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ABSTRACT

The problem of minimizing the total deviations between the actual and the ideal cumulative production of a variety of
models of a common base product arises as a sequencing problem in mixed-model just-in-time production systems.
This is called the total product rate variation problem. Several pseudo-polynomial exact algorithms and heuristics
have been derived for this problem. In this paper, we estimate the sequencing time window for all copies of all models
of a common base product for the problem when the m-th power of the total deviations between the actual and the

ideal cumulative productions has to be minimized.
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INTRODUCTION

Many companies have changed the assembly lines from
paced single-model lines for mass production to mixed-
model assembly lines for mass customization of a
variety of models of a common base product. Just-in-
time production system which requires producing only
the necessary products in the necessary quantities at the
necessary times usually uses mixed-model assembly
lines.

Mixed-model just-in-time production systems with
negligible change-over costs between the models have
been used in order to respond to the customer demands
for a variety of models of a common base product
without holding large inventories or incurring large
shortages. One of the most important problems for the
effective utilization of the systems consists in
sequencing different models with keeping the rate of
usage of all parts used by the assembly lines as constant
as possible. The problem is known as the mixed-model
just-in-time  sequencing problem (abbreviated as
MMIITSP). The problem of minimizing the variation in
the rate at which different models are produced on the
line is called the product rate variation problem
(abbreviated as PRVP). The latter problem is the single-
level case of MMIITSP. The problem of minimizing the
total deviations between the actual cumulative
productions from the ideal one is called the total PRVP
(abbreviated as TPRVP), see Kubiak (1993). This
problem has been widely investigated in the literature
since it has a model with a strong mathematical base and
wide real-world applications, see Dhamala & Khadka
(2009), a recent survey.
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In this paper, we determine the sequencing time window
for all copies of all models of a common base product.
The remainder of the paper is as follows. In the second
section, we present a mathematical modeling of the
problem. In the third section, we present the sequencing
time window for all copies of all models of a common
base product which is the major contribution of this
paper.

First, the level curves are investigated, then the largest
function value and finally the smallest function value.
The last section concludes the paper.

MATHEMATICAL MODELLING

Let D be the total demand of n different models with d;
copies of model i,i = 1,2,...,n, where n > 2 and
D = Y ,d;. The time horizon is partitioned into D
equal time units under the assumption that each copy of
a model i,i = 1,...,n, has equal processing time. A
copy of a model is produced in a time unit k,k =
1,...,D, means that the copy of the model is produced
during the time period fromk — 1to k.Letr; = % be
the demand rate. Let x;; and kr; be the actual and the
ideal cumulative productions, respectively, of model i
produced during the time units 1 through k. An
inventory holds if x;;, — kr; > 0, and a shortage incurs
if kr; — x;, > 0. We assign the same cost for both
inventory and shortage. Miltenburg (1989) and Kubiak
and Sethi (1991, 1994) gave an integer programming
formulation for TPRVP as follows

with m being a positive integer:

minimize [F, = Y- %%, |xy — kry|™]



subject to

Yhaxip =k, k=12..,D
Xik-1) < Xk, L= 1,2,...mk =23,...,D
Xip =di, xjp =0, i=12,..n

= 1,2,...nm, k = 1,2,...,D.
LEVEL CURVE AND BOUNDS

There exist nD deviations between the actual and the
ideal cumulative productions of D copies of n models.
The value of the actual cumulative production x; ,
i =12,....,n; k = 1,2,...,D, is sequence-dependent
integer from {0,1,...,d;}. However, the value of the
ideal cumulative production kr;, i = 1,2,...,n; k =
1,2,...,D, is sequence-independent rational number.
Let j be the number of copies of a model and (i, ;) be
the j** copy of model i,i = 1,2,...,n. The actual

Xir = 0,integer i

cumulative  production xy, , [ = 1,2,...,n; k =
1,2,...,D , has nD values with x; € {j|j =
0,1,2,...,d;; i = 1,2,...,n}. There exist at most

n + D different values of x;;, for TPRVP. Hence, one
can replace x;, by j with j = 0,1,...,d;; i =
1,2,...,n, in the level curve of the objective value of
the function of TPRVP. The level curve for copy (i,[)
of the objective function of TPRVP is defined as

fi"=nDlj—kr|™,i = 1,2,..,mj = 0,1,...,di.

