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ABSTRACT 

Arterial stenosis is an abnormal condition in arteries due to the deposition of fats and other substances, called 

atherosclerosis.  As it restricts the blood flow, it may induce a heart attack. Employing the Navier-Stokes equations, we 

consider the blood flow in an artery with the presence of a stenosis in an axisymmetric shape. We analyze the blood flow 

dynamics in cylindrical form by evaluating pressure, pressure drop against the wall, shear stress on the wall. We also 

analyze the dynamics by evaluating the ratio of pressure drop with stenosis to the pressure drop without stenosis against 

the wall, and the ratio of maximum to minimum shear stresses with the ratios of various thicknesses of stenosis to radius 

of the artery.  

Keywords:  Artery, Blood flow, Pressure drop, Shear stress, Stenosis. 

INTRODUCTION 

Stenosis is a pathological restriction of an artery, usually 

due to fat deposition, which alters different mechanisms 

involved in blood circulation. Stenosis in blood vessels, 

especially in arteries involve narrowing or constriction of 

the inner surfaces. It is the main cause of well-known 

serious diseases such as atherosclerosis. Therefore, the 

study of blood flow in a stenotic artery is useful for the 

understanding of circulatory disorders (Hye, 2012; Ku, 

1997; Phaijoo, 2013).
 

Blood behaves as a Newtonian fluid when it flows 

through arteries with a larger diameter at a high shear rate, 

whereas it exhibits a non-Newtonian fluid while flowing 

through arteries with smaller diameter at a low shear rate 

(Darcy, 1993; Eldesoky, 2012; Jain et al., 2010; Pedlosky, 

1987). One of the major causes of the deaths in the world 

is due to heart diseases, and the most commonly heard 

names among the same are ischemia, atherosclerosis, and 

angina pectoris. Ischemia is the deficiency of oxygen in a 

part of the body, usually temporary. It can be due to a 

constriction (stenosis) or obstruction in the blood vessel 

supplying the blood in that part (Phaijoo, 2013; Pralhad & 

Schultz 2004). 

The mathematical investigation of blood flow in the 

human circulatory system is one of the major challenges 

from the past few decades to many years to come. The 

development of more effective and accurate numerical 

simulation techniques could provide a better 

understanding of the hemodynamical abnormalities due to 

stenosis (Phaijoo, 2013). Blood flow under atherosclerosis 

which together with flow pulsatility can be the cause of 

some periodic turbulence (Varghese & Frankel, 2003). 

Turbulence in blood flow might affect some physiological 

processes such as the flow resistance, high shear stress on 

the blood vessel wall, tensile stress in endothelial cell 

membrane, change in blood rheology due to deformability 

of red blood cells, the surface cell loss as well as internal 

cell motion due to pressure and shear stress (Brinkman, 

1949; Fung, 1993; Varghese & Frankel, 2003). Human 

blood consists of plasma, red blood cells, white blood 

cells, and platelets to form a colloidal suspension (Guyton 

& Hall, 2000). The human circulatory system is a closed 

cardiovascular type flowing in the network of arteries, 

veins, and capillaries (Chakraborty et al., 2011; Jasit, 

2016). The flow of the blood remains laminar within the 

range of Reynolds numbers 5,000-10,000 (Phaijoo, 

2013).
 

Stenosis is generally an abnormal narrowing or 

contraction of a body passage or opening (Keane & O' 

Toole, 2003). Stenosis can lead to serious circulatory 

disorders, affecting many hydrodynamic factors such as 

resistance to flow, wall shear stress, and apparent 

viscosity. Aortic stenosis, Hypertrophic subaortic stenosis, 

Mitral stenosis, Pulmonary stenosis, Renal artery stenosis, 

Spinal stenosis, Subaortic stenosis, Tracheal stenosis, 

Tricuspid stenosis are some common types of stenosis 

(Keane & O' Toole, 2003; Sherwood, 2016). 

Many existing literatures focused on the study of blood 

flow in human arteries with stenosis. Varghese and 

Frankel (2003) numerically modeled the pulsatile 

turbulent flow in a stenotic vessel using the Reynolds-

averaged Navier-Stokes equation approach. Srivastava et 

al. (2010) studied the increased impedance and other flow 

characteristics during artery catheterization with a 

composite stenosis assuming that the flowing blood 

behaves like a Newtonian fluid. Jain et al. (2010) 

developed a mathematical model for studying the 
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oscillatory flow of blood in a stenosed artery under the 

influence of a transverse magnetic field through a porous 

medium. They solved the equation of motion of blood 

flow analytically by deriving the expressions for axial 

velocity, volumetric flow rate, pressure gradient, 

resistance to blood flow, and shear stress. Phaijoo (2013) 

analyzed the N-S equation in blood flow in cylindrical 

form by using different parameters. Moreno and Bhanagar 

(2013) developed the model in the case of realistic 

physiological flow conditions accounting for the unsteady 

flow conditions (systole/diastole) as well as the transition 

from laminar to turbulent state. Their studies clearly 

showed that, for the same degree of stenosis, (a) the 

presence of turbulence, (b) location of transition to 

turbulence, (c) turbulence intensity, and (d) region of 

turbulence are type-dependent. 

