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ABSTRACT 

The aim of   this   paper is to   introduce   and study a new class  (S, –, u– ) of  sequences with values in  2- Banach 
space as a generalization of  the familiar space of summable sequences . We   explore  some of the preliminary 

results that characterize the  topological  linear  structure  of  the class   (S,  –, u– )  when topologized it with suitable 
natural  paranorm. 
Keywords: paranormed space, 2- normed space, sequence space, solid space.  
 
INTRODUCTION  
So  far,  a  bulk  number  of    works  have  been  done  on  
various types of paranormed spaces. The concept of 
paranorm is closely related to linear metric space  and its 
studies on sequence spaces were initiated by Maddox  
(1969) and many others. 

Before proceeding with the main results,we begin with 
recalling some of the notations and basic definitions that 
are used in this paper.  

Definition 1: A paranormed space (S, P ) is a linear space 
S  with zero element together with a function   P : S  
R+  (called  a paranorm on S) which satisfies the following 
axioms: 

 (i)  P ( ) = 0; 

 (ii) P (s) = P (–s), for all s  S; 

 (iii) P (s1 + s2 )    P (s1) +  P (s2 ) , for all s1 , s2  S; and 

 (iv) Scalar multiplication is continuous i.e., if < n > is a  

sequence of scalars with  n →  as  n → ∞ and  < sn >  is a 
sequence of vectors with  P (sn − s ) → 0  as n → ∞, then  
P ( n  sn − s) → 0 as n → ∞. Note that the continuity of 
scalar multiplication is equivalent to   

(i)   if   P (sn) → 0  and   n  as     n → ∞, then  

      P ( n sn)  0 as n → ∞; and 

(ii)  if n  0 as n  and  s  be any element in S, then 

              P ( n s)  0, see Wilansky (1978).  

 

 

A paranorm is called total if   P (s) = 0  s =  see 
Wilansky (1978).   

The studies of paranorms on sequence spaces were initiated 
by Maddox (1969) and many others. Parasar and 
Choudhary (1994), Bhardwaj and Bala 2007), Khan 
(2008), Basariv and Altundag (2009), Tiwari and 
Srivastava  (2010), Pahari (2011, 2013, 2013, 2014 &  
2014) , and many others further studied various types of  
paranormed sequence spaces  and function spaces.  
Definition 2: Let S be a linear space of dimension > 1 
over K, the field of real or complex numbers. A  2 - norm 
on S  is a real valued function  ||. , .|| on  S × S satisfying the 
following conditions: 
    (i)    || s, t  || ≥ 0 and || s, t  || = 0 if and only if s and t   
            are linearly dependent; 
    (ii)    || s, t  || = || t , s ||, for all s, t  S; 
    (iii)   || s, t  || = |  | || s¸ t  ||, where K and s, t S;and 
    (iv)   || s1 + s2, t  ||  || s1, t  || + || s2, t  || ,for all s1 , s2 and  
           t S. 
The pair (S, ||. , .||) is called a 2–normed space. Thus the 
notion of 2–normed space is just a two- dimensional 
analogue of a normed space. 

The concept of 2–normed space was initially introduced by 
S. GÄahler (1963) as an interesting linear generalization of 
a normed linear space, which was subsequently studied by  
Iseki (1976), White and Cho  (1984), Freese et al. (1992), 
Freese and Cho (2001) and many others. Recently a lot of 
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activities have been  started  by many researchers to study  
this concept in different directions, for instances,  Gunawan 
and  Mashadi (2001) , Açikgöz (2007),  Savas  (2010) , 
Srivastava and Pahari (2011& 2013), and others. 
Recall that (S, ||. , .||) is a 2-Banach space if every Cauchy 
sequence  < sn >  in S is convergent  to some s0 in S. 
Geometrically, a 2-norm function represents the area of the 
usual   parallelogram spanned by the two associated 
vectors. As an example, consider   S  =  R2, being equipped 

with || s– , t– || = | s1t2 – s2t1|,  where s–  = (s1, s2) and  t– = (t1 , 

t2).  Then (S, ||. , .||) forms  a 2–normed space and  || s–, t– ||  
represents the area of the parallelogram spanned by the  

two associated vectors  s–  and t–.  

Definition 3: Let  ( S, || || ) be the 2- Normed space 

over the field C  of complex numbers and – = ( , ,  ,... ) 
denotes the zero element of S.  Let (S) denotes the linear 

space of all sequences  s–  = < sk >  with sk   S , k   1  with 
usual coordinate wise operations  i.e., for each  

  s–  = < sk > , w– = < wk >   (S) and   C, 

s–  + w–  = < sk + wk >  and  s–   = < sk > . 

We shall denote  (C) by  . Any linear subspace   of  is 
then called a sequence space. 

 Further, if  – = < k  >    and   s–    (S ) we shall write  
– s– = < k sk > .   

