Journal of Institute of Science and Technology, 2014, 19(2): 94-99, © Institute of Science and Technology, T.U.

Theory of Finsler spaces with (3,p)-Metric

Dhirendra Thakur
Kailali Multiple Campus,
Tribhuvan University, Kailali, Dhangadhi,Nepal
E-mail: dhirendrathakurkmc@gmail.com

ABSTRACT

The aim of this paper is to introduce and study the concept of (A,f)—metric and a number of propositions and

theorems have been workout for a (A,B)—metric, where A™ =a. .

B=b,(x)y' is a one form metric.
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INTRODUCTION

We begin with recalling some notations and basic
definitions that are used in this paper.

Definition 1: Finsler space

Suppose that we are given a function L(x', ) of the line
element (x', /) of a curve defined in R. We shall assume
L as a function of class at least C° in all its 2n-
arguments. If we define the infinitesimal distance ds
between two points P(x) and Q(x' +dx’) of R by the
relation ds = L(x',dx") then, the manifold M" equipped
with the fundamental function L defining the metric is
called a Finsler space if L(x' +dx") satisfies the following
condition:-

A -The function L(x' ') is positively homogeneous of
degree oneiny' i. e.,

L& k) =kL(' )), k>0

That is, the arc length of curve is independent of the
choice of parameter t.

B -The function L(x',)") is positive if not all yi vanish
simultaneously, i.e.,

L(x'))>0  with Z(yi)z 20

That is, the distance between two distinct points is
positive.

C- The quartic form,
oL (x',y")
oy oy’

be positive definite for all any variable @i .

éigj is assumed to

616 J.Lz(xi,yi)E;gj =

That is, L(xi ,yi) is a convex function in yi (Matsumoto,
1986)
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Definition 2: Finsler connection

A Finsler connection FT" is defined as tried

(Fi (X, ), Ni(x,y), Vi (x,y)) as follows:

(1) Fjik (X,y) are called the connection coefficients of h-

connection which obey the usual transformation law of
connection coefficients of a connection

EL&9) =F X X[ X+ X 0.X,
(‘h’ is the abbreviation of ‘horizontal’.)

(i) N;(X,y) are called the connection coefficients of

non-linear connection which obey the transformation
law

N (®%9) =Nj(x.y) X} X, + X} 0, X, §°
(iii) Vjik (x,y) are called the connection coefficients of

v-connection which are components of a tensor field of
(1,2)-ype. (v’ 1is the abbreviation of ‘vertical’.)
(Antonelli ez al. 1993).

Definition 3: h and v- covariant derivative,

A tensor field Tji(x,y) , for instance, of (1,1)-type we

. . h
have first the h-covariant derivative " T whose
components are given by

—T'F!

r— jk

T =8, T +T'F,
where, O, is a differential operator 8, =0, —N,0,.
Secondly, we have the v-covariant derivative " “T

whose components are given by
T [ =0T + T/ Vi =TIV i (2)

J



(Matsumoto, 1986)

Definition 4: Berwald connection

The Berwald connection BI" = (G! G;,O) is uniquely

k>
determined from function L(x, y) of F" by the
following five axioms:-

L, = 0, ie L-metrical ...................... (B1)
(h) h- torsion: Tjik =0 e (B2)
deflection: Dj. S0 e (B3)
(v) hv -torsion: Pjik =0 e, (B4)
(h) hv -torsion: C;k Z0 (B5)

(Matsumoto, 1992).
Definition 5: The Cartan connection CT = (ij(,G;,C;k)

is uniquely determined from function L(x, y) of F" by
the following five axioms:-

ik = 0 ie. h-metrical ... (C1)
(hh-torsion: Ty =0 . (C2)
deflection tensor field D; =0 (C3)
g;; |, =0,ie v-metrical .........ceeeiiiininns (C4)
(h) h -torsion: S}k =0. (C5)

(Matsumoto, M. 1992).