Argyropoulos and Markatos (2015) reviewed the recent 

advances and success of computing turbulent flows. Their 

review was primarily concerned with the most recent 

methods for computer predictions such as Direct 

Numerical Simulation (DNS) and Large Eddy Simulation 

(LES) to flows in pipes and free-surface flows. They 

noticed that the LES was the most accurate among the 

methods available for practical computations. Hye and 

Paul (2015) proposed that the spiral effect should be 

incorporated to get a better insight into the transition-to-

turbulence flow of blood through the arterial stenosis. 

Their results showed that the spiral flow affected the 

turbulence kinetic energy in the post stenosis region and 

the wall pressure and shear stress remained almost 

unchanged by the spiral velocity. Mahalingam et al. 

(2016) studied the nature of blood flow through stenosed 

coronary arteries by numerical analysis of the effect of 

turbulence transition on the hemodynamics parameters. 

They found that the primary biological effect of blood 

turbulence is the change in wall shear stress (WSS) on the 

endothelial cell membrane, while the local oscillatory 

nature of the blood flow influences some physiological 

changes in the coronary artery. Shah and Shukla (2017) 

studied some curvature properties of quasi-conformal 

curvature tensor on Sasakian manifolds. Thakur et al. 

(2018) used a fluid hydrodynamic model in the 

magnetized plasma sheath in a cylindrical coordinate 

system. Shah (2018) used the curvature conditions on 

Kenmotsu manifolds. 

In this work, the blood flow inside an artery was described 

by Navier-Stokes (N-S) equations. So, we presented N-S 

equations along with the equation of continuity in 

cylindrical form as the model employed. We also modeled 

a stenosis in an artery giving a constriction in the flow. 

We described the pressure drop, and the ratio of 

maximum and minimum shear stresses due to stenosis. A 

simple model for the stenosis in the curved artery was also 

constructed.
 

MODEL EQUATIONS 

Blood flow in arteries can be modeled by Navier-Stoke’s 

equations for fluid flow inside a cylinder (Kapur, 1985).  

Let r be the radius of the artery,  p be the pressure; three 

components v
r
, v

θ
 and  v

z
   be the of velocities along the 

radius vector, perpendicular to the radius vector, and  

parallel to   the axis of z, respectively.  The continuity 

equation and the equations of motion are given by (Kapur, 

1985). 
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In the axisymmetric case, we assume v
θ 

= 0, and v
r
, v

z
, 

and p are independent of θ. For the steady flow of blood, 

we assume a constant viscosity (μ and constant density 

(ρ) for the in a cylindrical artery of radius and length 

inclined at an angle represented in Fig.1.
 

 

Fig. 1. Section of an artery with mild stenosis 

Considering steady flow, and the velocity component 

parallel to the axis, so that v
r
 = 0, v

θ
 = 0, and v

z
 = v, 

equations (1)-(3) reduce to v 
z
 = v (r),    0 =  -  

 p

  r
 ,  
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 p
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Denoting P(z) = -  p /  z, (4) reduces to 

- P (z) 
r

 
   =  

 

  r
  




 r 

 v

  r
   (5) 

We consider the boundary condition (Kapur, 1985): 

v = 



 
0        at   r = R (z)¸    - z0   z z0

0       at   r =  R0¸             |z|    z0.
   (6) 
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The shape function R(z) for the radial structure of the 

surface of cylindrical pipe as shown  in  Fig. 1 was  given 

below by equation (7) (Kapur, 1985). 

R

 R0
  = 1 - 



2R0
  




1 +  cos 

 z

  z0
  (7) 

Integrating (5) with respect to r, taking z as constant gives 

 r 
 v

  r
  = - P ( z ) 

r 
2

 4 
   + C (z), 

Where, C(z) is the constant of integration. 

Applying v/ r = 0 at r = 0 gives C(z) = 0.  Integrating it 

again and using the boundary condition given by (6) 

results in 

v (r) =  - P ( z ) 
r 

2

 4 
   + D (z), 

where, D(z) is another constant of integration. 

Applying v = 0 at r = R gives D(z) = P R
2
/4μ, and so the  

velocity will be 

v =   
P

4
 ( R

2
 - r 

2
). 

This shows that velocity is maximum along the axis, and 

it vanishes on the surface of the artery. As v is a function 

of r and z, the flux through the cylindrical tube can be 

obtained through Kapur (1985). 
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Since Q is independent of z, this equation gives  P (z) as a 

function of z showing that pressure gradient varies 

inversely as the fourth power of the surface distance of the 

stenosis from the axis of the artery, and thus pressure 

gradient is minimum at the middle of the stenosis and 

maximum at the ends (Kapur, 1985).
 

