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Abstract:  The decision problem whether a given open shop sequence, minimizing the maximum completion 
time,  is  irreducible  has  been  considered  in  the  last  20  years.  The  problem  has  diversified  applications  in 
industries  and  communications.  By  now,  a  number  of  algorithms  based  on  the  specific  properties  of  the 
corresponding sequence graph are proposed. Thus the problem is solved only partially and only in some special 
cases, but not in general yet. A number of open problems and conjectures carried out in this research have been 
posed,  so  far.  In  this  paper,  we  present  a  brief  sketch  of  these  ideas  with  different  formulations  of  the 
reducibility of open shop sequences and expose how important are the roles of conflict resolution reaching a 
conclusion to its end. Paths on the so-called H-comparability graphs with respect to the implication classes play 
vital roles in it.
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1.    Introduction
In an open shop scheduling problem, each job i ∈ {1, 2, . . . , n} has to be processed on each 

machine j ∈ {1, 2, . . . , m} exactly once without preemption for pij > 0. Let be P = [pij] (matrix of 

processing times), OIJ = {oij | pij > 0} (set of all operations) and C = [C1, C2, . . . , Cn] (vector of 

completion times of all jobs). The objective function is Cmax = maxi∈I Ci. One of the major tasks 

is to find a feasible (acyclic) combination of all machine orders and job orders, called sequence 

that minimizes  Cmax, that is an optimal schedule. We denote the set of all n  × m sequences by 

SIJ. This problem O||Cmax is solvable in time O(n) for m = 2, and is strongly NP -hard for n ≥ 3, 

[15].

A sequence A is called reducible to another sequence B if Cmax(B) ≤ Cmax(A) for all P ∈ Pnm, we 

write B   A. It is called strongly reducible, denoted by B ≺ A, if B   A   but not A   B, and 

called similar, denoted by A  ∼ B, if both  B   A  and  A   B hold. A sequence  A is called 

irreducible  if  there  exists  no other  non-similar  sequence  B to  which A can be reduced.  The 

irreducible elements are the minimal sequences with respect to the partial order ≺ and thus they 

are  locally  optimal.  The  set  forms  a  potentially  (universally)  optimal  solution  space  which 
contains  at  least  one  optimal  sequence  for  arbitrary  processing  time  pij,  [9,  22,  23].  This 
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dominance relation was introduced in [17]. One of the most important motivations to consider 
this  research is  that  the number of  irreducible  sequences is  very small  in  comparison to  the 
number of all sequences, [22, 5].

Consider a row permutation πr ∈ Sn, a column permutation πc ∈ Sm, a transposition Φ ∈ Z2, and a 

reversion Ψ ∈ Z2 of a sequence, where St denotes the symmetric group of order t and Z2 denotes 

the  cyclic  group  of  order  two.  For  two  given  sequences  A and  B,  they  are  called  structure 
isomorphic, graph isomorphic or permutation isomorphic, denoted by ≅s, ≅g or ≅p if there exists a 
mapping such that (πr, πc, Φ, Ψ)A = B, (πr, πc, Φ)A = B or (πr, πc)A = B, respectively. 

Each of these isomorphism relations defined above yields an equivalence relation decomposing 
the  sequence  space  into  disjoint  isomorphism classes.  Two sequences  A and  B in  the  same 
isomorphism class have the invariant property that one is irreducible if and only if the other is 
also irreducible. However, these structures are not fully understood yet though they play a key 
role in determining the number of all sequences and the number of irreducible sequences.

