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ABSTRACT

The present study deals with the estimation of the mean value of fecundability by fitting a theoretical distribution
from the observed distribution of first conception of the women, who did not use any contraceptive method before
their first conception. It is assumed that fecundability is fixed for a given couple, but across couples it varies
according to a specified distribution. Under the classical approach, methods of moment and maximum likelihood are
used while for Bayesian approach, empirical Bayes method used. A real data analysis from the third National Family
Health Survey (NFHS-III, 2005-06) is analyzed as an application of model for various age at marriage groups of
women. Finally, a simulation study is performed to access the performance of the several of methods used in this

paper.
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INTRODUCTION

The size and composition of population is highly related
with the tempo and quantum of fertility rate and fertility
is governed by the terms fecundity and fecundability.
Fecundability and marital fertility are linked through the
frequency of unprotected sexual intercourse, capability
to conceive and exposure time (Bongaarts 1975).
Fecundability can be interpreted as the transition
probability for the shifting from the susceptible state to
pregnancy (Perrin & Sheps 1964). In a homogeneous
population, fecundability is equal to the reciprocal of its
mean conception wait (Sheps & Menken 1973) but for
heterogeneous populations, the mean fecundability is
modeled with two parameters (Potter & Parker 1964).
Thus the concept of fecundability is one of the principal
determinates of fertility and in human reproductive
behavior.

Gini (1924) first considered birth intervals as waiting
time problems dependent on fecundability. In fact, there
is enough evidence that couples vary in their
fecundability. About 30% of sexually active couples
achieve pregnancy in their first non contraception cycle,
a smaller proportion of the remaining couples achieve
pregnancy in the second, and with each additional
unsuccessful cycle, the conception rate continues to
decline, as the risk sets become further depleted of
relatively fecund couples (Weinberg & Gladen 1986).
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The fecundability varies from women to women thus
one can assume it follow certain distribution lies in the
parameter space [0, 1]. Beta distribution denoted as Beta
(a, b), where a and b are the two shape parameters, is
the most commonly used mixing distribution to model
the random variable defined on the standard unit interval
[0,1] due to its ability of accommodating wide range of
shapes. Thus the beta-geometric (BG) distribution is
considered as a very versatile distribution in modeling
human fecundability data in literature originally
proposed by Henry (1957).

The parameters of this mixed distribution have practical
utility, with this distribution one can obtain the
distribution of the fecundibility which is not possible to
observe directly. According to Sheps (1964),
fecundability affects fertility through its relationship
with the average time required for a conception to occur
and can also be considered as the transition probability
for the passage from the susceptible state to pregnancy.
In a homogeneous population, fecundability is equal to
the reciprocal of its mean conception delay but for
heterogeneous populations, the mean fecundability is
usually modeled on two parameters (Jain 1969,
Chowdhury & Dale 2012). Weinberg and Gladen (1986)
considered that the decrease in conception probability
over time is a sorting effect in a heterogeneous
population, rather than a time effect. Paul (2005)
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develops tests of heterogeneity in the fecundability data
through goodness of fit of the geometric model against
the beta-geometric model along with a likelihood ratio
statistic and a score test statistic. Islam et al. (2005) also
made an attempt to compare the two methods of
estimation of the mean value of fecundability. The aim
of this paper is to estimate the mean fecundability for
homogeneous as well as heterogeneous group of women
by the methods of moments, maximum likelihood and
Bayesian methods and also compute the variation of
mean fecundability. A simulation study has been done to
know the suitability of Bayesian procedure.

THE MODEL

Let X be the random variable denotes time required for
first conception after marriage of the woman and
follows a geometric distribution with parameter @,
which stays constant over time for a given couple and
represent the fecundability. The distribution of X is as
follows

P(X=x|60)=60(1-0);0<0<1;x=0,1,2,3... (1
_(1-0) and mean fecundabilityis ,__ 1 .
E(x) 0
0 E (x) +1
This is known as the conditional distribution of

conception delay. Now if & varies among couple to

couple according to beta distribution, and & has the
following density function

f(0)=

0 1-0Y";a, >0
B(a ,b’)
Where Ba,f) = a+f is the beta function and
la] g
(e, p)are two unknown non-negative parameters and

the unconditional distribution of the conception delay X
is given by

= —(px= _Bla+lx+p) (2)
P(X =) jo f(x,0)d6 jOP(X x|0)f(0)do b
This distribution is known as beta-geometric
distribution.