Definition 4:  A sequence space S is said to be solid if  

 s–  =  < sk >  S and –  = < k >  a sequence of scalars with  

| k| ≤ 1,  for all k  1, then  – s–    = < k sk >  S.   

Definition 5:  A sequence  s–= < sn > in a linear 2–normed 

space S is convergent  if there is an s0 S such that   
 lim
n   

|| sn –  s, t || = 0, for each  t S .It is said to be  a Cauchy if 
there are t and w in S such that t  and w are linearly 

independent and  
  lim
m‚n   ||sm – sn‚ t || = 0 and 

  lim
m‚n   ||sm 

– sn‚ w || = 0. 

The notion of convergence was introduced by White and  
Cho (1984).A linear 2–normed space   (S, ||. , .||) is called 2 
Banach space if every Cauchy sequence < sn >  in S  is 
convergent to some s S. 

The Class  (S, –, u– ) of 2-Normed Space 
Valued Sequences 

Let u– = < uk > and   v– = < vk > be any sequences of strictly 

positive real numbers and  
–
 = < k  >    and   – = < k >   

be the  sequences of non zero complex numbers.  

We now introduce   the following classes of 2-normed   
space S–valued vector sequences  

( S, , u– ) ={ s– = < sk > S ) satisfying 
k = 1

.   || k sk‚ t || 

uk <  ,for each t  S }.  

In fact, this class is a generalization of the familiar 
sequence spaces, studied in Pahari (2011, 2013 & 2014), 
Srivastava and Pahari (2011, 2011 & 2013) , using 2-norm 

RESULTS 

In this section, we shall investigate some results that 
characterize the linear topological structure of the class  

(S, –, u– ) of 2-normed space S- valued sequences by 
endowing  it  with suitable natural paranorm. Throughout 

the work, we denote zk = | k k
-1| 

uk , sup uk = M  and for 
scalar , A [ ] = max (1, | |). But when the sequences < uk 
> and < vk > occur, then to distinguish M we use the 
notations M(u) and M(v) respectively.  

Theorem 1: The space    (S,  –, u– ) forms a  solid.  

Proof.  

 Let s– = < sk >    (S, –, u– ) . So that for each t  S, 

k = 1
.    || k sk ‚ t ||

 uk  <  

Let < k >  be a sequence of scalars satisfying | k|   1 for 
all k  1 Then we have  

k = 1
.   || k k  sk‚ t ||

 uk   = 
k = 1

.    | k|
 uk || k sk‚ t  ||

 uk 

                           
k = 1

.   || k sk ‚ t ||
 uk < , 

for each t  S. This shows that < k sk >    (S, –, u– )  and 

hence  (S, –, u– )  is  normal. 
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Theorem 2:  For any  u– = < uk > ,  (S, –, u– )  (S, – , u–)  
if  lim infk  zk > 0. 

Proof. 

Assume that lim infk zk  > 0 and s– = < sk >    (S, –, u–).  
Then there exist m > 0  and a  positive integer K such that  

m | k| 
uk  < | k|

 uk   for all  k  K  and for each t  S, 

 
k = 1

.   || k sk‚ t ||
 uk <  Thus for each t S, we have 

  
k = 1

.   || k sk‚ t  || 
uk     

k = 1
.     

| k| uk

 m    || sk‚ t  || 
uk 

                             
1
 m

k = 1
.   || k  sk‚ t || 

uk <  . 

 This clearly implies that   s–   (S, –, u–) and hence  

 (S,  –, u– )   (S, –, u– ). This completes the proof. 

Theorem 3:  For any 
–
 =  < k > , if   uk    vk  for all  but 

finitely many   values of  k, then  ( S, 
–
, u–)  ( S, 

–
, v–). 

Proof.  

Suppose 0   uk     vk  < ∞ for all but finitely many values 

of k Let  s– = < sk >  ( S, 
–
, u– ) .Then we have 

k = 1
.  || k 

sk‚ t ||
 uk  < for each t S. 

This shows that there exists  K  1 such that || k  sk, t ||  
for all k  K and for each t S.Thus || k sk , t ||vk  || k sk , t||

 

uk  for all k  K and for each t  S and consequently  

k = 1
.    || k sk‚ t ||

 vk     
k = 1

.   || k sk‚ t ||
 uk  <  ,for each t  S  

and hence  s–  ( S, 
–
, v–).This completes the proof of the 

theorem. The following result is an immediate consequence 
of Theorems 2 and 3. 

Theorem 4:   If   (i)   lim infk zk   > 0; and  

                            (ii)     uk vk  ,for all but finitely many 

values of k, then    ( S, 
–
, u–)    ( S, –, v– ) .           

In the following example, we conclude that ( S, 
–
, u–) may 

strictly be contained in  ( S, –, v–)   inspite of  the 
satisfaction of both conditions  of Theorem 4. 