Informally, a decision problem is said to be in the class P if there exists a deterministic algorithm 
which solves the problem in polynomial time. A decision problem is in NP if a positive answer 
can be verified in  polynomial  time.  That  is,  there  exists  a nondeterministic  polynomial  time 
algorithm solving it. A decision problem is called NP -complete if the problem belongs to P, then 
NP = P holds. For instance, the graph isomorphism problem has been shown to be in NP , but not 
known to be  NP -complete, neither is it known to be in  P.  However, some special cases are 

polynomial solvable. The isomorphism of two sequences  A and  B of the same size  n  × m is 

decidable in  O(min{mn2, m2n}) time, [4, 10]. An efficient algorithm to decide whether a given 

connected digraph is a shop graph or a sequence graph is given in [10, 4, 16]. Both algorithms 

have time complexity O(max{mn2, m2n}). A systematic analysis of the complexity classes can be 

found in [11].

The  considered  problem of  irreducibility  on  an  operation  set  with  spanning  tree  structure  is 
polynomially  solved,  [6].  This  concept  is  generalized  by  considering  a  dominance  relation 

between a sequence and a set of sequences, [22]. The 3 × 3 open shop problem has been solved 

and a mixed integer programming has been formulated, [22]. For further extensions we refer to, 
[16, 23, 10]. Several necessary and sufficient conditions, which can be tested in polynomial time, 
and some computational results have been proposed, [5]. However, up to now, no polynomial 
time algorithm is  known for  the  decision  whether  a  sequence  is  irreducible  in  general.  The 
problem reducibility is in the class NP and the problem irreducibility is in the class co-NP. For a 
reducible sequence, the reducibility can be proved with nondeterministic polynomial time. We 
refer to the references, [9, 2, 8, 1], for the updated results.

Recently, two algorithms, one with polynomial time though of high complexity and the other an 
enumerative,  have  been  proposed  which  differ  in  the  nature  of  the  diagonal  edges  on  the 
corresponding  H-comparability  graph  of  the  given  sequence,  [2,  1].  They  discuss  quite 
meaningfully on the resolutions of the conflicts in this graph. In this paper, we mostly deal with 
the current issues and sketch the main ideas on how important are the roles of these resolutions 
reaching a conclusion to its end.
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Section 2 gives the mathematical formulations of the reducibility problem. In Section 3, we give 
different  approaches  of  the  problem formulation.  Section  4 summarizes  the  roles  of  conflict 
resolutions for a solution of the formulated problem. The final section concludes the paper.

2. Basic Concepts

2.1 The Model

A latin rectangle A[n, m, q] = [aij] is a matrix of size n × m with aij ∈ {1, 2, . . . , q} such that each 

integer of the symbol set {1, 2, . . . , q} occurs at most once in each row and in each column of A. 
If  n = m = q holds, then the matrix is a latin square of order  n, [7]. Here, we use the block-
matrices model [3] that uses special latin rectangles satisfying so-called the sequence property 
which states that for each integer aij > 1 there exists  aij − 1 in row i or in column j or in both. 
These  matrices  are  in  one-to-one correspondence with the  sequence graph  that  is  an acyclic 
orientation  of  the  disjunctive  graph,  [21].  Moreover,  this  mapping  is  polynomial  time 
transferable.

The n × m matrices of all job orders and machine orders are denoted by JO and MO, respectively. 
For any pair (MO, JO), we define the shop graph G(MO,JO) = (OIJ, E) where the arc set reflects the 
union  of  all  machine  orders  and  all  job  orders,  [10].  A  shop  graph  is  a  sequence  graph 
(nonsequence graph) if it is acyclic (cyclic). For each sequence graph G(MO,JO) we can describe the 
sequence  (MO, JO)  by a  latin  rectangle  A =  [aij ],  where  aij =  rank(oij )  with  the  sequence 
property. Recall that the rank of a vertex oij is the number of vertices on a longest path from a 
source to this vertex. An arc from a vertex oij to another vertex okl exists if and only if i = k or j = 
l is satisfied and aij <  akl holds.