Blood flow in an artery is considered as the laminar flow 

of non-Newtonian fluid in a circular tube under a constant 

pressure gradient. As pressure is equal to force per unit 

area, i.e.,   P = F/A, force due to pressure is now 

F = P.2r.dr =  2Prdr  (8) 

Let (r) be shear stress at a distance R from the axis. Force 

due to stress on the inner cylinder is F =r.1 = 2r.  

Therefore, force on the cylindrical surface is 

F = 2r + 2 
d

 d r
  (rdr  (9) 

Now, from (8) and (9), Pr =  
d
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  (r)Integrating it with 
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 2

 2
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constant of integration. Since the shear stress is finite at r= 

0, E(z)= 0. So,  = 
1

2
P(z)r. 

For the fluid power law, = e
n
, where  is viscosity 

(assumed constant) and 0.68 < n < 0.80 for blood (Kapur, 

1985) and thus 
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Integrating it from   r = R to any r, the velocity becomes 
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 , and the flux Q 

is obtained by (Kapur, 1985) 
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The pressure drop across the length of the stenosis is 

denoted by (Kapur, 1985) 
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For mild stenosis, using the radial surface given by (7), 

the pressure drop across the length is given by (Kapur, 

1985): 
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Where, a = 1- /2R0, b =  /2R0. Putting  z/ z0 = u, so that 

 dz = z0 du. 

When z = - z0,   u = - , and when z = z0, u =  
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When there is no stenosis, = 0; but f (/R0) =1, then the 

pressure drop across the stenosis length is given by 
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The ratio of pressure drop across the stenosis is as (Kapur, 

1985): 
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We note that 
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For Newtonian fluid, one can put n = 1 in equation (10). 

For this, applying Leibnitz’s rule, partially differentiating 

with respect to a thrice, and replacing the values of a and 

b gives  
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The shear stress at wall  =  P(z) R(z)/2 gives
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When = 0, i.e., there is no stenosis, f (/R0) = 1. 

The shear stress across the stenosis length is 
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The ratio of the maximum stress to the minimum stress is 
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Mild stenosis through curved artery 

Previous studies have found the effect of arterial curvature 

on blood flow in arteriovenous fistulae (Buradi et al., 

2016; Grechy et al., 2017; Iori et al., 2015). Stenosis most 

often occurs in the bending part of the human body due to 

the contraction and stressing of the artery. So, to make 

closer to this scenario, we consider the case of blood flow 

in the twisted artery, as shown in Fig. 2.
 

When blood is passing through a twisted artery containing 

stenosis, we consider the important aspect of curvature. 

Then, writing P(z) = - p/z, we propose the model 

equation of the blood flow in cylindrical form in 

generalized form as  

 - P(z) =  


 r
 


  r
 




r  

 v

  r
 +   v 

2
 ,  (13) 

Where, is the local curvature, and appropriate 

boundary conditions can similarly be provided for Fig. 2. 

But, the analysis of the blood flow in a curved artery with 

stenosis is not a focus here and will be presented in some 

other contribution. 

 

Fig. 2. Surface of the mild stenosis with given radius  in 

a curved artery as given in equation (13)  

 RESULTS AND DISCUSSION 

Figure 3 shows that the ratio of the pressure drops across 

the stenosis increase exponentially against the ratio of the 

stenosis thickness to the radius of the artery, for different 

radii of stenosis: R = 3.0 mm, R = 3.1 mm, R = 3.2 mm,           

R = 3.3 mm. The rate of increment of the ratio is larger 

for the narrower artery.
 

 

Fig. 3. Pressure drop across the length of stenosis given 

by the equation (11) 

Figure 4 shows that the ratio of maximum to minimum 

shear stresses increases almost linearly against the ratio of 
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the stenosis thickness to the radius of the artery with 

different (index of) power law of the shearing for n = 

0.10, n = 0.30,      n = 0.50, n = 0.70, n = 1.0. As the index 

n increases, the ratio increases. 

 

Fig. 4. Ratios of maximum to minimum of the shear 

stresses for different values of n as given by the 

equation (12) 

CONCLUSIONS 

Here, we presented the Navier-stokes equations in 

cylindrical form for the blood flow of the artery, and 

analyzed the pressure drop in the artery with various radii 

of stenosis. It was observed that the ratio of the pressure 

drop of the blood flow decrease along with the increase in 

the radii of the stenosis. Meanwhile in case of increment 

of stenosis thickness to the artery radii , the pressure ratio 

of the pressure drop increase. The shear stress of the blood 

flow increased with the indices of the power law of the 

stress. Also, we extended a model equation to include 

curvature effects on the blood flow.
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