A perfect matching of copies and time units relies on the
level curves and the bound B > 0 of the function F,, of
PRVP that are drawn over the planning horizon. The
points at which the bound intersects the level curves are
useful to find the sequencing times. A copy (i,j) is
sequenced at a time unit k € {1,...,D} such that the
level curve does not exceed the bound B. An upper
bound on the absolute deviation objective function Ixik
— kril for BPRVP is UB*; = 1, see Steiner and Yeomans
(1993), and a better one has been given as UB*; = 1 —

; , see Brauner and Crama (2004). Since the points,

where the bound UB*; = 1 intersects the level curves of
BPRVP with the objective function |x;, — kr;|™ for
different values of m, are the same, the bound UB*;
is also an upper bound for BPRVP with the objective
function |x;, — kr;|™ for all values of m. However, the
upper bounds corresponding to UB*; = 1 — % are
different for BPRVP with the objective functions
|x; — kr;|™ for different values of m. An upper bound
on the largest value of the objective function |x;;, —

kr;]™ of BPRVP has ©been established as
. 1\™
UB'm=(1-1)",
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Dhamala et al. (2010) and Khadka (2012). A minor
modification yields an upper bound on the optimal value
of function F,;, for PRVP given by

UB,, = nD(1—2)", Khadka (2014) (although it not
tight). The lower bound LB*; =1 —1y,, on the
absolute deviation objective function |x;, — kr;| for
BPRVP has been established by Steiner and Yeomans

(1993), and it has been modified as

LB* = (1 — 1ipgy)™, for this problem with the
objective function |x;;, — kr;]™ (Dhamala et al. (2010)
and Khadka (2012)). Hence, a lower bound on the
optimal value of the objective function F,, for TPRVP is
given by

LB,, = nD(1 — rex)™, Khadka (2014).
SEQUENCING TIME WINDOW

The earliest and the latest sequencing times are
determined by the level curve and a suitably chosen
bound. The selection of an upper bound always yields
the sequencing times that give rise to a feasible solution.
However, this is time-consuming. A selection of a lower
bound for small-size instances is better for BPRVP (see
Kovalyov et al. (2001)). A feasible solution
corresponding to the lower bound is optimal.

Let E,,(i,j) and L,,,(i,)), be the earliest and the latest
sequencing times of copy (i,j) for a given (suitably
chosen) bound B, respectively, when considering the
objective function F,.

The integer time interval T(; jy,m = [En(L)), L (i, ))]

is called the sequencing time window for the copy (i, )
since the level curve of the objective function F,, of
TPRVP does not exceed the bound B if copy (i,j) is
sequenced within this window. The earliest sequencing
time E,,(i,j) € {1,...,D} is the unique integer such
that, when copy (i, j) is sequenced at time E,,(i,j) — 1,
the level curve exceeds the bound B but does not exceed
this bound when sequenced at £, (i, j).

Similarly, the latest sequencing time L,,(i,j) €
{1,...,D} is the unique integer such that, when copy
(i,(j —1))is sequenced at time L,,(7,j) — 1, the level
curve does not exceed the bound B but it exceeds this
bound when sequenced at time L, (i, j).

Theorem 1. Let E,,,(i,j)and L,,,(i,j),i = 1,...,n; j =
0,1,...,d;, be the earliest and the latest sequencing
times, respectively, for a given (suitably chosen) bound
B > 0 for an instance (d,...,d,). Then the equalities

"™ [B_ 4™ B
E,.@i, ) = [ﬁ} and L, (i,j) = [JH] hold.
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Proof. Let Em(i,j) and Lm(i,j), i = 1,...,n; j =
0,1,...,d;, be the earliest and the latest sequencing
times, respectively.