2.2    Hamming Graph
Let the Hamming graph Kn × Km be denoted by GOIJ. Let the transitive orientation of the sequence 
graph and its symmetric closure, which is a H-comparability graph, be denoted by Atr and [Atr], 
respectively. Both can be obtained in polynomial time, [19]. Here, [Atr] = (OIJ, Atr +(Atr)−1) = 

(OIJ, Er(A)∪Ed(A)) is undirected graph, where Er(A) and Ed(A) represent the sets of all regular edges 

(i.e., all vertical and horizontal edges) and all diagonal edges, respectively, and (Atr)−1 denotes the 
graph of reverses of edges of the symmetric closure Atr.

A graph that has a transitive orientation is called a comparability graph, [12], and it is called 
prime if it is uniquely orientable. These graphs have interpretations in shop scheduling problems. 
A  Hamming  graph  which  is  restricted  on  a  partial  operation  set  defined  as

OIJ = {oijokl | pij > 0, I = k or j = l}
is called H-graph. A comparability graph G = ( V, E) with V = OIJ which contains an H-graph is 
called  H-comparability  graph.  Recall  that  not  all  Hamming  graphs  are  comparability,  for 
example, K2 × K3. 

The  following  comparability  graph  problem is  solvable.  Given  a  graph  G =  (V,  E),  is  it  a 
comparability graph? There exist various methods to solve this problem. For example, test of the 
uniqueness of its implication classes or the test of the corresponding bipartite graphs property 
needs  O(|V| |E|) time. Another variant would be the approach of modular decomposition with 
complexity O((|V | + |E|) log |V |). The recent and the best approach is to determine the transitive 
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orientation of the comparability graph rather than testing whether an acyclic orientation exists. 
This requires O(|E| + |V |) time.

Example 1 

Consider a 3-jobs 4-machines open shop problem with the machine orders

J1  : M2  → M4  → M1, J2  : M3  → M2  → M4  → M1, J3  : M1  → M3  → M4 
and the job orders 

M1  : J3  → J1  → J2, M2  : J1  → J2, M3  : J2  → J3, M4  : J1  → J3  → J2.

Then the corresponding rank matrices are, the machine order matrix  MO =  
















32.1

3124

2.13

, 

the job order matrix JO = 
















22.1

3123

1.12

 and the sequence B  = 
















32.1

4125

2.13

. 

Given the matrix of processing times P = 
















31.2

2463

1.16

, the matrix of completion times is 

obtained as  C =  
















85.2

1241015

2.18

 which is the schedule corresponding to the sequence  B 

and the matrix P with Cmax = 15. Remark that this value has to be minimized for the optimality. 

2.3.    Implication Classes

Two edges ab, cd in the sequence graph GS are said to be in γS -relation, denoted by ab γS cd, if 
and only if they are in γ-relation, denoted by abγ cd, in the transitive closure Str. For two edges 

ab, cd in a graph G = (V, E) a - relation is defined as follows: ∀ ab, cd ∈ E :  ab  cd ⇔ a = c 

∧ bd ∉ E,  or b = d ∧ ac ∉ E,  or ab = cd.

Two regular edges e, e’ ∈ Er(S) are said to be connected by a  γS -path if there exists a chain of 

edges e = e0, e1, . . . , em, em+1 = e’  from the set of regular edges Er(S) such that it holds e γS e1 γS e2 

. . . em γS e’′. This relation defines the transitive closure, denoted by γS
 tr, of the γS - relation on Er(S). 

The relation γS
tr partitions the set Er(S) into disjoint equivalent classes, called sequence implication 

classes, which decompose the set of all edges into disjoint equivalent classes in the comparability 
graph. The set of all sequence implication classes is denoted by    PS TR = {P1, . . . , Pk, P1

−1, . . . ,  
Pk

−1}. The equivalent relation similarly induced by the γ-relation also partitions the set of edges E 
in  Str, called the implication classes. The set of all implication classes is denoted by  I[STR ] = 
{I1, . . . , Il, I1

−1, . . . , Il
−1}.