Matsumoto (1995) introduce the concept of m™-root
metric on a differentiable manifold with the local co-

ordinate X' , is defined by

L(x,y) = {a,, ., (Y'Y y" -y}

1/3

where, ;i i....

i (x) are components of a symmetric
tensor field of (0, m)-type depending on the position x
alone, and a Finsler space with a m™-root metric is
called the m™-root Finsler space (Shimada, 1979;
Kropina 1961; Wagner, 1938; Wagner, 1943). They
studying the m™-root Finsler spaces with a cubic metric
as a generalization of Euclidean or Riemannian
geometry. In 1941, Randers co-relate the Finsler Theory
with the unified field theory of gravitation and
electromagnetism. The formula for the length ds of a

line-element dX' must necessarily be homogeneous of

first degree in dX'. The simplest “eccentric” line-
element possessing this property, and of course being
invariant, is
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ds = {a;(x)dx'dx"}"? +b,(x) dx’

Where aij(x) is the fundamental tensor of the

Riemannian affine connection, and b; is a covariant
vector determining the displacement of the centre of the
indicatrix.”

In the present paper, we shall study Finsler space with
the fundamental function L(A,p). We have workout

some basic tensors namely hy,g:,Cy and g'and
also workout certain propositions regarding the Finsler
space with (A,p)-metric.

Basic tensors of (),[)-metric

Definition 6: A Finsler metric L(x, y) is called a

(A, PB) -metric, when L is positively homogeneous
function L(A,P) of first degree in two variables, A

m _ T A iy oie
and B, where \™ = . . (x)y" y? y®....y" is m" root

metric and } = b, (X)yi is a one-form metric
(Matsumoto &Shimada, 1978) .

Throughout, the present paper, following notations are
adopted

A = (x)y" yizyi3 ceeym
a; =(m- l)aiji3i4...im_2 (X)y"y" ey

aijbj = B'and aijaj =a'

where, (aij) is the inverse matrix of (aij). Further,
subscripts A, denote partial differentiations with
(}\’a B) -

respect to A,B respectively. As for a

metric, L = L(A,B) oo %)
Differentiating (5), with respect to yi , we get

. Lk
[[=0L=—ra,+Lgb, (6)

7\'m
Equation (6) can also be written as
: LL

y; =LL =L(OL)=—%a,+LLgb, ...cccc.... (7)

Again differentiating (6), with respect to, yj , we have
the angular metric tensor hij = L(éiéjL) , as

hij =P (m-2)3j +q0bibj +q4(m—])(aibj +ajbi) +4_om2)@idj o )
LL LL,,
where, P_(m-2) ZXT_XH 90 =LLgs q o
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L (m-1L,
9 om-2) = W[Lm - T)j

Owing to the homogeneity or hijyj =0, we have two

identities,
Py T miBtdonp"=0 )
qQB+q_ 2" =0

Since a, and ‘bi are two independent vector fields,
hence, we must have.

Again,

gij = hl_l + lll_] ............................................... (10)

gii = P_(m-2)3; +p0bibj + p—(m—l)(aibj + ajbi) +P_(2m-2)3i8;
L L

where, Po =4 +L2B > Potmn) = 9emo +ﬁ’

L2

. (10y

Using (9) and (10)', we get
{poﬁ +p-(m-1))‘m = LLB (11)

p—(m—l)B + p-(zm—z)km =0
It is well known that
Proposition 1: Let a non-singular symmetric n-matrix
(Aij ) and n quantities C, be given, and put

B, = A, +cg;- The inverse matrix (B") of (Bij) and the

det(By;) are given by,
Bl = AV —c'c!,  det(By)=A(l+c?)
(1+c¢)

where, (Aij) is the inverse matrix of (Ay)>
A= det(Aij) ,¢' = Aijcj, and ¢’ = CiCi (Matsumoto,
1992).
From (10), the components g;; may be written as,
gii = P_m-@;; TCC; + didj
where, we put,
¢, =mb;, d, =mb +m 8
2,2 _
T +T =Py TRy = Pty >

2
T_m-1) = P_om-2) -

we get Bij:p_(m_z)aij+cicj, then we have,

g; =B, +dd;.
From, definition of BY, we have Biijk =3F.

