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ABSTRACT

A two-parameter generalization of Sujatha distribution (AGSD), which includes Lindley distribution and
Sujatha distribution as particular cases, has been proposed. It's important mathematical and statistical
properties including its shape for varying values of parameters, moments, coefficient of variation, skewness,
kurtosis, index of dispersion, hazard rate function, mean residual life function, stochastic ordering, mean
deviations, Bonferroni and Lorenz curves, and stress-strength reliability have been discussed. Maximum
likelihood estimation method has been discussed for estimating its parameters. AGSD provides better fit
than Sujatha, Aradhana, Lindley and exponential distributions for modeling real lifetime data.

Keywords: Lindley distribution, Hazard rate function, Mean residual life function, Bonferroni and Lorenz

curves, Stress-strength reliability.

INTRODUCTION
The probability density function (PDF) and the
cumulative distribution function (CDF) of Lindley
(1958) distribution are given by
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0
fl()(;0)=t9+1

(1+x)e™ ;x>0,0>0

(1.2)
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(1.2)
The density (1.1) is a two-component mixture of
an exponential distribution having scale

parameter ¢ and a gamma distribution having
shape parameter 2 and scale parameter € with

. L . 0 1
their mixing proportions—— and ——
0+1 0+1

respectively. Detailed study on its various

mathematical properties, estimation of parameter
and application showing the superiority of

3

Lindley distribution over exponential distribution
for the waiting times before service of the bank
customers has been done by Ghitany et al.
(2008). Shanker et al. (2015) had critically
studied the modeling of lifetime data using
exponential and Lindley distributions and
concluded that there are several lifetime data
where these distributions are not suitable from
theoretical or applied point of view. In recent
years much work have been done on Lindley
distribution, its mixture with other distributions,
extensions, and generalizations by many
researchers including Zakerzadeh and Dolati
(2009), Nadarajah et al. (2011), Deniz and Ojeda
(2011), Bakouch et al. (2012), Shanker and
Mishra (2013 a, 2013 b), Shanker and Amanuel
(2013), Shanker et al. (2015), Ghitany et al.
(2013), Shanker et al. (2016 a, 2016 b, 2016 c),
Shanker (2016 a), Shanker et al. (2017).

The PDF and the CDF of Aradhana distribution
introduced by Shanker (2016 b) are given by

2 __ox .
fz(x;9)=m(l+x) e” ;x>0,6>0 (1.3)
Fz(x;é?)zl—{l+(9)((26)(Jr2(9+2)}'9x :Xx>0,0>0 (1.4)
0 +20+2
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Shanker (2016 b) has shown that the Aradhana
distribution is a three-component mixture of an
exponential distribution having scale parameter

@, a gamma distribution having shape parameter
2 and scale parameter €, and a gamma
distribution with shape parameter 3 and scale

parameter 6 with their mixing proportions
& 0 2
2 ! 2 and 2
0°+0+2 O°+0+2 0°+60+2
(2016 b) has discussed its important properties

. Shanker

3
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Shanker (2016 c) has shown that the Sujatha
distribution is a three-component mixture of an

exponential distribution having scale parameter @,
a gamma distribution having shape parameter 2
and scale parameter @, and a gamma distribution

with shape parameter 3 and scale parameter 6
2

with their mixin roportions ——,
I prop 60*+20+2
20 2 .
—————and -, respectively.
0 +20+2 O +20+2

Shanker (2016 c) has  discussed its important
properties including its shape for varying values of
parameters, moments, coefficient of variation,
skewness , kurtosis, index of dispersion, hazard
rate  function, mean residual life function,
stochastic ordering, mean deviations, Bonferroni
and Lorenz curves, and stress-strength reliability.
Shanker (2016 c) has discussed the maximum
likelihood estimation of parameter and showed the
applications of Sujatha distribution to model
lifetime data from biomedical science and
engineer. Shanker (2016 d) has also obtained a
Poisson mixture of Sujatha distribution namely
Poisson-Sujatha distribution (PSD) and studied its
properties, estimation of parameter and
applications for count data. Shanker and Hagos
(2016, 2015) have obtained and discussed the size-
3

(l+x+x2)e’9X 'x>0,60>0

}e“gx;x>0,0>0

Rama Shanker, Kamlesh Kumar Shukla and Hagos Fesshaye

including its shape for varying values of
parameters, moments, coefficient of variation,
skewness, kurtosis, index of dispersion, hazard
rate function, mean residual life function,
stochastic ordering, mean deviations, Bonferroni
and Lorenz curves, and stress-strength reliability
. Shanker (2016 b) has discussed the applications
of Aradhana distribution for modeling lifetime
data using maximum likelihood estimation.