If a sequence implication class contains more than two edges, then at least one vertical edge and 
at least one horizontal edge must be contained in it. The extended sequence implications are the 
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minimal  sets  containing  all  transitive  edges  of  the  corresponding  classes.  Each  sequence 
implication class is contained in some implication class.

The sequence implication classes introduced in [23] (see also, [17]) play important roles in the 
theory of irreducibility in open shop problem. For example, a sequence with only one sequence 
implication  class  is  irreducible.  Therefore,  all  latin  squares  are  irreducible  having  only  one 
sequence implication class in each. Furthermore, the sequence implication classes are the basic 
elements that generate the set of all sequences by their combinations, in particular, the set of all 
reducible sequences are generated by them, [2, 1].

The  notion  of  irreducibility  depends  on  the  characteristics  of  the  diagonal  edges  of  the  H-

comparability graph [Atr] = (OIJ, Er(A) ∪ Ed(A)). An edge e ∈ Ed(A) is called stable if it is contained 

in every irreducible sequence of the sequence A. The set of all stable edges may be empty since 

two irreducible sequences may not have a common edge which is stable. An edge e ∈ Ed(A) which 

belongs to an extended sequence implication class is always stable, and therefore we call is by 
trivial-stable. If  all  edges in the transitive closure [Atr] are trivial-stable, then the sequence is 

irreducible and the problem is thus solved polynomially. Let eˆ = {e, e−1}. A stable edge e ∈ Ed(A) 

which is not contained in an extended sequence implication class is called nontrivial-stable. If 
one could prove the stability of an edge in polynomial time, then the problem of irreducibility 
would  be  polynomially  solvable.  If  one  could  find  a  randomized  algorithm  to  test  it,  the 

irreducibility problem would be in NP ∩ co-NP.

2.4    Maximal Paths
A path  wA with vertex set  V(wA) in the sequence graph  GA (equivalently, in the sequence  A) is 

called maximal if there does not exist another path wA
∗ in it with V (wA) ⊂ V (wA

∗). But, the set of 

all maximal paths in GA, denoted by WA, contains an exponential number of maximal paths. For 
example, there are n2n−1 maximal paths in a latin square of order n.

Clearly, the set WA contains the longest path depending on the processing times. A sequence A is 

reduced to another sequence B, if and only if for all wB ∈ WB there exists wA ∈ WA with V (wB ) ⊆ 
V (wA). If B ≺ A, then there exists wB ∈ WB with V (wB ) ⊂ V (wA) for some wA ∈ WA.

Note that B ≺ A does not necessarily imply Cmax(B) < Cmax(A). It is true if there exists a unique 

maximal path in A. For example, consider P = [pij] with pij ∈ Z+ such that pij = k′ if oij ∈ V (wA), 

and 1, otherwise, where k′ > nm, then Cmax(A) > Cmax(B), if A ≻ B holds.

Lemma 1 A sequence A is reducible to another sequence B of the same format if and only if for 

all maximal paths wB in B, there exists a maximal path wA in A such that the inclusion V(wB ) ⊆ V 

(wA) is satisfied.

However, the decision whether a given sequence A is irreducible, or it is reducible or similar to 
another sequence B simply by using the related definitions (cf. Lemma 1) takes exponential time. 
Following lemma, [20], is useful in testing these results for given two sequences. 

Lemma 2 Let be the operation sets such that OIJ′ ⊆ OIJ. Then there exists a path wA the closure 

Atr with V (wA) = OIJ′ if and if OIJ′ is a clique in [Atr]. Moreover, such a path is unique for the 
clique OIJ′ in [Atr].
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3    Alternative Formulations

Let A ∈ SIJ be an open shop sequence for the open shop scheduling problem O||Cmax. We state 

the following recognization problems on the same operation set OIJ, [1, 2, 8].

Irrededucibility 1  Is the sequence A irreducible?

Reducibility 1  Does there exist a sequence B ∈ SIJ  such that B ≺ A?

Reducing 1  Find a sequence B, if it exists, such that B ≺ A.