Then,

Bi = 1 ai c'c’
- 2
P_(m-2) P_(ma) t€

Ci = aijcj ,and

ij . )
where, a" is reciprocal of a;,

¢’ = CiCi . Now, by using Proposition 1, we have
d'd’

1+d’

where,d' = Bid,, d'd, = d*

gij _Ri_

(p,(m,z) + Cz)

g =By [(1+d") =[p_, 2, (1+d%)

—(m-2)
‘ gij |: pi(_rln—Z)a(p_(m_z) + Cz)(l + dz)

where a is the determinant of a i

ij 1 ij CiCj didj
g = a’— - :
2 2
P_(m-2) P_m2y(P_mry €7)  1+d
Now,
i _ i 1 (nop—(m—Z) - nzn_(m_l)ﬁ) i i
d'=B'd;= [ +7 2]

P(m2) (p—(m—2) + Cz)

where, Bibi =b>=a"b_b.

m~i’

i i i — 21.2 2
aB'=a"ab_=a'b,=a, b =c".

Again, dd' = 1
p%(m—Z)

2 —\2
(nopf(mfz) -n n—(m—l)a) B'B!
2
(P_(nyy +¢7)

2 —_—
N (nop—(m-z) - 7ton—(m-l)a)
2
(P +€°)

or d'd'= _ !
P-m-2

Tty (Biatj + Bjai) +m (m_l)aiaj]

2 —\2
(Tcop—(m-2) -7 n—(m—l)a)

B'B
(Pomry + c’)’

2 -_—
| (P(myP-m2) =T P22y @)

B'a’+B'a') + a'al].
(P,(m,2)+cz) ( ) P_madd’]

Now,



1
Py (Pomony + c’)
=2

- 2
2P (nPo(m2y@ ~P (1)@

2 2.2
P (m-2)P-2m-2y8 T P_2m2C @ 1.
Again,

|gij |:p:rln 2)a(p m-2) TC )(1+d2) p’ (m 2)at

where,
_ 21.2 =
T=P_m-2 {p—(m—2> +7b” + p—<m—2>a} *
— 2 =2
P P-n-2@ P @)

2 2.2
+{p—(m72)p—(2m72)a +P_om2@ € }.
Thus, the reciprocal of (gij) is given by

¢ =dd = [R26°D (1) +

g'= a'-SBB'-S(B'a’ + Bla')~Sa'al «:ereeeeen (12)

P_(m-2)
where,

2 2 2 - -
TP gy T (t+m P_om@ ~ 2p—(m—1)p—(m—2)a’)

2

TP_(m-2) {p—(m—Z) +¢°}
2 —_—

g = P-m-yP-(m-2) = P_2m-2)@

m-3
TP_(m-2)

S

m-4

2

S_ gy = rmPoom 2 PO Pany (12)
P_(m-2)

Differentiating (12) by yk, we get,

2C =2p_ 0 +p0ﬁbibjbk + H{I{P i TP (monypdiD b,

p_(m—l)x

m-1

—+

ab }+p7i2m Daaa, coe(13)

where, [ denotes the sum of cyclic permutation of i, j,
(ijk)

k.
P =P om) 3+ Py by
2p—(m 2Ci = 2172 G T bbb,

ijk —(m=-1)~i"j

+H{p,hjk +7 2)ab b,

(ijk)

T ana@@ b g a2 (13)
where,
r—(m—l) - pOBp—(m—Z) - 3q0p—(m—l) g eessessseaaes (133)'

r—(2m—2) = p—(m—l)Bp—(m—2) - qu—(2m—2) - 2p—(m—1)q—(m—1)