The PDF and the CDF of Sujatha distribution
introduced by Shanker (2016 c) are given by

(1.5)

(1.6)

biased and zero-truncated Poisson-Sujatha
distribution and their wvarious statistical and
mathematical properties, estimation of parameter
and applications to model count data which
structurally  exclude zero-counts. Recently,
Shanker (2016 e) has introduced a quasi Sujatha
distribution (QSD), for modeling lifetime data
from biomedical science and engineering.

In this paper, a generalization of Sujatha
distribution (AGSD), of which one parameter
Lindley (1958) distribution and Sujatha distribution
introduced by Shanker (2016 c) are particular cases,
has been proposed. It's important properties
including hazard rate function, mean residual life
function, stochastic ordering, mean deviations,
Bonferroni and Lorenz curves, stress-strength
reliability have also been discussed. The estimation
of the parameters has been discussed using
maximum likelihood estimation. Some numerical
examples have been given to test the goodness of fit
of AGSD and the fit has been compared with one
parameter  Sujatha, Aradhana, Lindley and
exponential distributions.

A GENERALIZATION OF SUJATHA DISTRIBUTION

The probability density function of a generalization
of Sujatha distribution (AGSD) can be introduced
as:

f,(x6,a)= (1+x+ozx2)e‘6’X ' x>0,0>0,a>0 (2.1)

6’ +0+2a
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where @ is a scale parameter and o is a shape ~ a=1. It can be easily shown that AGSD is a

parameter. It can be easily verified that (2.1)  three-component mixture of exponential (),

reduces to the one parameter Lindley (1958) o
distribution (1.1) and Sujatha distribution (1.3), ~9amma (2,6)and gamma (3,¢)distributions. We

introduced by Shanker (2016 c¢) for «=0and have
f, (%6,0)=p,g, (X% 0)+ p,9, (% 6)+(1~p,—p,) 95 (X 6)

Where,
02
Pp="F——
0 +0+2cx
o= 0
2 0%+ 0+2a

9,(%0)=0e"";x>0,6>0
g, (%0)=6"xe";x>0,0>0

03X2 e—Hx
g3(x;6’)=T;x>O,9>O
Since  AGSD includes Lindley and Sujatha  Further, for a —>o0, the PDF of AGSD (2.1)
distributions as particular cases, it is expected to  reduces to the PDF of gamma distribution with
give better fit than both Lindley and Sujatha shape parameter 3 and scale parameter 6.

distributions for modeling lifetime data from e corresponding cumulative distribution function
biological sciences and engineering. of (2.1) can be obtained as:

Ox(a Ox+0+2a)
6> +6+2a

F4(x;6?,a)=1—{1+ e x>0,6>0,a>0 (2.2)

Graphs of the PDF and the CDF of AGSD are shown in figures 1 (a) and 1 (b) for varying values of
parameters 6 and o .
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FLx]

pdf of A GSD pdfof A GSD

‘—0—84 ol 801022 8=la=d 0104 —0—00 0 82020 80073 820,074

pdfOfAGSD pdfOfAGSD

——6=05,0=4 —@—5-05,06 8=05,0=8 —+—-8=05,0=0

—4—06-02,074 —8—5-02, 08 8=02,0=8 —»—8=020=1

0106
0103
0104
Z 003 T
0.02
001
0
L O O A N
X X
Fig. 1 (a) Graphs of the PDF of AGSD for varying values of parameters ¢ and o .
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Fig. 1 (b) Graphs of the CDF of AGSD for varying values of parameters ¢ and o .
MOMENTS

The r ™ moment about origin, ,ur' of AGSD (2.1) can be obtained as:

- 6% +(r+1)0+(r+1)(r+2)a|
0"(0° +0+2a)

Hy

r=12,34,..

(3.1)

The first four moments about origin of AGSD (2.1) are thus obtained as:

0’ +20+6a
0(0°+60+2a)

!

. 6(6°+46+20q)
& 0*(0*+0+2a) '

, 2(0°+30+120)
H, = 2( 2 !
0 (9 +0+2a)

!

