2 2 2

4 2

0

3 2 1 2 3 1 6
; ,

2

MM M M M M M M e
x f x dx

      
  

   

       
 

 


                                              (6.4) 

Using expressions from (6.1), (6.2), (6.3), and (6.4) and after some mathematical simplifications, the mean 

deviation about the mean,  1 X  and the mean deviation about the median,  2 X  of AGSD (2.1) are 

obtained as: 

 
   

 

2 2

1 2

2 1 2 2 1 6

2

e
X

       


   

     
 

 
 (6.5) 

and  

 
     

 

3 3 2 2 2

2 2

2 3 2 1 2 3 1 6

2

MM M M M M M e
X

      
 

   

        
  

 
 (6.6) 
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BONFERRONI AND LORENZ CURVES AND INDICES 

The Bonferroni and Lorenz curves (Bonferroni, 1930) and Bonferroni and Gini indices have applications not 

only in economics to study income and poverty, but also in other fields like reliability, demography, 

insurance and medical science. The Bonferroni and Lorenz curves are defined as: 

 

         
0 0

1 1 1
q

q q

B p x f x dx x f x dx x f x dx x f x dx
p p p


  

     
       

      
     (7.1) 

and 

         
0 0

1 1 1
q

q q

L p x f x dx x f x dx x f x dx x f x dx
  

     
       

      
     (7.2) 

respectively or equivalently  

   1

0

1
p

B p F x dx
p

   (7.3) 

and 

   1

0

1
p

L p F x dx


   (7.4) 

respectively, where  E X   and  1q F p . 

The Bonferroni and Gini indices are thus defined as: 

 
1

0

1B B p dp    (7.5) 

and 

 
1

0

1 2G L p dp    (7.6) 

respectively. 

Using PDF of AGSD (2.1), we get  

 
      

 

3 3 2 2 2

4 2

3 2 1 2 3 1 6
; ,

2

q

q

q q q q q q e
x f x dx

      
 

   

        


 
   (7.7) 

Now using equation (7.7) in (7.1) and (7.2), we get  

 
      3 3 2 2 2

2

3 2 1 2 3 1 61
1

2 6

qq q q q q q e
B p

p

      

  

        
  

  
 

 (7.8) 

and 

 
      3 3 2 2 2

2

3 2 1 2 3 1 6
1

2 6

qq q q q q q e
L p

      

  

       
 

 
 

Now using equations (7.8) and (7.9) in (7.5) and (7.6), the Bonferroni and Gini indices of AGSD (2.1) are 

thus obtained as: 

      3 3 2 2 2

2

3 2 1 2 3 1 6
1

2 6

qq q q q q q e
B

      

  

       
 

 
  (7.10) 
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      3 3 2 2 2

2

2 3 2 1 2 3 1 6
1

2 6

qq q q q q q e
G

      

  

       
 

 
  (7.11) 

 

STRESS-STRENGTH RELIABILITY 

The stress- strength reliability of a component 

illustrates the life of the component which has 

random strength X that is subjected to a random 

stress Y . When the stress  Y  of the component 

applied to it exceeds the strength  X  of the 

component, the component fails instantly and the 

component will function satisfactorily till X Y . 

Therefore,  R P Y X  is a measure of the 

component reliability and is known as stress-

strength reliability in statistical literature. It has 

extensive applications in almost all areas of 

knowledge especially in engineering such as 

structures, deterioration of rocket motors, static 

fatigue of ceramic components, aging of concrete 

pressure vessels etc. 

Let X and Y be independent strength and stress 

random variables having AGSD (2.1) with 

parameter  1 1,   and  2 2,   respectively. 

Then, the stress-strength reliability R of AGSD 

(2.1) can be obtained as: 

     
0

| XR P Y X P Y X X x f x dx



      

   4 1 1 4 2 2

0

; , ; ,f x F x dx   
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              

           

      

       

      

       
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  
 

   
52 2

1 1 1 2 2 2 1 22 2       






 
 
 
 
 



    
 

It can be easily verified that the above expression reduces to the corresponding expression of Sujatha 

distribution introduced by Shanker (2016 b) at 1 2 1   . 

 

MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS 

Let  1 2 3, , , ... , nx x x x  be random sample from AGSD (2.1). The likelihood function, L  is given by 

 
3

2

2
1

1
2

n
n

n x

i i

i

L x x e 


  





 
   

  
  

The natural log likelihood function is thus obtained as 

 
3

2

2
1

ln ln ln 1
2

n

i i

i

L n x x n x


 
   

 
     

  
  

where x is the sample mean. 

The maximum likelihood estimates (MLEs) ̂  and ̂  of   and   are then the solutions  of the following 

non-linear equations 
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 
2

2 1ln 3
0

2

nL n
n x



    


   

                                                   

2

2 2
1

ln 2
0

2 1

n
i

i i i

xL n

x x    


   

    


                                                                   

These two natural log likelihood equations do not seem to be solved directly. However, the Fisher’s scoring 

method can be applied to solve these equations. We have 

 

 

22

22 2 2

2 2 4 1ln 3

2

nL n   

    
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 
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The following equations can be solved for  MLEs  ̂  and ̂  of   and  of AGSD (2.1) 

0
0

0
0

2 2

2

0
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ˆˆ
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LL L
 

 
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     

 

   




    
             
      
       

  

where 0 and 0 are the initial values of   and  , respectively. These equations are solved iteratively till 

sufficiently close values of ̂  and ̂  are obtained.  