Clearly, irreducibility and reducibility are complement decision problems, however, reducing is 
the constructive optimization problem to the decision problem reducibility.

Let  A and  B be two sequences on the same operation set for the problem O||Cmax. Theorem 1, 

gives  the  first  polynomial  test  of  irreducibility,  reducibility  or  similarity,  for  given  two 
sequences.

Theorem 1 The sequence A is reducible, strongly reducible or similar to the sequence B if and 

only if [Btr] ⊆ [Atr], [Btr] ⊂  [Atr] or [Btr] = [Atr], respectively.

Proof: Let  A and  B be two given open shop sequences of the same format. To determine the 
transitive closures Atr and Btr of the sequence graphs GA and GB and then to test if the symmetric 
closure [Btr] is a subgraph of the symmetric closure [Atr], it takes O(n2m2) time for the operation 

set with |OIJ| =  nm. The other implications follow from the definitions and the Lemma 2, see 

[10] for details.

Theorem 2 The problem reducibility is in NP .  The problem irreducibility is in co-NP .

Proof: The conditions in Theorem 1 can be tested in O(n2m2) time as testing of subgraphs and 
the construction of transitive closures can be performed with this time.

Thus for a reducible sequence, the reducibility can be proved with nondeterministic polynomial 
time. As this proof is constructive, such a procedure answers not only to the reducibility but also 
to the problem reducing. Furthermore, if there exists a NP-test for irreducibility, then the problem 
of irreducibility is either polynomially solvable or NP -incomplete, as far as P ≠ NP holds.

There exist a number of necessary (sufficient) conditions for irreducibility (reducibility) which 
can be verified in polynomial time, [22, 5, 23, 16, 2, 8]. One of them concerns the reduction of a 
sequence through the reversion of an implication class in the transitive closure of a sequence, and 
therefore has a special meaning. The most fundamental one states that a sequence A whose H-
comparability graph Atris not prime is either reducible or is similar to an irreducible sequence B 
with B ≠ A and B ≠ A−1, [23].

With this and the notion that the irreducible sequences are the minimal elements of the partial 

order on H-comparability graph [Atr] containing H-graph GOIJ , for given A ∈ SIJ and [Atr], the 

problems of irreducibility and reducibility can be reformulated as the question of the existence of 

an H-comparability graph G with  GOIJ ⊆ G ⊂ [Atr]. Clearly, answer ”no” implies irreducibility 

and answer ”yes” implies reducibility.

The notion is related to the graph sandwich problem. The graph sandwich problem for property P 

is defined as follows: Given two graphs G1 = (V, E1) and G = (V, E2) such that E1 ⊆ E2, is there a 
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graph G = (V, E) such that E1 ⊆ E ⊆ E2 which satisfies property P ? However, our problem is 

related to the following recognization problems.

Comparability-graph-sandwich problem: Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with 

V1 ⊆ V2 and E1 ⊆ E2, does there exist a comparability graph G with G1 ⊆ G ⊆ G2?, [13].

Comparability-graph-deletion problem: Given a graph G = (V, E), does there exist a set M ⊆ E of 

at most k edges deletion of which yields G a comparability-graph?, [24].

The problems comparability-graph-sandwich and comparability-graph-deletion are NP-complete. 

In our case, G1 = Kn × Km and G2 = [Str] for the irreducibility problem of open shop sequences.

A sequence can be obtained from every transitive orientation of an H-comparability graph. If the 
H-comparability graph  G has a sequence orientation  Atr, then  G = [Atr] is the H-comparability 

graph to a sequence A ∈ SIJ. A transitive orientation T ∈ T[S
tr

] is called a sequence orientation if 

every diagonal edge in  T is transitive. If a transitive orientation  Btr of [Atr] is not a sequence 

orientation, then some diagonal edges of [Atr] are not in the orientation Btr, and B ≺ A.

