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ABSTRACT 

Dealing with data uncertainty in mathematical programming has been recognized as a central problem in optimization 
for a long time. There are two methods that have been proposed to address data uncertainty over the years, namely 
stochastic programming and robust optimization. In this short paper, we present the brief review of mathematical 
models of integer programming problem and robust optimization approach to solve them. Robust Binary optimization 
is also briefly presented.  
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INTRODUCTION 

Mathematical programming is a broader concept 
representing actions that can be taken in the systems 
being modelled and then optimized. It maps each 
possible set of decisions into a single score that assures 
the quality of the solution as well. The optimization 
problems initially originated as linear programs to solve 
many practical problems that emerged during and after 
the World War II such as military logistics, diet 
problems and other problems in economical analysis. 
The linear programming problem (LPP) contains an 
objective function in a set of decision variables assigned 
with a set of constraints. The LPP model can be 
observed in different literatures (Thapa 2005, 2006, 
Bertsimas & Tsitsiklis 1997). The LPP deals with 
minimization or maximization of the value of the 
objective function satisfying the given constraints. Each 
constraint requires that a linear function of the decision 
variables is either equal to or less than or greater than a 
scalar value. And each decision variable must be 
nonnegative. 
If the set of decision variables is nxxx ,,, 21 L , general 
form of LPP is formulated as the following: 
Minimize or maximize  nn xcxcxc +++ L2211        (1) 

subject to  
 ( ) 11212111 borxaxaxa nn ≥=≤+++ L  

 ( ) 22222121 borxaxaxa nn ≥=≤+++ L  
LLLLL  

 LLLLL  
 ( ) mnmnmm borxaxaxa ≥=≤+++ L2211  

 
njx j ,,2,1,0 L=≥  

The coefficients cj (j=1, 2, … n) in the objective 
function (1) are referred as cost coefficients in 
minimization problems and profit coefficients in the 
maximization problems. The right-hand-side values 

mbbb ,,, 21 L represent the amounts of available resources 
(especially for≤  constraints) and requirements 
(especially for≥  constraints). The coefficient values 

ija
means how much of resource or requirement i  is 
consumed or satisfied by decision .j  This formulation is 
a linear program because the objective function and all 
the constraints are linear. The LPP formulation (1) can 
be expressed in its standard form as follows:  
 (LPP)  xc'min           (2) 

 subject to bAx ≤  
   0≥x  

where nRc∈ , mRb∈ are given vectors and nmRA ×∈  is a 
nm ×  matrix.  If some of the decision variables are 

restricted to be integers, then the linear program is 
known to be a mixed-integer linear program. If the 
variables take only 0 or 1, then the LPP is known to be 
0-1 integer programs. And if all the decision variables 
are restricted to be integers, then the problem is known 
to be integer programming problem (IPP). This problem 
is one of the difficult problems to solve for exact and 
algorithmic solutions. It arises when a large number of 
discrete organizational decisions have to be made under 
some constraints and optimization criteria. When all or 
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some of the data are uncertain, then the problem 
becomes more difficult. One usual approach to handle 
this problem is stochastic programming which yields 
some sort of probabilistic solutions which is beyond this 
paper. Note that robust solution for LPP has been richly 
carried out in Ben-Tal and Nemirovski (1999) and Ben-
Tal and Nemirovski (2000). Convex programming 
approach for inexact linear programming has been  
dealt in Soyster (1973). Here we explain about 
deterministically feasible solutions for integer programs 
considering and redefining the data uncertainty. 
ROBUST INTEGER PROGRAMMING 
The new robust approach is extended to discrete 
optimization problems (Bertsimass & Sim 2004). The 
nominal mixed integer programming (MIP) is 
formulated as follows: 

 minimize  xc'        (3) 
  such that  bAx ≤                                                  
    kiZxi ,,2,1, L=∈ +  
   where   nmmn ZAZbZc ×∈∈∈ ,, . 

Without loss of generality, assume that Aand c (not b ) 
are affected by data uncertainty.  

Each ∈→ ijij aa ~ [ ijijijij aaaa ˆ,ˆ +− ], { }nNj ,,2,1 L=∈  
and each ∈→ jj cc ~ [ jjj dcc +, ]. 