ESTIMATION OF PARAMETER

In this section, we obtain the estimate of parameter of
the heterogeneous model 2 by using methods of
moment, method maximum likelihood and also an
attempt has been made to obtain the estimate of the
parameter of the model 1 under Bayesian paradigm
considering heterogeneity.
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METHOD OF MOMENT

The corresponding population moment of X about
origin, conditional on @, as given by the simple
geometric distribution are

(1_‘9) and

E(v) v&(l 6’)

M lMS

E(xz) rzﬁ(l—ﬂ)x =

Il
<

To obtain the unconditional moment of X, we have to
put the value of

0= J(1 -0y p(6)do= A A =x(x40) (x42) e (x7-1)
g 0 0 (- )( ' L =x(x=1)(x=2)....(x=r+])

to get

B o B(2B+a) 3 -
ﬂl_j_ml(bay)’ /uz_(a_l)(a_z)_mz(‘sa})
Thus after solving we get

2 —m? .

d:M. B=m(é-1) 3)

2°
m, —m, —2m,

From equation (3), we can easily obtain the moment
estimate of « and g, hence moment estimate of the
mean fecundability @ can be obtained.

METHOD OF MAXIMUM LIKELIHOOD

Suppose that data are available on N individuals
asx;;i=12, n . The likelihood function (Rao 1952)

for data based on beta geometric distribution is given as

.......

_ Bla+1,x,+ /) %)
l,_ll B(a, p)
and the corresponding log-likelihood £(©);0 =(«, g)1s
given as
logL=L(®)=>logB(a+1,x,+B)—nlog B(a, ) (%)

The score function U(@)is defined as the gradient
ofr, (@), derived by taking the partial derivatives of
1, (@) with respect to  and g. The components of the
score function U(@)z(Ua(@),Uﬁ(@)))T are given below

Ua()=@=Nz//(a+l)+Ny/(a+ﬁ)—Zy/(x,.+a+ﬂ+1)—Ny/(a) (6)
U,(0)= 6L{§ﬂ Zy/ x,+B)+ Ny (a+p) Zu/ x,+a+pB+1)+Ny(p) ™

The maximum likelihood estimates « and g can be

obtained either by directly maximizing the above log
likelihood function with respect to ® or by solving the



two simultaneous equations obtained by equating
U(©)=0. From equations (6) and (7) we can see that the

MLEs of ® = (a, /})cannot be obtained in closed form.

Therefore, we need some numerical iterative procedures
such as Newton-Raphson method. One can also use the
vglm function of R-Environment to obtain the MLE
of® =(a, ). Using the invariance property of MLEs,

one can easily obtain the MLEs of fecundability
parameter 9.

METHOD OF BAYES

In many practical situations, it is observed that the
behavior of the parameters representing the various
model characteristics cannot be treated as fixed constant
throughout the life period. In the introductory section,
we have already discussed that the fecundability
parameter should not be assumed constant rather it is
assumed to be random. Keeping this fact in mind, we
have also conducted an empirical Bayesian study by
assuming the following beta prior for fecundability

parameter 4
1
h(0)=——=0""

The hyper parameters « and g are assumed to be

(1-0)" ®)

known real numbers. Based on the above prior
assumption, the joint density function of the sample
observations and § becomes

1 palg)pt

L(x,0)=6"(1-0)>"5ap) ©)

Thus, the posterior density function of© , given the data
is given by
L(x[6)h(6]e.B) (10)

7(6]x)=5
(I)L()g|0)h(6’|a,ﬂ)d0

Putting the expression of equation (8) and (9) in
equation (10), we get the posterior density of &

(1D

1 9n+a—l (l_e)lei+ﬂ—n—l

(oly)-
,b’[n+a,Zx,- +ﬁ—n]

For the squared error loss, the Bayes estimator is the

posterior mean and the mean fecundability is
«  nta Without loss of generality, one can
Xxi+pB-n

assume the value of ¢ and pobtained by method of
maximum likelihood.
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APPLICATION OF THE MODEL

Here in this study data from National Family Health
Survey-III, which is conducted in 2005-06 is used for
the application of the theoretical distribution considered.
In this Study, only women who are currently married in
age group 15-49 are used. In order to estimate the
fecundability for women, we have extracted 3767
women out of 12183 women who have had at least one
recognizable conception (regardless of outcome). We
have excluded women who were pregnant before
marriage. Since our study is based on birth history data,
we exclude those conceptions of women occurring more
than 5 years preceding the survey to avoid memory
lapse of the respondents. Finally, we have also excluded
those women who did not conceive during their first 15
years or 180 months of marriage, because women who
fail to conceive within 15 years of their marriage are
considered to be the primarily sterile. So from the above
data, we have the following:

> X=78112; n= 3767. Here, E[x]=20.73586 and hence
the mean fecundability is 0.46. Now the estimated
values of the parameters involved in the model obtained
by using the different method of estimation are given as
follows:

e  Method of Moment:
G =20.4669, 3 = 403.663 = 6 = 0.04826

e  Method of Maximum Likelihood:
G =20.94735, 3 =413.6093 = 6 = 0.04820

e Method of Bayes: 4 =0.04602

Estimated mean value of fecundability by Bayesian
estimate is much closer to the true value, and hence, we
can say that Bayes procedure is best for the above data
set followed by maximum likelihood estimate and
method of moment estimate. When we are able to obtain
the estimate of « and f for the model 2 we can get the
estimate of mean fecundability and also obtain the
distribution of fecundability which can’t observe
directly (the distribution of fecundability for various age
marriages is shown in Fig. 1). The estimated values of
the average fecundability for various group of women’s
age at marriage is also obtained by using the different
methods of estimation to know the variation in mean
fecundability over the various age at marriage. The
following table shows that the mean fecundability is
increasing with the increasing age at marriage. This
means that for higher age at marriage women the
duration of first birth interval is shorter.
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Fstimation Estimate of @ for various age at Marriage in years
method

Less than 16 16-18 18-20 20+
Moment 0.03960795 | 0.04290674 | 0.04460279 | 0.05175923
ML 0.04015898 [ 0.04368629 | 0.04473479 | 0.05175477
Bayesian 0.03703094 [ 0.04135400 | 0.04293600 | 0.04918200
IAverage month
required for 25.24 2231 21.42 18.32
first conception ’
A SIMULATION STUDY

Here, we assess the performance of the method of
moment estimate, maximum likelihood estimate and
Bayes estimate of mean fecundability with respect to
varying sample size n. The model parameters along with
Biases and Mean Square Errors (MSEs) for various
estimation methods have been used for comparison
purpose. For each of the following options, we
simulated six sets of data with samples of sizes 100,
200, 400, 500, 750 and 1,000 respectively, and based on
each set of data we computed the above mentioned
measures.

For fixed o and varying

a=20; f=1.40= 6=0.125
o=20; f=180= 6=0.1
a=20; =380= 6=0.05

a=20; =780= 6=0.025

For fixed S and varying «
o=10.25; f=400= 6=0.025
o=21.05; f=400= 0=0.05
o=44.44; [=400= 6=0.1
o=57.14; f~400= 6=0.125

The above assessments
algorithm have been done:

are based on following

e Generate 5,000 samples of size n from beta-
geometric distribution using VGAM package of
R-environment.

e Compute the moment, maximum likelihood and
Bayes estimate for the 5,000 samples.
e Compute the average estimates (AE), biases

and mean-squared errors given by
1 S0
Bias(0)=——) (6, —0) and
ias (6) 5000 ;( ; —0) an

1 5000 é 9 )

5000 Z( i =0
o  We repeat these steps for n =100, 200 . . . ,
1000 with various values of 6 hence computing

AE, bias and MSE for n =100, 200, . . ., 1000.
CONCLUSION

Study clearly indicates that the estimate of mean
fecundability by various classical and non-classical
methods is ranged from 0.046 to 0.048. One reason for
this almost stable value of mean fecundability is
attributed to the large value of sufficient statistics i.e. the

MSE (0) =
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sample size is 3767. Form the figures and tables, it is
observed that for all the choices of the mean
fecundability &, the magnitude of the Bias and MSE
decreases as the sample size n increases thereby leading
to increased precision. We also note that the Bayesian
analysis seems to fit better and are eager to see it applied
in further as an alternative way. The biases are negative
for the method of moment and maximum likelihood
while it is positive for Bayesian method of estimation.
Bayesian method provide better estimate of the mean
fecundability particularly for smaller samples.
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Table 1. Average Estimate of # with their Bias and MSE for a=20; /=140; 6=0.125 and varying sample size n:

Average Estimate of 6 Bias of 0 MSE of 6
MME MLE Bayes MME MLE Bayes MME MLE Bayes
100 | 0.09812 | 0.10271 | 0.11234 | -0.0821 0.0802 0.0794 0.0021 0.0020 0.0019
200 | 0.09874 | 0.10459 | 0.11832 | -0.0801 -0.0792 0.0762 0.0013 0.0013 0.0012
300 | 0.09901 | 0.11329 | 0.11932 | -0.0789 | -0.0760 0.0687 0.0010 0.0009 0.0008
400 | 0.09987 | 0.11855 | 0.12091 | -0.0761 -0.0695 0.0619 0.0007 0.0006 0.0006
500 | 0.10173 | 0.11936 | 0.12191 | -0.0692 | -0.0631 0.0586 0.0006 0.0005 0.0005
750 | 0.10632 | 0.12133 | 0.12421 | -0.0621 0.0592 0.0522 0.0003 0.0002 0.0002
1000 | 0.11262 | 0.12452 | 0.12492 | -0.0574 | -0.0463 0.0460 0.0002 0.0001 0.0001

n

Table 2. Average Estimate of 6 with their Bias and MSE for a=20; =180; 6=0.1 and varying sample size n:

Average Estimate of 0 Bias of 0 MSE of 6
MME MLE Bayes MME MLE Bayes MME MLE Bayes
100 | 0.09467 | 0.09529 | 0.09634 | -0.0976 0.0954 0.0936 0.0021 0.0020 0.0019
200 | 0.09506 | 0.09695 | 0.09703 | -0.0912 | -0.0901 0.0882 0.0011 0.0010 0.0009
300 | 0.09583 | 0.09782 | 0.09792 | -0.0865 -0.0832 0.0791 0.0009 0.0008 0.0007
400 | 0.09631 | 0.09788 | 0.09826 | -0.0743 -0.0721 0.0692 0.0006 0.0005 0.0005
500 | 0.09671 | 0.09818 | 0.09913 | -0.0612 | -0.0593 0.0549 0.0004 0.0004 0.0003
750 | 0.09691 | 0.09845 | 0.09993 | -0.0578 0.0533 0.0525 0.0004 0.0003 0.0002
1000 | 0.09712 | 0.09912 | 0.10028 | -0.0432 | -0.0392 0.0388 0.0002 0.0002 0.0001

n

Table 3. Average Estimate of @ with their Bias and MSE for a=20; £=380; 6=0.05 and varying sample size n:

Average Estimate of ¢ Bias of 0 MSE of 6
MME MLE Bayes MME MLE Bayes MME MLE Bayes
100 | 0.04641 | 0.04711 | 0.04759 | -0.0997 0.0989 0.0981 0.0024 0.0023 0.0022
200 | 0.04691 | 0.04754 | 0.04803 | -0.0967 | -0.0951 0.0943 0.0013 0.0012 0.0012
300 | 0.04721 | 0.04801 | 0.04853 | -0.0891 -0.0871 0.0862 0.0009 0.0008 0.0007
400 | 0.04787 | 0.04822 | 0.04881 | -0.0801 -0.0787 0.0711 0.0005 0.0004 0.0005
500 | 0.04831 | 0.04891 | 0.04911 | -0.0745 -0.0710 0.0691 0.0004 0.0003 0.0003
750 | 0.04887 | 0.04906 | 0.04954 | -0.0682 0.0699 0.0622 0.0003 0.0002 0.0002
1000 | 0.04911 | 0.04987 | 0.04994 | -0.0574 | -0.0609 0.0587 0.0002 0.0001 0.0001

n

Table 4. Average Estimate of @ with their Bias and MSE for a=20; =780; 6=0.025 and varying sample size n:
Average Estimate of Bias of MSE of 6
MME MLE Bayes MME MLE Bayes MME MLE Bayes
100 0.02138 | 0.02178 | 0.02199 | -0.0998 0.0994 0.0991 0.0028 0.0028 0.0027
200 0.02189 | 0.02209 | 0.02257 -0.0971 -0.0967 0.0961 0.0021 0.0019 0.0018
300 0.02219 | 0.02259 | 0.02288 | -0.0897 | -0.0891 0.0882 0.0013 0.0011 0.0010
400 0.02291 | 0.02311 | 0.02341 -0.0805 -0.0799 0.0791 0.0008 0.0007 0.0005
500 0.02232 | 0.02387 | 0.02412 -0.0761 -0.0753 0.0742 0.0004 0.0003 0.0003
750 0.02386 | 0.02431 | 0.02464 | -0.0699 0.0682 0.0669 0.0002 0.0002 0.0002
1000 | 0.02413 | 0.02487 | 0.02495 | -0.0586 | -0.0571 0.0532 0.0002 0.0001 0.0001