To reduce further  the given sequence another  possibility is  to look after  the reversion of  an 
implication class  or  a  combination of  them.  A special  and an easiest  method to  reverse  the 
sequence implication classes can be examined by deleting a single diagonal edge. Deletion of an 
edge from a transitive reduction can be done easily. However, if [Atr] can be transitively oriented 
such that neither e nor e−1 are transitive edges, then the edge eˆ can be deleted and the graph [Atr] 

− eˆ is  a  comparability  graph  whose  sequence  orientation  reduces  A strongly.  As  transitive 

orientation of an H-comparability graph can be found in polynomial time and the number of 

diagonal  edges  for  an  n  × m open  shop  problem  is  of  order  O(n2m2),  it  can  be  tested  in 

polynomial time whether a give sequence can be strongly reduced by deleting a diagonal edge. 
This concludes the following.

Theorem 3 If there exists eˆ ∈ Ed(A) in Atr such that Atr −  eˆ is a comparability graph, then every 

transitive orientation of  Atr − eˆ induces a sequence which strongly reduces the sequence  A. 

Moreover, this takes a polynomial time.

Thus a sequence A ∈ SIJ can be strongly reduced to a sequence B ∈ SSIJ which cannot be further 

reduced by reversing an arbitrary implication class. This can be done in polynomial time. The H-
comparability graph Btr is then either prime or there exist similar sequences to B other than B−1. 
One may attempt to  reduce a sequence by this  way which does not yield  an answer.  If  one 
attempts to reduce a sequence by considering the recombination of all implication classes, this 
also  fails  because  of  two reasons.  First  is  that  the  size  of  such  combinations  is  O(2k)  for  k 
implication classes  and every edge may represent  an implication class  in  the worst  case.  In 
average, this would be an efficient way. But the most problematic second reason expresses the 
fact that such combinations cannot give the whole set of irreducible sequences, in general.

Note that, not every recombination of the sequence implication classes of a sequence A is even 
acyclic and yields a sequence B if it is acyclic. The reversion of only implication classes and their 
recombination does not generate the sequence space. However, the set of all recombination of the 
sequence  implication  classes  is  sufficient.  Therefore,  taking  the  more  accurate  concept  of 
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sequence implication classes as basis for the space of all sequences, the problems Irreducibility 1 
and Reducibility 1 have been formulated as follows.

Irrededucibility 2 Does every feasible recombination of the sequence implication classes of  A 

produce a sequence B ∼ A?

Reducibility 2 Does there exist a feasible recombination of the sequence implication classes of A 
where at least one diagonal edge of A is missing.

Having seen that removing of one single edge may not yield a strongly reduced sequence but 
with more than two edges removed at the same time may yield,  a study concentrated on the 
deletion of more edges has been focused. Therefore, a concept of the deletion of a set of diagonal 
edges rather than trying to remove a single edge has been introduced, [2] (see also, [8, 1]).

A removable set with respect to a given sequence A is defined to be a set of undirected diagonal 

edges M ⊆ Ed(A). The removable set M is called feasible if [Atr] − M is an H-comparability graph, 

and it is called feasibly extendable if there exists a feasible removable set M∗ of diagonal edges 

of [Atr] such that M ⊂ M∗. The set M is called infeasible if it is not feasibly extendable. 

Note that a removable set which is not feasible may not be necessarily infeasible. On the other 
hand,  a  removable  set  can  be  feasible  and,  in  addition,  feasibly  extendable,  too.  With  this 
concept, we reformulate the problems of irreducibility and reducibility as follows.

Irrededucibility 3  Is every removable set M ⊆ Ed(A)  in [Atr] infeasible?

Reducibility 3  Does there exist a feasibly extendable removable set M ⊆ Ed(A) in [Atr] ?