Hy =

70
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Using the relationship between moments about mean and the moments about origin, the moments about
mean of AGSD (2.1) are obtained as

0" +46° +2(8c +1)6?2 +120 o +12cx?

lLl =
i 6*(6*+6+2a)
) 0° +66° +6(5a +1)0" +2(21a +1)6° +18(2a +1)0°cx
e +366 a® + 24a°
3 6°(6* +0+2a)
; 30° +240" +4(320+11) 6° +8(43cc + 4) 0° +8(51a + 40a +1) 0"
1+96(8cc +1) @’ +48(9a +7)0%a* + 4800 a° + 2404’
Hy =

0" (6> +0+2a)

The coefficient of variation (C.V), coefficient of skewness (\/ﬁl ) coefficient of kurtosis ( ,) and index
of dispersion ( ) of AGSD (2.1) are thus obtained as

o 0 +40°+2(8a+1)0" +120 0 +124

CV .
W 0° +20+6a
) 0°+66° +6(5a +1)0" +2(21 +1)6° +18(2cr +1) 6%
Uy +360 a” +24a°
b= =

I (6" +46° +2(8a +1)6% +120a +12a% |

5 30° +240" +4(320 +11) 0° +8(43c +4) 0° +8(51” + 40 +1) 0"
gt _ +96(8a +1)0°cr +48(9a +7)0°a” + 4800 ° + 240 &*
s [0* +46° +2(8a: +1)0* +120 0 +12a° |

o’ 0' +46° +2(8a +1) 0 +120 a +120°
i 0(0°+0+2a) (0" +20+6a)

?/:

To study the nature of C.V, ,/ B, B,and y, their values for varying values of the parameters 6 and «
have been computed and presented in tables 1,2,3 and 4.
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Table 1. C.V of AGSD for varying values of parameters 0 and o.

®)02 0.5 1 2 3 4 5

o

0.2 0.668399 0.768226 0.861102 0.935541 0.9632 0.976287 0.983472
0.5 0.62575 0.708329 0.816497 0.922627 0.96225 0.979208 0.987456
1 0.604466 0.662392 0.761739 0.892143 0.95119 0.977525 0.989835
2 0.591771 0.627199 0.702377 0.83666 0.918489 0.96225 0.984948
3 0.587172 0.612596 0.671749 0.795698 0.886072 0.941606 0.973665
4 0.584797 0.604609 0.653155 0.765466 0.85773 0.920447 0.959837
5 0.583347 0.599573 0.640678 0.74246 0.833556 0.900389 0.945247

For a given value of a, C.V increases as the value of & increases. Again for a given value of 9(3 3) ,CV

decreases as the value of & increases. But for 4<8 <5, C.V increases as the value of ¢ increases between
0.2<a<0.5 and decreases for a >1.

Table 2. \/3, of AGSD for varying values of parameters 0 and a.

0102 0.5 1 2 3 4 5
o
0.2 1.193449 1.327366 1.525066 1.739109 1.837044 | 1.888906 | 1.91951
0.5 1.150887 1.201582 1.377838 1.662624 1.809416 | 1.88468 1.92581
1 1.145006 1.145839 1.247611 1.535588 1.733747 1.848046 | 1.912879
2 1.146979 1.129318 1.154381 1.365976 1.586598 [ 1.745907 | 1.850452
3 1.148785 1.130201 1.126373 1.27031 1.475249 | 1.649093 | 1.776904
4 1.149954 1.132836 1.116957 1.21277 1.3934 1.567307 | 1.706821
5 1.150749 1.13533 1.11421 1.176244 1.332296 1.499635 | 1.643745
Since \fﬁl >0, AGSD is always positively skewed.
Table 3. S, of AGSD for varying values of parameters 6 and o.

6102 0.5 1 2 3 4 5
o
0.2 4998199 | 5.432504 6.255787 7.329721 7.897921 8.223101 8.424354
0.5 4.882734 | 4.918002 5.53125 6.845226 7.6754 8.154083 8.435548
1 4.898384 | 4.741512 4.974649 6.143984 7.169484 7.859059 8.293729
2 4933706 | 4.741178 4.643535 5.333878 6.323212 7.176 7.813096
3 4951698 | 4.781497 4.579203 4.933269 5.759668 6.607315 7.323125
4 4962123 | 4.815044 4.580071 4.715733 5.380366 6.167697 6.896751
5 4.968875 | 4.840695 4.599658 4.59102 5.115984 5.827849 6.538529
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Since S, >3, AGSD is always leptokurtic, which means that AGSD is more peaked than the normal curve.