Example 5:  Let ( S, ||. , .|| )  be  a 2- normed  space and 

consider a sequence    s– = < sk >  defined by sk  = 
1

 k 2k s, if  

k = 1, 2, 3,…,where s  S and s  . 

Further, let uk = 
1
 k

 , if k is odd integer, uk = 
1

 k 2, if k is even 

integer, vk = 
1
 k    for all values of k, k = 3k, k = 2k for all 

values of k. 

Then, zk  =  k

k
 

uk

 = 
3
2  or   

 3
  

1/k

according as k is odd or  

even integers and hence  lim infk  zk  > 0. 

Further, 
vk
uk

 = 1, if k is odd integers,  
vk
uk

 = k, if k is even 

integers. Therefore 0  uk  vk < ∞ for all k. 

 Hence both the conditions of Theorem 4 are satisfied.  

 Now for each t S, we have 

k = 1
.    || k sk‚ t  || 

vk  =   
k = 1

.   ||2k 
1

 k 2k  s, t || 1/k     

           
k = 1

.    
2

 k 2    || s ,t || 1/k 

  2A [ || s ‚ t  || ] 
k = 1

.  
1

 k 2  <    

This shows that s–   (S,  –, v– ).But on the other hand, let 
us choose t  S such that  || s, t || = 1. Then for each even 
integer k, we have  

  || k sk‚ t ||
 uk =  ||3k 

1
 k 2k  y ‚ t || 1/k2  

                   = 
 3

 k 2 
1/k

 || s, t || 1/k2 > 
1
 2 .                                    

This implies that   s–  (S,  –, u– )  and hence the 

containment of   (S,  –, u– )  in   (S,  –, v– )  is strict. 

Theorem 6:   (S, –, u– )  forms a linear space over the field 
of complex numbers C  if  < uk > is bounded above.

Proof.  
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Assume that supk uk  <  and  s–  = < sk  >,w–  = < wk >   

 (S, –, u– ) .So that for each  t  S, we have  

   
k = 1

.   || k sk‚ t ||
 uk <  and  

k = 1
.  || k wk‚ t || 

uk < . 

Let  0 < uk   supk uk  = M,T = max (1, 2M-1) and setting 

2T max (1, | |M )  1 and  2T max (1, | |M )  1  and using 

| a + b |
 uk T {| a | 

uk + | b | 
uk } for all  a, b  C. 

Then we have 

     
k = 1

.    || k ( sk + wk)‚ t || 
uk

  
k = 1

.   [ T | | 
uk || k sk‚ t || 

uk + T  | |
 uk || k wk‚ t || 

uk  ]  

k = 1
.  [ T  A [| |M ] || k sk‚ t || 

uk + T A [| |M ] || k wk‚ t || 
uk

] 

  
1
 2 

k = 1
.     || k sk‚ t || 

uk  + 
1
 2 

k = 1
.    || k wk‚ t || 

uk < ,                  

 for each t  S  and  therefore s– + w–    ((S, –, u– ). 

This implies that     ((S, –, u– )  forms  a linear space over 
C. 

Theorem 7: If   ((S,  –, u– )  forms a linear space over C  
then < uk > is bounded above.

Proof.  

 Suppose that     (S, –, u– )    forms a linear space over C  
but  supk uk = .  Then there exists a sequence < k(n) >   of 
positive integers  satisfying  1  k(n)  k(n + 1), n  1 

for which     

    uk(n)      n  , for each n  1  ………………..(1) 

Now, corresponding to s0 S and s0   , we define  

the sequence s– = < sk > by 

sk = k(n)
-1 n-2/uk(n) s0‚ if k = k(n) ‚  n 1 and

‚ otherwise.
   …(2) 

Then for k = k(n),  n  1, we have 

k = 1
.   || k sk‚ t || 

uk   =  
n = 1

.    ||n-2/uk(n) s0‚ t  || uk(n))  

                    
n = 1

.    
||s‚ s0 || uk(n)

 n2   

         A [ || s0, t  || M(u) ] 
n = 1

. 
1

 n2  < ∞, 

 and || k sk‚ t ||
 uk = 0, for k  k(n) , n  1, 

showing that  s–    (S, –, u– ).  

 But on the other hand, let us choose t0 S such that || s0, t0 
|| = 1. Then for such t0 and scalar  

  = 4, for k = k(n),  n  1, in view of (1) and (2), we have 

   
k = 1

.  ||  k sk‚ t0|| 
uk  = 

n = 1
. || k(n)  sk(n ) ‚ t0 || uk(n) 

                                                           = 
n = 1

. || 4  n–2/ uk(n)  s0 ‚ t0  || uk(n)   

                           =  
n = 1

.    
4 uk(n)

 n2   || s0, t0 || 

              
n = 1

.     
4 n

 n2  >   1 . 