Dhirendra Thakur

_ PempPomo )
Liang = A - om-2)P-(m-1y = “P-m-2) -y »
_ P-m-2)P-2m-2y

U 4mgy = s

- 3q—(2m—2)p—(2m—2)
Proposition 2: The normalized supporting element li ,
angular metric tensor h i metric tensor g i and (h) hv-

torsion tensor Cy, of Finsler space with (A,[3) -metric
are given by (6), (8), (10) and (13a) respectively.
Proposition 3: The reciprocal of the metric tensor g i
of (A,P) -metric is given by (12).

Proposition 4: The coefficients
I’_(m_l),l‘_(Zm_z),I’_(3m_3),r_(4m_4) defined in (13a)'

satisfy the following relation

L oim B+ manmn A =0 e (14)
where n=1,2,3.

Now, from (11) and (14), we have

P_om-2) = (I)p—(m—l)’
T mey = 0 T N =123 15)
where, ¢ = —L.
}\’m
Using relation (15) in (13a), we easily get
2D_ (2 Ciic = 2P (nyis + 1-k[ (HyP) oo (13b)
where, . =h, + —"—- ‘““ —=LPP..
p (m-1)
. . ij
Further, by direct computation from Ci and g7, we
have,
C = Pmon@ & + A8, +Bb (16)
where A and B are certain scalar.
If the Finsler space (F") is C-reducible, then
1

e TT(RLCL)  ceeeeneeeneeee (17)

1_|k (n + l) (Uk)( ij k)
from (13b) and (17), it follows that,

T
—(m-1)

aijk+—2pppk I h, N .............. (18)

3 1]
2P ()P (2 @)
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2p_ 2 o _p . Conversely, If (18),

where, N, =
n+l

satisfied for certain covariant vector Nk, then from 3b)

we have

20 Ci = IR AN e (19)

which gives (17). Thus, we have,

Theorem 1: A Finsler space with (A,[}) -metric is C-
reducile iff equation (18) holds.

Important tensors of (),p)-metric

It follow from (13b) and (12), that the components Ch
of the (h)hv-torsion tensor CI" are given by,

20_(00Ci =20 oy + 8P, =11P) + (8, P, = I'[,P)
—(m 1)

p(m 1

PPP +h; P

where, Pg*=P', gl =I', a,g"=a;.

Again from (13b) and (20), we have,
4p3(m—2)C;1kCrij = 4pf(m—2)a;karij + 2p%(m—2) (gkl)(aijkph)

p (m-2)

11 (PPP,)-

(ijkh)

o i 1>L2 [a; (4P, +4,P)]

2p—(m—2)r—(m—1)

2
. Jpphpk+M ' prpipy +
P-(m)

P
pf(m_z)aﬁj phi +2 pf(m,z) a'h pehy -
p%(m—Z)[a;k Zr(Zin + lei)] +[ hihpjpk + hikphpj
+hthkPi +hjkPiPh + 2hi-PkPh + 2hhkPiP- )]

rf(mfl) Pz f(m 1)
= —[h, + PP PP h(lP +1.P)
p—(m—l) L p —-(m-1)
-Ezhhk(llP.+1.l’i)+ Sy P —h (PP, + S LPPPP,. T @D
L P i(m N r (m )
a. ﬁ 2 r
Whel’e, airklr:—lka Pl——29 PP—P_’ Pgir_Pl’
L L
61r rhk

From (21), the v-curvature tensor Shik of CTI" is written

as, 4p3(m—2)shijk = 4pi(m—2) (%(Cqukcrij)

where, @ anti-symmetric with respect to indecies j
(i)

and k. Thus,
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+

rij

4p? (m=2) huk = ®[4P (m- Z)ahka

2p (m-2) (aru r~Thk + ahkPrHij)
_(thk + lkPh)Aij - (Zin + lei)Ahk + H;_iPth + H;lkl)in]

where,

P
a2
Ay = 2p—(m—2)aij - Ehij

o 2
2}) (m-2) 33 7(m - arlJPr +[1+;]hij.