Table 4.y of AGSD for varying values of parameters 6 and a

002 05 1 2 3 4 5
a
0.2 5724085 | 2514641 |1.297619 |0.629076 | 0.404022 | 0.294351 | 0.23035
05 5431358 | 2.436975 |[1.333333 |0.668831 |0.42735 | 0.308201 | 0.239049
1 5252329 | 231348 [ 1.305556 | 0.696429 | 0.452381 |0.325758 | 0.251067
2 5137263 | 2194638 |[1.233333 |07 0474537 | 0347222 | 0.26821
3 5004207 | 2140452 |1.184524 [0.685897 | 0.479798 | 0.358059 | 0.27914
4 5071703 |2.10976 | 1.151852 |0.669643 | 0.478205 | 0.363095 | 0.286084
5 5057875 |2.090047 |1.128788 |0.654605 | 0.473737 |0.364815 | 0.290385

Aslongas 0<@8<1 and 0<a <5, the nature of AGSD is over-dispersed (0-2 > ﬂl') and for 8>2 and

a >0, the nature of AGSD is under-dispersed (o-2 < ,ul')

HAZARD RATE FUNCTION AND MEAN RESIDUAL LIFE FUNCTION
Let X be a continuous random variable with PDF f (x)and CDF F(x). The hazard rate function (also

known as the failure rate function), h(x) and the mean residual life function, m(x)of X are respectively
defined as

h(x)= lim PX< XZXAXP( ) =1_f|£)z)x) (4.1)
and
m(x)=E[ X -xX > x]:Fl(x)f[l— F(t)] dt (4.2)

The corresponding hazard rate function, h(x) and the mean residual life function,m(x)of AGSD (2.1) are
thus obtained as:

0° (1+x+ax?)
h(x)= (4.3)
Ox(0ax+0+2a)+(6" +0+2a)
and
2 2| Ot(Qat+0+2a)+(0°+0+2
()= 0 +0+2a I (0c : a)+( @) | oy
[9x(6?05x+6?+205)+(6?2+9+20¢)]e’6’X d 0> +0+2a
:a(92x2+29x+2)+9(9+2a)(9x+1)+(92+9+2a) s

9[6’x(0ax+0+2a)+(02 +6’+2a)}
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It can be easily verified that h(0)=

93
6’ +6+2a

= f(0) and m(0)=

0% +20 +60

0(92+0+2a)

= 1. The graphs

of h(x)and m(x) of AGSD (2.1) for different values of its parameters are shown in figures 2 (a) and 2 (b).
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Fig. 2 (a) Graphs of h(x) of AGSD for selected values of parameters ¢ and « .
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m(x) of A GSD m(x) of AGSD
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Fig. 2 (b) Graphs of m(x) of AGSD for selected values of parameters ¢ and « .
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It is also obvious from the graphs of h(x) and ~ STOCHASTIC ORDERINGS
. . . . Stochastic ordering of positive continuous random
m(x) that h(x) is monotonically increasing  \ariaples is an important tool for judging the

function of X, 6 and « whereas m(x)is comparative behaviour of continuous distributions.

. . . A random variable X is said to be smaller than a
monotonically decreasing function of X, 8 and « . random variable Y in the

(i)  stochastic order (X < Y)if F, (x)>F, (x)forall X
>

—st
(i)  hazard rate order (X <, Y) if h, (x)>h, (x) forall x
) if

(iii)  mean residual life order (X <Y

< m, (x) <m, (x)forall X
f (%)

fy (x)

The following results due to Shaked and Shanthikumar (1994) are well known for establishing stochastic
ordering of distributions

decreases in X.

—Ir

(iv) likelihood ratio order (X <, Y) if

X<

—Ir

Y=>XL, Y=>X<,Y
U

X<4Y

st

The AGSD (2.1) is ordered with respect to the strongest ‘likelihood ratio’ ordering as shown in the
following theorem:
Theorem: Let X ~ AGSD (6,¢,) and Y ~ AGSD (6,a,). If 6,>0, and o, =a,
(or =6, and o, <a,)then X < Yandhence X <, Y, X<, Yand X <, Y.
Proof: We have

fy (G6a) 6 (‘922 +0, +20‘2) 1+ X+a, X2 (G-0)x . 0

fy(xOpa) 923(912+91+2a1) £1+X+az XZJG ;X >

_ 6° (6,7 +6,+2a 2
s e N e LA RN
V(X0 2 0, (91 +91+2a1) 1+ X+a, X

Now

This gives
()X +2(0 )X

d In fy (%:6,0)
dx MU (1 Xt X ) (14 X+, X°)

(6,-6,).

Thus for ,>6, and o, =, (or 6,=6, and o, <a,), diln fbiha) 0 This means that X <, Y
X

fy (x:60;,a5) —Ir

andhence X <, Y, X<, Yand X <, Y.