A  normal  sequence  A has  been  defined  with  the  property  that  [Atr]  does  not  contain  any 
implication class consisting exclusively of diagonal edges, nor any implication class such that the 
reversion of any implication class (or group of it) reduce it. The former implication class can be 
deleted  and  the  reduction  through  the  reversion  of  implication  classes  can  be  performed  in 
polynomial time. Therefore, for any sequence  S a strongly normal sequence  S from  S can be 
determined in polynomial time.

Consider  the  reversion  of  only  one  sequence  implication  class  in  a  normal  sequence  S  and 

consider the recombination of the form Si = S − Pi + Pi
−1, from S = P1 + . . . + Pk for an arbitrary 

sequence implication class and test if Si ≺ S holds. If it holds we proceed with the sequence Si. 

Unfortunately, such a recombination may not reduce the given sequence at all. Instead, it even 
may yield an infeasible instance. If one could show that no such examples exist, then we would 
be able to provide an irreducible sequence from a given normal S in polynomial time.

4.    Discussion
Determination  of  a  removable  subset  M  ⊆ Ed(A)  with  given  normal  sequence  A  plays  an 

important role in the theory of reducibility of open shop sequences with a aim of minimizing the 
makespan.
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4.1    Graph Classes
Let be a normal sequence. For its reduction by the reversion of a sequence implication class P1 

against  to  another  sequence implication class  P2 from the same implication class, all  γ-paths 
which connect P1 and P2 have to be cut. But, the output may not yield a comparability graph.

Given G = (V, E), we define the graph G = (E, γ) with an edge e1e2 ∈ γ if and only if e1γ e2 in G. 

For a given S, from the γ-graph G = (Er(S) + Ed(S),  γ) with contraction of edges in γ-relation, we 

define the factor graph  GF (S). The vertex set  GF (V ) contains an arc  v  ∈ Ed or the extended 

sequence implication classes in PS and PS−1 . An undirected edge e1e2 belongs to GF (E) if and 

only if there exists a γ-relation between nodes or set of nodes e1 and e2.

Every  γ-path in [Str] between two classes  P1 and P2 contains at least one diagonal  edge. For 
feasibility of M every such path has to be broken, in order to avoid a connection in [Str] − M. Not 
all γ-paths are destroyed if P1 and P2 belong to one connected component of GF − M .

The removal of an edge result new γ-relations. The consequence graph informs which sequence 

implication classes are merged by the removal of eˆi ∈ Ed(S).

Let (OIJ, Er(S)  + Ed(S)) with |Ed| = d be the H-comparability graph to the given S  ∈ SIJ,

PS  = {P1, . . . , Pk}  and  Er  = P1  + . . . + Pk  + P1
−1  + . . . + Pk

−1.  The  consequence  graph

GK(S) = (VK, EK) is defined as follows. The set of nodes is VK ⊆ Ed(S) + PS + PS−1. Two edges 

e’and e′′ from VK are connected by an undirected edge of color i ∈ {1, . . . , d} when the removal of 

ei ∈ Ed forms a γ-relation between e’ and e’’ or between the sequence implication classes, they 

represent, respectively. That is, EK = { e’e’’ with color i | e’ γ e’’ in [Str] − ei, ei ∈ Ed }.

The set GKi   represents the subgraph of GK  with ith  color such that GK  = GK1  + . . . + GKd.

These graphs inform existence of a transitive orientation of [Str] − M, if M terns out to be feasible. 
This can be tested faster. However, if  this is not the case, the question remains how a none 
feasible but feasibly extendable set M can be expanded or to prove that the set M is not only none 
feasible but is infeasible.

For a given  M ⊆ Ed(S), the reduction graph  GRM (S) = (VRM , ERM) is defined by inserting into  

GF all edges from GK  which are colored from M  and deleting the nodes which represent edges in 

M as GRM (S) = [GF + e∈M GKe] − M . The reduction graph informs about the deletion of nodes 

from GF and addition of edges between the remaining nodes in GF which induce a new γ-relation 
between sequence implication classes.