—(m-1)
Proposition 5: The v-curvature tensor of a Finsler
space with (A,[)-metric is given by (22).
Next, h- and v-covariant derivatives Xiu,xi |j ofa
covariant vector field X, with respect to the Cartan
connection CI" are defined by,
Xi|j = ani —(QXJNE —XrFi; and X, ‘j: 5in _chirj
where, (E, ,N\(=F,),C;,) are connection coefficients of
CT and suffix ‘0’ means the contraction by supporting

element yi (Antonelli et al. 1993).

If bi|h =0, then for L(A,B)-metric, we have,
a; =0 La, =0 (23)
because, li‘j =0and hy, =0

Then, the h-covariant differentiation of (13b), we have,

Cijk\h = P_(m-2)Qijkn

Therefore, the v(hv)-torsion tensor P, ik is written as,

Pijk "=C

= Cijk\hy

Definition: 7 A Finsler space is called a Berwald space,

ko = P—m-2)%ijkpo

if Cijk‘h vanishes identically and called a Landsberg

space if Cijk|0 vanishes identically.

Theorem 2: If ‘bi is h-covariantly constant (resp.
bi|0 ), then a Finsler space with (A, [}) -metric is a

Berwald space (resp. Landsberg space) iff the tensor
QA (resp. Aiixp0 ) vanishes identically.

Now, the hv-curvature tensor Phijk (Antonelli et al
1993] is given by,
@ (Cl_]klh + C;J nk\())

huk

Now,



1
a2 r
- p—(m—Z)ahjarik\O + Eahik\OPj -

C,C

hj ~ rik|0

1 1
Zaik\o (Zth + ZjPh )+ Eajikah

s o o prpp Ly g
zpi(m_l) rik|0 i h 2 jh rik|0
Thus,
1 1
P = Olay, +Eaijk\0Ph —Zamo(thj +P)  .........(26)
+arik\0PrHjh + arik\OA;j]
11,
ro_ 2 r (m-1) pr .
where, Ay = Pm) By + -3 P'PP,
~(m-1)
Proposition 6: The (v) hv-torsion tensor Pijk and hv-

curvature tensor p, for (A,B)-metric is given by (25)
and (26) respectively.
Now, the T-tensor is given by

Thijk = LChij I +Zichjk +ZjChik +lkchij +lhcijk :
Now, the v-derivative of C,; is given by
2p—(m—2)Chij L= ZPE(m-z)ahij o+

1
zpi(mm I Apii _E[hjk(liPh +14,P)
+h, (leh + thj) +h,, (liPj + lei)] +
TT(H.P.| )+ 2= [1(p pp | )
(hijy~ MO 3P_ sy g
Using (6), (13b) and (27), the T-tensor for (A,P)-
metric is given by
1
Thijk = 2—[2pi(m—2)Lahij o +
_(m-2)
zpi(m—Z) I Lahij - 2p—(m—2) I LChij]
;[hjk (/P,+1.P)+
2p—(m—2)
h, (1P, +1,P,) +hy, ([P, +1P)]

2r
+LIT(H,P |,)+—""LI1(P,PP.
(hij)( hi J|k) 3 i(mil) (hij)( h™i J‘k)
L1 (lhaijk)

2
tP-(m-2) (hijk)

+(H(){Hhi (Zij +IkPj)}]

Thus,
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Proposition 7: The T-tensor T, for (A,p)-metric is
given by (28).
CONCLUSION

Present paper that
characterize The normalized supporting element li,

examined some conditions

angular metric tensor h ij» metric tensor g i and (h) hv-

torsion tensor Ci» The reciprocal of the metric tensor
g - T-tensor T C-reducile of Finsler space with
(A, B) -metric,.
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