—mrl —st

MEAN DEVIATIONS

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from
the mean and the median. These are known as the mean deviation about the mean and the mean deviation
about the median and are defined as:

5 (X)= I|X—,u| f(x)dx and &,(X)= ﬂx— M| f (x)dx, respectively,
0 0

76



Rama Shanker, Kamlesh Kumar Shukla and Hagos Fesshaye

where, #=E(X) and M =Median (X).

The measures &, (X ) and &, ( X ) can be calculated using the following relationships

@(X):

O

(= xX)f (x)cbcs [ (x—)f (x) e

u

— F ()= [ X £ (x) Ak p[1- F () ]+ [ X F (x)

0

:2yF(y)—2y+2ij(Xﬁk
u

~ 2uF (u)-2[ x 1 (x)dx
; 61)
and

@(X):

o=

(M —x)f (x)dx+$(x—M)f (x)dx

_M F(M)-Exf(x)dx_m [1-F (M) ]+ [ (x)dx

M

0 (6.2)

Using PDF (2.1) and expression for the mean of AGSD (2.1), we get

Tx f4(X;6’,a)dx:y—{93(a’us + +,U)+t92 (30!,112 +2,u+1)+249(3a,u+1)+6a}e‘9”
0 0(0° +0+2a)

J {6°(aM®+M? + M)+ 07 (3aM? +2M +1)+20(3aM +1)+6a e
jxf4(x;0,a)dx:y—
. 0(0° +0+2a)

Using expressions from (6.1), (6.2), (6.3), and (6.4) and after some mathematical simplifications, the mean
deviation about the mean,51(X) and the mean deviation about the median, &, (X) of AGSD (2.1) are
obtained as:

2[02 (0{/,12 +,u+1)+26’(2au+1)+6a}e_0"
0(0° +0+2a)

& (X)= (6.5)

and

2[ 67 (aM®+M? + M)+ 67 (3aM?+2M +1)+20(3aM +1)+ 6a |e ™

%(X)= 0(67 +0+20) 4 (69)
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BONFERRONI AND LORENZ CURVES AND INDICES

The Bonferroni and Lorenz curves (Bonferroni, 1930) and Bonferroni and Gini indices have applications not
only in economics to study income and poverty, but also in other fields like reliability, demography,
insurance and medical science. The Bonferroni and Lorenz curves are defined as:

Puy

B(p)=iqxf Dxf I f(x )dx}zi{y—Txf(x)dx} (7.1)

and

:—Ixf D‘xf dx—Txf(x)dx}:i{y—]ixf(x)dx} (7.2)

respectively or equivalently

1 p
B(p)=—|F™*(x)dx 7.3
p) pﬂ'([ ( ) 73
and
1 p
L p)=—IF‘1(x)dx (7.4)

respectively, where z=E(X) and q=F(p).

The Bonferroni and Gini indices are thus defined as:
1
B=1—jB(p)dp (7.5)
0
and
1
G :1—2IL( p)dp (7.6)
0

respectively.
Using PDF of AGSD (2.1), we get

. {93 (@’ +0° +0)+06* (3. 0” + 20 +1)+20(3a g +1)+605}e-‘9q

xf,(X;0,a)dx = 7.7
! «(x0.a) 0(0°+0+2a) (7:7)
Now using equation (7.7) in (7.1) and (7.2), we get
1 {Qs(aq3+q2+q)+(92(3aq2+2q+1)+20(3aq+1)+6a}e’9q
B(p)=—|1- > (7.8)
p 0° + 20 +6«a
and
6 (aq®+q>+q)+6*(3aq”>+2q+1)+20(3aq+1)+6aie™

6% +20+6a

Now using equations (7.8) and (7.9) in (7.5) and (7.6), the Bonferroni and Gini indices of AGSD (2.1) are
thus obtained as:

{03(aq3 +9°+0)+06* (329 +2q +1)+249(305q+1)+605}e—9q
6° +20+6a

B=1- (7.10)
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0% + 20+ 60

STRESS-STRENGTH RELIABILITY

The stress- strength reliability of a component
illustrates the life of the component which has
random strength X that is subjected to a random

stress Y . When the stress (Y) of the component

applied to it exceeds the strength (X) of the

component, the component fails instantly and the
component will function satisfactorily till X >Y .
Therefore, R=P(Y <X)is a measure of the

component reliability and is known as stress-
strength reliability in statistical literature. It has

R=P(Y <X)=[P(Y <X | X =x)f, (x)dx

-1 (7.11)

extensive applications in almost all areas of
knowledge especially in engineering such as
structures, deterioration of rocket motors, static
fatigue of ceramic components, aging of concrete
pressure vessels etc.

Let X and Y be independent strength and stress
random variables having AGSD (2.1) with

parameter (6,,¢,) and (6,,a,) respectively.