The time Em(i, j) satisfies the two inequalities
nD[j — (E,(i,j)) — 1)r;]™ > Band

nD[j — En(i, )™ < B
This implies the inequalities

1+ 2 J;> Em(i, ) and ~ J;< Em(i, j)

Therefore, we have the 1nequahtles

j_:/?< Em(i,j) < 1+ ,_"‘\L/E

- m[E
Hence, we obtain E,, (i,j) = []T—ND]

Similarly, the time Lm(i, j) satisfies the inequalities
nD[(L,,(i,j) — Dri — (G — 1)]™ < Band

nD[L,(@))ri — (G — D™ > B
This implies the inequalities

i—14 B 14| B
1+ J > Lm(i,j) and i < Lm(i,j)

. ..m[B 14| B
We have %<Lm(i,j) <1+ ]Hr—,J;
L L

i mi
Thus, we obtain L, (i,j) = lwfiﬁ . 1J

Hence the result.

Corollary 1 Let E,,,(i,)) andL,,(i,), i = 1,...,n; j =

., d;, be the earliest and the latest sequencing times,
respectively. Then the inequality E,,(i,j) < L..(i,))
holds.

Proof. Consider the earliest sequencing time
, m|pg
. J= np
En(i)) = [r—lf‘

Without loss of optimality, one can use the bound
B = UBp.ie, B = nD(1-14)"
Thus, we obtain

E, (i) = [J (1-3 )] _ [j—1+(1—% :1+2(%_1)]

i i i

; 1
< {] -1+(1-5) o 1+2(%-1)J
Ti Ti
1—
Since@ <o foranyD > 2,
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we can write
T i1+ B
N =

Corollary 2 Let [1, D] be the planning horizon and
1,...,d;

be the sequencing time window for copy (i,). Then the
inclusion T jym < [1,D]

holds fori = 1,.. d;.

Proof. Suppose that copy (i,j),i = 1,...,n; j

= 1,...,d;, is sequenced at time k € T(; jym -

Thus, E,@GJ) < k < Lp,@,)).

The minimum value of the earliest sequencing time
E.(i,)) for a copy (i,j) can be the first time unit 1.
Likewise, the maximum value of the latest sequencing
time L,, (i, ) for a copy (i,j) can be the last time unit D.
ie, 1<E,(,j) andL,, (i) <D.

Thus, 1 <k < D.

Hence, the inclusion

T(i,j)‘m'i - 1,...,Tl;j -

S j=1,...,

Tijym < [1,D] holds.
Corollary 3 Let [1, D] be the planning horizon and
d;,

be the sequencing time window for copy (i, j). Then
Uy i=1Tanm = [L D].

Proof. Since, by using Corollary 2, T(; jym, € [1,D]

Tijpmi = 1...,mj = 1,..,

Un.

for each copy (i,j),i = 1,...,n;j =
have U™, iy T ym S [1,D]

The planning horizon is partitioned into exactly D equal
time units, where D is equal to the total number of all
copies j,j = 1,...,d;, of all models i,i 1,...,n.
There exists at least one sequencing time window that
contains the first time unit 1 and at least another one that
contains the last time unit D. This implies [1, D] <
Un.di

.,di, we

ij=1 T, pm

Corollary 4 Given a suitably chosen bound B > 0, the
level curve of the objective function F,, does not exceed
B if and only if copy (i,j) is sequenced within the
sequencing time window

Tajpymti = L..,mj = 1,...,d;.

Proof. If the level curve
fmij =nD|j — kny|™

of the objective function F,, of TPRVP does not exceed
a suitably chosen bound B > 0, by Theorem 1, copy
(t,)) is sequenced at a time unitk € T j),, S [1, D].



Conversely, let copy (i, j) be sequenced at a time unit
k € T(i,j)m c [I,D]
i.e., inequalities
En(i,j) = k < Lin(i.))
hold. Thus,

="
[r—"ﬂ <k and
- Iﬁﬂj

which yields the inequalities

. m
j-mlB

I j-14 B

- “<kand k < TJ;+1.

Thus, we get nD |j — kr;|™ < B and
nD|(k — )r, —(j— 1)|™ < B.

CONCLUSION

For the total product rate variation problem, several
pseudo-polynomial exact solution algorithms and
heuristics have been developed. The earliest and the
latest sequencing times of a feasible solution for TPRVP
are

. m| B . m| B
En(i,)) = [ﬁl and Ly (i,j) = {ﬁﬂj

respectively. These sequencing times can be used to
develop an O(DlogD) exact solution procedure recently
given by Khadka and Werner (2014) which improves
the known exact algorithm by Kubiak from (1993) with
a complexity of 0(D?).
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