This shows that  s–      (S, –, u– )  , a contradiction. This 
completes the proof. 

The following result is an immediate consequence of 
Theorems 6 and 7. 

Theorem 8:   (S, –, u– )  is a linear space over C  if and 
only if  supk uk  < . 

Let  u–  = < uk >  such that  supk  uk  <   and s– = < sk  >   

 (S, –, u– ). We define a real valued function 

P ,u (s–) ={ (
k = 1

. || k sk ‚ t|| 
uk ) 1/M,for each  t   S }. …(3)  

Throughout   the work, P  will denote P ,u and  u–  = < uk > , 

v–  = < vk >  such that supk  uk  <  and  supk  vk  < . 
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We prove below that    (S, –, u– ) with respect to P  forms  a 
paranormed space. 

Theorem 9:  ( S, – , u– ) forms a total paranormed -space 
with respect to  P  

Proof. 

Let  C and s– = < sk  >  , w–  = < wk >    (S, –, u– ).Then 
we can easily verify  that  P satisfy the following properties 
of paranorm.  

(i)  P (s–)  0, and P (s–)  0 if and only if  s– = –; 

(ii)  P (s– + w–)  P (s–) + P (w–); 

(iii)  P ( s–)  A ( ) P(s–);                                           

(iv)  Finally for continuity of scalar multiplication, it is 
sufficient to show that 

    (a)  P (s–(n))  0 and n   imply P ( n s–(n))  0; and 

    (b)  n  0 implies P ( n s–)  0 for each s–    (S, –, u– ). 

Now to prove (a) suppose | n|  L for all n  1, then in view 
of (3) , we have 

   P ( n s–(n))  =  { (
k = 1

.    || n k sk ‚ t  || 
uk )

 1/M
 , for each  t   S } 

  supk | n|
 uk  /M { (

k = 1
.|| k sk ‚ t  || 

uk )
 1/M

,  for each  t   S } 

        A(L) P (s–(n)) , whence (a) follows.  

 Next if s–   (S, –, u– ) , then for  > 0 there exists an 
integer K such that 

k = 1
.  || k sk ‚ t  || 

uk  <    
M

 , for each t  S. 

Further  if n , we can find N such that for  n  N, then 
for each t  S, we have 

k = 1
.  | n|uk  || k sk ‚ t || 

uk  <    
M

  and | n|  1. 

 Thus for each t  S,  P ( n s–)  
k = 1

.    || n k sk ‚ t ||
 uk

 

1/M

  

        +   
k = 1

.   || k sk ‚ t || 
uk 

1/M

  < , 

  for all n  N  , and hence (b) follows. 

Theorem 10: If S is a Banach space, then ((S, –, u– ), P ) 
is complete. 

Proof. 

 We prove the completeness of  (S, –, u– )  with respect to 

the metric d(s–, t–) = P (s– – t–). 

Let < s–(n) > be a Cauchy sequence in  (S, – , u– ) . Then for 
0 <  < 1 , there exists N such that for all n, m  N and for 

each t  S, we have P (s–(n) – s–(m))  

= (
k = 1

.    || k s
(n)
k  – k s (m)

k , t  || 
uk

 )
 1/M

 < .       ……….. (4) 

and so for all n, m  N and k  1 and for each t  S,  

we have 

|| s(n)
k  – s (m)

k ‚ t || < | k|
 -1

 
 M/ uk   < | k|

 -1
 . 

This shows that for each k, <  s(n)
k  >  is a Cauchy sequence 

in S and because of completeness of S, s
(n)
k   sk  S (say) 

for each k. Being a Cauchy sequence  < s(n)
k >  is bounded, 

i.e. P (s(n)
k )  L for some L > 0 and for  all n  1. Thus for 

every n and r, (
k = 1

r
.  || k s (n)

k  – k‚ t  ||
 uk )

 1/M
  L.  

First taking n   and then r  , then for each t  S,  

(
k = 1

.    || k sk ‚ t  ||
 uk )

1/M
  L which implies that s– = < sk >  

  (S, – , u– ) .  

Now for any r, by (4) we have  

(
k =1

r
. || k s (n)

k  – k s
(m)
k ‚ t  ||

 uk )
 1/M

 < , for n, m  N, and so 

letting m   first and then r  , we get P (s–(n) – s–)  

= (
k = 1

.   || k s
(n)
k  – k sk‚ t  ||

 uk  )
 1/M

    for all  n  N and 

for each t  S i.e. s–(n) s– in  (S, – , u– ) , as n  .  

This proves the completeness of  (S, – , u– ). 
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CONCLUSION  
In the present work, we have studied some of the 
conditions that typify the topological structures and 
containment relations of 2-normed space valued 
summable sequences. In fact, this result can be used for 
further study to explore other properties of the 2- 
normed space valued sequences and functions.  
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