Then, the stress-strength reliability R of AGSD
(2.1) can be obtained as:

= [ t,(x%0, ) F,(%:6,,,)dx
0

—1—

6,0 +(46, +3)6,° +(667 +100, + 20, + 6a, +3)6,’

+(46° +1207 + 40,0, + 18,0, + 76, + 8a, +120z, ) 0,

67| + (914 +66° +567 + 200,67 + 2a,6,” + 200,60, + 100,60, + 40a,x, )6’22
+(60° + 6] +102,67 +10a,0, + 22,6, + 20e,2, ) 6,0,

+2 (azef +a,0,+ 2o, ) 6

(67 +6,+20,) (0, +6,+2a,)(6,+6,)

It can be easily verified that the above expression reduces to the corresponding expression of Sujatha
distribution introduced by Shanker (2016 b) at ¢, =, =1.

MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS

Let (X, Xy, X, -..

= 03 o 2\ 5—nOX
L_[92+¢9+2aj [T(1+ % +ax?)e

i=1

The natural log likelihood function is thus obtained as

03 n
—j+2|n(1+xi +axi2)—n¢9¥

InL=nlIn| —
0" +0+2a

where X is the sample mean.

i=1

, xn) be random sample from AGSD (2.1). The likelihood function, L is given by

The maximum likelihood estimates (MLES) 6 and & of 0 and & are then the solutions of the following

non-linear equations
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olnL _3n n(20+1)

=—-— X=0
00 60 0 +0+2a
olnL 2 n X2
= 2 - +Z I 7 =0
oa O°+0+2a ‘Fl+X+aX

These two natural log likelihood equations do not seem to be solved directly. However, the Fisher’s scoring
method can be applied to solve these equations. We have

o*InL _ 3n N(26°+20-4a+1)
o T (6°+0+2a)

o’InL 4n g X!

oa’ (92+6’+2a)2 i:l<1+Xi+aXi2)2

o’InL _ 2n(20+1)  o°InL
060a (92+9+2a)2 0c 06

The following equations can be solved for MLEs 6 and & of 6 and & of AGSD (2.1)

o°InL  d%InL aInL
06°  000a 6-6,| | o0

o’InL &’InL L}_aj_ olnL
000a  0a’ iy, Oa 170

where @,and ¢, are the initial values of € and «, respectively. These equations are solved iteratively till

sufficiently close values of 6 and & are obtained.

APPLICATIONS AND GOODNESS OF FIT

The goodness of fit of a generalization Sujatha distribution (AGSD) using maximum likelihood estimation
has been discussed with four real lifetime data sets and the fit has been compared with one parameter
Sujatha, Aradhana, Lindley and exponential distributions. The following four real lifetime data sets have
been considered for the goodness of fit of considered distributions

Data Set 1: The data set represents the strength of 1.5cm glass fibers measured at the National Physical
Laboratory, England. Unfortunately, the units of measurements are not given in the paper, and they are
taken from Smith and Naylor (1987)

055 093 125 136 149 152 158 161 164 168 173 181
200 074 104 127 139 149 153 159 161 166 168 1.76
182 201 077 111 128 142 150 154 160 162 166 1.69
176 184 224 081 113 129 148 150 155 161 162 1.66
170 177 184 084 124 130 148 151 155 161 163 167
1.70 178 1.89

Data set 2: This data set represents the lifetime’s data relating to relief times (in minutes) of 20 patients
receiving an analgesic and reported by Gross and Clark (1975, P. 105).

80



Rama Shanker, Kamlesh Kumar Shukla and Hagos Fesshaye

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2
15 12 1.4 3 1.7 2.3 1.6 2
Data Set 3: This data set is the strength data of glass of the aircraft window reported by Fuller et al. (1994):
18.83 20.8 21.657 23.03 23.23 24.05 24.321 255 2552 25.8 26.69 26.77

26.78 27.05 27.67 299 3111 332 3373 3376 33.89 3476 3575 35.91

36.98 37.08 37.09 39.58 44.045 4529 45.381

Data Set 4: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested
under tension at gauge lengths of 20mm (Bader and Priest, 1982):

1312 1314 1479 1552 1700 1.803 1.861 1.865 1.944
2.006 2.021 2027 2.055 2.063 2.098 2.140 2179 2224
2272 2274 2301 2301 2359 2382 2382 2426 2434
2511 2514 2535 2554 2566 2570 2586 2.629 2.633
2697 2726 2.770 2773 2800 2.809 2.818 2821 2.848
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

1.7 2.7 4.1 1.8

1.958
2.240
2.435
2.642
2.880

1.966
2.253
2.478
2.648
2.954

1.997
2.270
2.490
2.684
3.012

In order to compare the goodness of fit of AGSD, Sujatha, Aradhana, Lindley and exponential distributions,
—2InL, AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected) and BIC
(Bayesian Information Criterion) of distributions for four real lifetime data sets have been computed and
presented in table 5. The formulae for computing AIC, AICC and BIC are as follows:

2k (k+1)

(n—k-1)°

AIC=-2InL+2k, AICC=AIC+ BIC =—2InL+kInn , where k = the number of

parameters, N =the sample size.