Introduce [ ]ii J,0∈Γ , { }0ˆ: >= iji ajJ  which adjusts the 
robustness of the data against the level of conservatism.  
If less than iΓ coefficients ija are subject to change, then 
the robust solution will deterministically be feasible. 
The robust MIP is formulated as follows: 
  minimize

{ } j
sj

jsJss
xdxc

o
ooooo
∑
∈Γ≤⊆

+
,:

max'                (4)   

 such that 
  

{ }
ibxaxa ij

sj
ijsJssi

i
iiiii

∀≤+ ∑
∈Γ≤⊆

,ˆmax
,:

 

 .,,2,1, kiZxi L=∈ +  
Theorem 1: (Bertsimas & Weismantel, 2005) The 
Robust MIP (4) can be reformulated as an equivalent 
MIP 
 minimize  ∑

∈

+Γ+
oJj

ojoo pzxc'
                  

(5) 

 such that  ibpzxa i
Jj

ijiii
i

∀≤+Γ+ ∑
∈

,  

 ojjojo Jjydpz ∈∀≥+ ,   
 ijijiji Jjiyapz ∈≠∀≥+ ,0,ˆ  

 ijiij Jjiyzp ∈∀≥ ,0,,  
 jyxy jjj ∀≤≤− ,  

 iZxi ∀∈ + ,  

Proof: Given a vector ,*x  we define  

( )
{ }∑

∈Γ≤⊆
=

i
iiiii sj

jijsJssi xax *

,:

* ~maxβ  which equivalently is  

 ( ) ijj
Jj

iji zxax
i

** ~max∑
∈

=β            (6) 

 such that  
i

Jj
ij

i

z Γ≤∑
∈

 

   { } iij Jjiz ∈∀∈ ,,1,0  

Since the polyhedron 








Γ≤∈≤≤ ∑
∈

i
Jj

ijiij
i

zJjzz ,,10:

is integral for all ,+∈Γ Zi
 so { }1,0∈ijz  can be replaced by 

.10 ≤≤ ijz  Now (6) becomes 
 ( ) ijj

Jj
iji zxax

i

** ˆmax∑
∈

=β            (7) 

 such that    
i

Jj
ij

i

z Γ≤∑
∈

  

       
iij Jjiz ∈∀≤≤ ,,10  

The dual conversion of (7) is  

 
( ) ii

Jj
iji zpx

i

Γ+= ∑
∈

min*β
          (8) 

 such that 
 

ijijiij Jjxazp ∈∀≥+ ,ˆ *  
 

iij Jjp ∈∀≥ ,0  

 izi ∀≥ ,0  

Since (7) is feasible and bounded for all [ ],,0 ii J∈Γ so 
(8) is also feasible and bounded by strong duality with 
the same objective values. Using the same argument in 
penalty term of objective function of robust MIP (4), we 
get 
 ( )

{ }
*

,:

* max j
sj

jsJsso xdx
o

ooooo
∑
∈Γ≤⊆

=β   

  ⇒ ( )*xoβ   =  
oj

Jj
jj zxd

o

∑
∈

*max  

 such that   
o

Jj
oj

o

z Γ≤∑
∈

 

      ooj Jjz ∈∀≤≤ ,10  
  ⇒ ( ) oo

Jj
ojo zpx

o

Γ+= ∑
∈

min*β
 

 such that     *
jjooj xdzp ≥+  
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ooj Jjp ∈∀≥ ,0  

   0≥oz  

Now, putting the values of ( )*xiβ  and ( )*xoβ  in (4), we 
get (5). This completes the theorem. 
If more than iΓ  of 

ija  are subject to change, then the 
robust solution will be feasible with very high 
probability with probabilistic bound as follows: 

Theorem 2: Let *x  be optimal solution of the robust 
MIP, then  
(i) ( )i

j
ijij nBbxaP Γ≤







>∑ ,~ *  = 

( )
    














+






− ∑∑

+==

n

vl

n

vl
n l

n
l
n

1
1

2
1 µµ  

 where iJn = , 
2

1+Γ
= iv  and  vv −=µ . This 

bound is tight.  
(ii) For ni θ=Γ ,  ( ) ( ),,lim θΦ=Γ

→∞ in
nB  

 where ( ) dyy
∫ ∞− 








−=Φ

θ

π
θ

2
exp

2
1 2  is the 

cumulative distribution function of a standard normal.  
Note that the bound on (i) is best possible but difficult to 
compute the sum of combination functions for large .n
The bound on (ii) is simple to compute and very tight.  
ROBUST BINARY OPTIMIZATION 
The nominal case of binary optimization is formulated 
as  
 minimize xc'        (9) 
 such that  { }nx 1,0∈   

where feasible set X is fixed, only the cost vector c is 
uncertain.  
Each ∈→ jj cc ~ [ jjj dcc +, ],  .0, ≥∈ jdNj  The robust 
binary optimization is formulated as follows: 

 
j

sj
jsNssR xdxcZ ∑

∈Γ≤⊆
+=

},:{
max'min    (10) 

 such that  .Xx∈  

Without loss of generality, nddd ≥≥≥ L21  and 

.01 =+nd  
Theorem 3: (Bertsimas & Sim 2003), the robust binary 
optimization problem can be solved by solving 1+n
nominal problems: 
 

lnlR GZ
1,,2,1

min
+=

=
L

        (11) 

 where  ( ) 