n
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Table 5. Average Estimate of § with their Bias and MSE for ¢=10.25; #=400; 6=0.025 and varying sample
size n:
Average Estimate of Bias of MSE of
MME MLE Bayes MME MLE Bayes MME MLE Bayes
100 | 0.04641 | 0.04711 | 0.04759 | -0.0997 0.0989 0.0981 0.0024 0.0023 0.0022
200 | 0.04691 | 0.04754 | 0.04803 | -0.0967 | -0.0951 0.0943 0.0013 0.0012 0.0012
300 | 0.04721 | 0.04801 | 0.04853 | -0.0891 | -0.0871 0.0862 0.0009 0.0008 0.0007
400 | 0.04787 | 0.04822 | 0.048381 | -0.0801 | -0.0787 0.0711 0.0005 0.0004 0.0005
500 | 0.04831 | 0.04891 | 0.04911 | -0.0745 | -0.0710 0.0691 0.0004 0.0003 0.0003
750 | 0.04887 | 0.04906 | 0.04954 | -0.0682 0.0699 0.0622 0.0003 0.0002 0.0002
1000 | 0.04911 | 0.04987 | 0.04994 | -0.0574 | -0.0609 0.0587 0.0002 0.0001 0.0001

n

Table 6. Average Estimate of § with their Bias and MSE for o=21.05; /=400; 6=0.05 and varying sample
size n:
Average Estimate of 0 Bias of 6 MSE of 6
MME MLE Bayes MME MLE Bayes MME MLE Bayes
100 | 0.04619 | 0.04792 | 0.04749 | -0.0998 0.0992 0.0989 0.0026 0.0025 0.0023
200 | 0.04675 | 0.04729 | 0.04719 | -0.0978 | -0.0971 0.0958 0.0018 0.0017 0.0015
300 | 0.04711 | 0.04792 | 0.04992 | -0.0899 | -0.0891 0.0869 0.0011 0.0009 0.0010
400 | 0.04754 | 0.04811 | 0.04793 | -0.0821 | -0.0811 0.0702 0.0008 0.0007 0.0005
500 | 0.04821 | 0.04861 | 0.04902 | -0.0760 | -0.0751 0.0734 0.0007 0.0006 0.0004
750 | 0.04865 | 0.04893 | 0.04945 | -0.0699 0.0680 0.0661 0.0004 0.0003 0.0002
1000 | 0.04892 | 0.04971 | 0.04991 | -0.0611 | -0.0601 0.0591 0.0003 0.0002 0.0001

n

Table 7. Average Estimate of @ with their Bias and MSE for a=44.44; /~400; 0=0.1 and varying sample
size n:
Average Estimate of 6 Bias of 0 MSE of 6
MME MLE Bayes MME MLE Bayes MME MLE Bayes
100 0.09481 | 0.09531 | 0.09639 | -0.0998 0.0978 0.0958 0.0029 0.0029 0.0027
200 0.09511 | 0.09699 | 0.09717 | -0.0921 -0.0902 0.0889 0.0020 0.0019 0.0017
300 0.09575 | 0.09787 | 0.09799 | -0.0878 -0.0831 0.0797 0.0013 0.0012 0.0011
400 0.09629 | 0.09792 | 0.09849 | -0.0759 -0.0726 0.0712 0.0007 0.0006 0.0005
500 0.09673 | 0.09827 | 0.09920 | -0.0634 -0.0599 0.0565 0.0004 0.0003 0.0003
750 0.09689 | 0.09860 | 0.09998 | -0.0587 0.0521 0.0511 0.0003 0.0002 0.0002
1000 | 0.09717 | 0.09915 | 0.10017 | -0.0447 -0.0398 0.0375 0.0002 0.0001 0.0001

n

Table 8. Average Estimate of § with their Bias and MSE fora=57.14; /=400; #=0.125 and varying sample
size n:

Average Estimate of Bias of 8 MSE of 6
MME MLE Bayes MME MLE Bayes MME MLE Bayes
100 | 0.02138 | 0.02138 | 0.02138 | -0.0999 0.0995 0.0993 0.0033 0.0032 0.0031
200 | 0.02189 | 0.02189 | 0.02189 | -0.0981 -0.0975 0.0969 0.0023 0.0022 0.0021
300 | 0.02219 | 0.02219 | 0.02219 | -0.0921 -0.0910 0.0901 0.0018 0.0017 0.0015
400 | 0.02291 | 0.02291 | 0.02291 | -0.0892 -0.0831 0.0801 0.0010 0.0009 0.0008
500 | 0.02232 | 0.02232 [ 0.02232 | -0.0855 -0.0792 0.0711 0.0006 0.0005 0.0003
750 | 0.02386 | 0.02386 | 0.02386 | -0.0811 0.0722 0.0692 0.0003 0.0003 0.0002
1000 | 0.02413 | 0.02413 | 0.02413 | -0.0756 | -0.0701 0.0634 0.0002 0.0001 0.0001
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Fig. 7. Plots of trend in MSE of 0 varying n at 0=0.01
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Fig. 8. Plots of trend in MSE of 0 varying n at 0=0.125
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Fig. 9. The distribution of risk of conception for various ages at marriage group
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