Table5. MLE’s—2In L, AIC, AICC and BIC of the fitted distributions of data sets 1, 2, 3 and 4.

Model MLE(é) 2InL AlIC AICC BIC
Data 1 AGSD é —~1.9581 110.75 114.75 114.95 119.03
a =119.826
Sujatha 6 =1.3500 154.80 156.80 156.86 158.94
Aradhana é —1.3464 149.87 151.87 151.93 154.01
Lindley é —0.9961 162.55 164.55 164.62 166.69
Exponential 0 =0.6637 177.66 179.66 179.73 181.80
Data 2 AGSD é -15712 45.97 49.96 50.67 51.96
a =222.235
Sujatha é -1.1367 57.49 59.49 59.71 60.49
Aradhana é =1.1232 56.37 58.37 58.59 59.36
Lindley é —0.8161 60.49 62.49 62.71 63.49
Exponential 0 =0.5263 65.67 67.67 67.89 68.67
Data 3 AGSD é —0.0972 240.54 24454 244.68 243.97
a=14.473
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Sujatha O =0.0956 241.50 243.50 243.63 244.93
Aradhana O =0.0943 242.22 244.22 244.36 245.65
Lindley d =0.0630 253.98 255.98 256.11 257.41
Exponential 0=00324 274.52 276.52 276.66 277.95
Datad | AGSD 0 =1.2129 186.35 190.35 190.53 194.82
a =53.567
Sujatha 0 =0.9361 221.60 223.60 223.66 225.83
Aradhana 0=0.9170 219.90 221.90 221.96 224.13
Lindley O =0.6545 238.38 240.38 240.44 242,61
Exponential | 4 -0 4079 261.73 263.73 263.79 265.96
The best fit of the distribution is the distribution ACKNOWLEDGEMENT

which corresponds to the lower values of —2In L,
AIC, AICC and BIC. It is obvious from the
goodness of fit of distributions for four data sets
in the table 5 that AGSD provides better fit than
Sujatha, Aradhana, Lindley and exponential
distributions for modeling lifetime data.

CONCLUSION

A generalization of Sujatha distribution (AGSD)
has been introduced which includes Sujatha
distribution, proposed by Shanker (2016c) and
Lindley distribution, proposed by Lindley (1958)
as particular cases. Moments about origin and
moments about mean have been obtained and
nature of coefficient of variation, coefficient of
skewness, coefficient of kurtosis and index of
dispersion of AGSD have been studied with
varying values of the parameters. The nature of
probability  density  function,  cumulative
distribution function, hazard rate function and
mean residual life function have been discussed
with varying values of the parameters. The
stochastic ordering, mean deviations, Bonferroni
and Lorenz curves, and stress-strength reliability
have also been discussed. The method of
maximum likelihood estimation has been
discussed for estimating parameters. Four
examples of real lifetime data sets have been
presented to show the applications and goodness
of fit of AGSD over Sujatha, Aradhana, Lindley
and exponential distributions and it has been
observed that AGSD gives much better fit.

82

Authors are thankful to the learned referee for the
valuable comments to improve the quality of paper.

REFERENCES

Bader, M. G. and Priest, A. M. (1982). Statistical
aspects of fiber and bundle strength in hybrid
composites. In: Hayashi, T., Kawata, K.
Umekawa, S. (eds), Progressin Science in
Engineering Composites, ICCM-IV, Tokyo,
1129 -1136.

Bakouch, H. S.; Al-Zaharani, B.; Al-Shomrani, A.,
Marchi, V. and Louzad, F. (2012). An
extended Lindley distribution. Journal of the
Korean Statistical Society, 41: 75-85

Bonferroni, C. E. (1930). Elementi di Statistca
Generale, Seeber, Firenze.

Deniz, E. and Ojeda, E. (2011). The discrete
Lindley distribution-Properties and
Applications.  Journal  of  Statistical
Computation and Simulation, 81: 1405-1416.