−++Γ= ∑

=
j

l

j
ljll xddxcdG

1
'min  

 such that   .Xx∈  
Proof: Robust binary operation (10) can be written as  
 









+= ∑

∈
∈ Nj

jjjXxR uxdxcZ max'min    (12) 

 such that  ∑
∈

Γ≤
Nj

ju
 

   { } .,1,0 Nju j ∈∈  

Since the polyhedron 








Γ≤∈≤≤ ∑
∈Nj

jj uNjuu ,,10: is 

integral for all ,+∈Γ Z  so { }1,0∈ju can be replaced by 

.10 ≤≤ ju  Therefore (12) becomes 

  








+= ∑

∈
∈ Nj

jjjXxR uxdxcZ max'min  

such that Γ≤∑
∈Nj

ju
  

  .,10 Nju j ∈≤≤  
Taking dual of inner maximization problem and 
applying strong duality, we have  
 









+Γ+= ∑

∈
∈ Nj

jXxR yxcZ θmin'min  

such that 
jjj xdy ≥+θ  

 Njy j ∈≥ ,0, θ  

⇒  








+Γ+= ∑

∈Nj
jR yxcZ θ'min    (13) 

such that 
jjj xdy ≥+θ  

  Xx∈ ,  0, ≥θjy . 
Clearly, an optimal solution ( )*** ,, θyx  of (13) satisfies 

( )0,max *** θ−= jjj xdy .  
Therefore (13) becomes 

( )







−++Γ= ∑

∈
≥∈ Nj

jjXxR xdxcZ 0,max'min
0,

θθ
θ

 

i.e., ( ) 







−++Γ= ∑

∈
≥∈ Nj

jjXxR xdxcZ 0,max'min
0,

θθ
θ

,   

 since { }.1,0⊆X  
To find optimal value for θ , we decompose the set of 
positive real numbers +R in the intervals  
[ ]nd,0 , [ ] [ ] [ ]∞− ,,,,,, 1121 ddddd nn L  and we get  

( )
( ) [ ]

)[
∑
∈

+=∈−









∞∈

∑
=−

−

=
−

Nj

nlddifxd

jj

dif
xd

l

j
ljj

,0
0,max

1

2,,1,,,
1

1
11

θ
θ

θθ L

 
Therefore,  

lnlR ZZ
1,,2,1

min
+=

=
L     

 (14) 

where  
[ ]

( ) 







−++Γ= ∑

−

=
∈∈ −

1

1,,
'min

1

l

j
jjddXxl xdxcZ

ll

θθ
θ
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Since we are optimizing a linear function of θ  over the 
intervals [ ]1, −ll dd , the optimal solution is obtained for 

ld=θ or ,1−= ldθ  and thus for ,1,,2,1 += nl L we have 

( ) ( ) 

















−++Γ








−++Γ= ∑∑

−

=
−∈−

−

=
∈

1

1
11

1

1
'min,'minmin

l

j
jljXxl

l

j
jljXxll xddxcdxddxcdZ

i.e., 
( ) ( ) 


















−++Γ








−++Γ= ∑∑

−

=
−∈−

=
∈

1

1
11

1
'min,'minmin

l

j
jljXxl

l

j
jljXxll xddxcdxddxcdZ

Now (14) becomes 

( ) 

















+








−++Γ+Γ= ∑∑

=
∈

=
∈∈ j

n

j
jXx

l

j
jljXxlXxR xdxcxddxcdxcdZ

11
1 'min,,'min,,'minmin LLL

This completes the theorem. 
For further detail of robust discrete optimization and 
network flows, we refer to Bertsimas and Sim (2003) 
and Bertsimas and Weismantel (2005).  
CONCLUSIONS 
Mathematical programming has a very wide and 
important role in real life problems. There are two types 
of optimization problems, namely continuous 
optimization and discrete optimization. Data uncertainty 
is obvious in any case of the optimization. Therefore the 
only deterministic solution cannot address the data 
uncertainty and sometimes the solution does not 
guarantee the exactness. To address the uncertainty in 
data, there are two approaches, the first is stochastic 
programming and the other is robust programming. The 
robust optimization defines the robustness of uncertain 
data taking some intervals and handle the problems 
deterministically. The general case of integer 
programming is NP-hard problem and the existence of 
exact solution is not possible. However, there is always 
a possibility of finding near to optimal solution, for 
example heuristic approaches. 
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