 

APPLICATIONS AND GOODNESS OF FIT  

The goodness of fit of a generalization Sujatha distribution (AGSD) using maximum likelihood estimation 

has been discussed with four real lifetime data sets and the fit has been compared with one parameter 

Sujatha, Aradhana, Lindley and exponential distributions.  The following four real lifetime data sets have 

been considered for the goodness of fit of considered distributions 

Data Set 1: The data set represents the strength of 1.5cm glass fibers measured at the National Physical 

Laboratory, England. Unfortunately, the units of measurements are not given in the paper, and they are 

taken from Smith and Naylor (1987) 

 

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73   1.81 

2.00  0.74 1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66      1.68 1.76 

1.82  2.01  0.77 1.11 1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 

1.76 1.84 2.24     0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 

1.70 1.77 1.84    0.84  1.24 1.30 1.48     1.51 1.55 1.61 1.63 1.67 

1.70 1.78 1.89 

Data set 2: This data set represents the lifetime’s data relating to relief times (in minutes) of 20 patients 

receiving an analgesic and reported by Gross and Clark (1975, P. 105).  
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1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7 4.1 1.8 

1.5       1.2 1.4 3 1.7 2.3 1.6 2 

Data Set 3: This data set is the strength data of glass of the aircraft window reported by Fuller et al. (1994): 

18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.8 26.69 26.77  

26.78 27.05 27.67 29.9 31.11 33.2 33.73 33.76 33.89 34.76 35.75 35.91  

36.98 37.08 37.09 39.58 44.045 45.29 45.381   

Data Set 4: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested 

under tension at gauge lengths of 20mm (Bader and Priest, 1982): 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997  

2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270  

2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490  

2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684  

2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012  

3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585  

 

In order to compare the goodness of fit of AGSD, Sujatha, Aradhana, Lindley and exponential distributions,

2ln L , AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected) and BIC 

(Bayesian Information Criterion) of distributions for four real lifetime data  sets have been computed and 

presented in table 5.  The formulae for computing AIC, AICC and BIC are as follows:  

2ln 2AIC L k   ,    
 

 

2 1

1

k k
AICC AIC

n k


 

 
,    2ln lnBIC L k n    , where k = the number of 

parameters, n  the sample size.   

 

Table 5 . MLE’s 2ln L , AIC, AICC and BIC of the fitted distributions of data sets 1, 2, 3 and 4. 

 Model MLE  ̂  2ln L  AIC AICC BIC 

Data 1 AGSD ˆ 1.9581   

ˆ 119.826   

110.75 114.75 114.95 119.03 

Sujatha ˆ 1.3500   154.80 156.80 156.86 158.94 

Aradhana ˆ 1.3464   149.87 151.87 151.93 154.01 

Lindley ˆ 0.9961   162.55 164.55 164.62 166.69 

Exponential ˆ 0.6637   177.66 179.66 179.73 181.80 

Data 2 AGSD ˆ 1.5712   

ˆ 222.235   

45.97 49.96 50.67 51.96 

Sujatha ˆ 1.1367   57.49 59.49 59.71 60.49 

Aradhana ˆ 1.1232   56.37 58.37 58.59 59.36 

Lindley ˆ 0.8161   60.49 62.49 62.71 63.49 

Exponential ˆ 0.5263   65.67 67.67 67.89 68.67 

Data 3 AGSD ˆ 0.0972   

ˆ 14.473   

240.54 244.54 244.68 243.97 
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Sujatha ˆ 0.0956   241.50 243.50 243.63 244.93 

Aradhana ˆ 0.0943   242.22 244.22 244.36 245.65 

Lindley ˆ 0.0630   253.98 255.98 256.11 257.41 

Exponential ˆ 0.0324   274.52 276.52 276.66 277.95 

Data 4 AGSD ˆ 1.2129   

ˆ 53.567   

186.35 190.35 190.53 194.82 

Sujatha ˆ 0.9361   221.60 223.60 223.66 225.83 

Aradhana ˆ 0.9170   219.90 221.90 221.96 224.13 

Lindley ˆ 0.6545   238.38 240.38 240.44 242.61 

Exponential ˆ 0.4079   261.73 263.73 263.79 265.96 

 

 

The best fit of the distribution is the distribution 

which corresponds to the lower values of 2ln L , 

AIC, AICC and BIC. It  is obvious from the 

goodness of fit of distributions for four  data sets 

in the table 5 that AGSD provides better fit than 

Sujatha, Aradhana,  Lindley and exponential 

distributions for modeling lifetime data. 

 

CONCLUSION 

A generalization of Sujatha distribution (AGSD) 

has been introduced which includes Sujatha 

distribution, proposed by Shanker (2016c) and 

Lindley distribution, proposed by Lindley (1958) 

as particular cases. Moments about origin and 

moments about  mean have been obtained and 

nature of coefficient of variation, coefficient of 

skewness, coefficient of kurtosis and index of 

dispersion of AGSD have been studied with 

varying values of the parameters. The nature of 

probability density function, cumulative 

distribution function, hazard rate function and 

mean residual life function have been discussed 

with varying values of the parameters. The 

stochastic ordering, mean deviations, Bonferroni 

and Lorenz curves, and stress-strength reliability 

have also been discussed. The method of 

maximum likelihood estimation has been 

discussed for estimating parameters. Four 

examples of real lifetime data sets have been 

presented to show the applications and goodness 

of fit of AGSD over Sujatha, Aradhana, Lindley 

and exponential distributions and it has been 

observed that AGSD gives much better fit. 
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