Fuller, E. J.; Frieman, S.; Quinn, J.; Quinn, G. and
Carter, W. (1994). Fracture mechanics
approach to the design of glass aircraft
windows: A case study, SPIE Proc 2286,
419-430.

Ghitany, M. E.; Atieh, B. and Nadarajah, S. (2008).
Lindley distribution and its Application.
Mathematics Computing and Simulation,
78: 493- 506.

Ghitany, M.; Al-Mutairi, D.; Balakrishnan, N. and
Al-Enezi, 1. (2013). Power Lindley
distribution and associated inference.




Computational Statistics and Data Analysis
64: 20-33.

Gross, A. J. and Clark, V. A. (1975). Survival
Distributions: Reliability Applications in the
Biometrical Sciences, John Wiley, New
York.

Lindley, D. V. (1958). Fiducial distributions and
Bayes’ theorem. Journal of the Royal
Statistical Society, Series B, 20: 102- 107.

Nadarajah, S.; Bakouch, H. S. and Tahmasbi, R.
(2011). A generalized Lindley distribution.
Sankhya Series B, 73: 331- 359.

Shaked, M. and Shanthikumar, J. G. (1994).
Stochastic Orders and their Applications,
Academic Press, New York.

Shanker, R. (2016 a). On Generalized Lindley
distribution and its applications to model
lifetime data from biomedical science and

engineering. Insights in Biomedicine,
1(2): 1-6.

Shanker, R. (2016 b). Aradhana distribution and its
Applications.  International Journal  of

Statistics and Applications, 6 (1): 23-34.

Shanker, R. (2016 c). Sujatha distribution and its
Applications. Statistics in Transition-New
Series, 17 (3): 1-20.

Shanker, R. (2016 d). The discrete Poisson-Sujatha
distribution.  International ~ Journal  of
Probability and Statistics, 5 (1): 1-9.

Shanker, R. (2016 e). A quasi Sujatha distribution.
International Journal of Statistics and
Applications, 6 (6): 376-385.

Shanker, R. and Hagos, F. (2016). Size-biased
Poisson-Sujatha distribution with
Applications.  American  Journal  of
Mathematics and Statistics, 6 (4): 145-154.

Shanker, R.; Hagos, F., and Sujatha, S. (2015 a).
On modeling of Lifetimes data using
exponential and Lindley distributions.
Biometrics & Biostatistics International
Journal, 2 (5): 1-9.

Shanker, R. and Hagos, F. (2015). Zero-truncated
Poisson-Sujatha distribution with

Rama Shanker, Kamlesh Kumar Shukla and Hagos Fesshaye

83

applications, Journal of Ethiopian Statistical
Association, 24: 55-63.

Shanker, R.; Hagos, F. and Sharma, S. (2016 a). On
two parameter Lindley distribution and Its
Applications to model Lifetime data.
Biometrics & Biostatistics International
Journal, 3 (2): 1-8.

Shanker, R.; Hagos, F. and Sharma, S. (2016 b). On

Quasi  Lindley distribution and its
applications to model lifetime data.
International ~ Journal  of  Statistical

distributions and Applications, 2 (1): 1-7.

Shanker, R.; Shukla, K. K. and Hagos, F. (2016 c).
On Weighted Lindley distribution and
applications to model Lifetime data. Jacobs
Journal of Biostatistics, 1 (1): 1-9.

Shanker, R. and Mishra, A. (2013 a). A two-
parameter Lindley distribution. Statistics in
Transition-new series, 14 (1): 45-56.

Shanker, R. and Mishra, A. (2013 b). A quasi
Lindley distribution. African Journal of
Mathematics and  Computer  Science
Research, 6 (4): 64-71.

Shanker, R. and Amanuel, A. G. (2013). A new
quasi Lindley distribution. International
Journal of Statistics and Systems, 8 (2):
143-156.

Shanker, R.; Sharma, S. and Shanker, R. (2013). A
two-parameter Lindley distribution  for
modeling waiting and survival times data.
Applied Mathematics, 4: 363-368.

Shanker, R.; Shukla, K. K.; Shanker, R. and Tekie,
A. L. (2017). A Three-parameter Lindley
Distribution. American  Journal of
Mathematics and Statistics, 7 (1): 15-26.

Smith, R. L and Naylor, J. C. (1987). A comparison
of Maximum likelihood and Bayesian
estimators for the three parameter Weibull
distribution. Applied Statistics, 36: 358-369.

Zakerzadeh, H. and Dolati, A. (2009). Generalized
Lindley distribution. Journal of
Mathematical extension, 3(2): 13-25.