With these graphs, we know how to recognize a feasible removable set. But the way to decide 
which  additional  diagonal  edges should be added to  a  none feasible  but  feasibly extendable 
removable set in order to get a feasible removable set is an additional issue, see Section 4.2.

4.2 Conflicts

Let  GRM (S) = (VRM, ERM) be the reduction graph with respect to  M  ⊆ Ed(S). We call a path a 

conflict in it if there exists a path W ⊆ VRM from a sequence implication class  Pi ∈ VRM to its 
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reversion Pi
−1 ∈ VRM. The number l ≥ 0 of diagonal edges contained in the inclusion minimal path 

W is called the order of the conflict. The conflict of order l = 0 is called the direct conflict. A 
reduction graph is called conflict-free if it contains no conflict.

Every conflict in GRM reflects a γ-path in [Str] − M from an extended sequence implication class 
Pi to its reversion  Pi

−1. For  M, in order to be a feasibly extendable, all these conflicts must be 
dissolved and every one of these  γ-paths must be broken. Also a path between two edges in a 
graph will only be destroyed when at least one edge from the -path is removed. The conflict can 
be dissolved by the removal of arbitrary diagonal edges. Thus an extension of M is equivalent to 
find a set of diagonal edges in [Str] − M whose deletion from [Str] − M will dissolve all conflicts 
in GRM simultaneously.

For a  none feasible  removable  set  M,  [Str]  − M is  not  a comparability  graph which reduces 
sequence S, and corresponding reduction graph is not conflict free. Then we need to be able to 
add at least one diagonal edge from every conflict to M in order to yield a feasibly extended set. 
The inserted diagonal edges from the conflicts in GRM in M must dissolve these conflicts in every 

case. This will break the paths in [Str] − M . But, the insertion of edges in M from [Str] − M can 

induce new γ-relations and yield new conflicts. Therefore, one has to find a subset of  [Str] − M 

from the remaining diagonal edges so that the deletion of it dissolves the conflicts all at a time 
and arises no additional conflicts.

If  one deletes  a  non-trivial  stable  edge  from the conflicts,  then it  does  not  result  a  feasibly 
extendable M. If there is a conflict of order zero, then M is infeasibly removable. However, if all 
conflicts of order one are determined, and it is possible to insert all edges from these conflicts to 

the set  M,  then  M is feasibly extendable. One should first  test if  e∗ in non-trivial-stable with 

respect to M who belongs to a conflict of higher order.

A diagonal edge e ∈ Ed
tr(S) is called magic-stable with respect to M if it does not lead to a direct 

conflict in GRM∗, with M + e ⊆ M∗, through a series of conflicts of order 1. It has not been found 

any sequence yet which contains a magic-stable edge. If found, the problem of irreducibility is in 
NP and if proved none existence, then the irreducibility is polynomially solvable. This is the 
strongest result obtained in this field, recently, [2, 8].

5.  Conclusions
In this paper, we considered the classical open shop scheduling problem in which the problem of 
irreducibility has been considered since two decades defining the dominance relation in the space 
of all sequences. This issue is important as the set of all dominant sequences contains an optimal 
sequence for arbitrary processing times. The complexity status of this problem is not known yet. 
A decision may be a mathematical challenge. The problem extended for general objectives and 
arbitrary numerical input data can have still interesting properties. After summarizing the key 
issues of its structural properties, we have sketched the recent idea of conflict resolution applied 
in obtaining the reducing a given sequence or concluding its irreducibility.

In this research field, following questions do have quite important significant.

How can be the results on the maximum completion time objective for other regular objectives or 
other shop environments,  like  the job shop,  generalized? The answer should be positive.  An 
alternative status of the problem of irreducibility is to decide if a magic-edge exists. If no such 
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edges,  we conclude with polynomial  solvability.  If  such edges exist,  we have concluded the 
status of the problem. However, it is important to improve the achieved complexity results of 
irreducibility.  On  the  other  hand,  a  development  of  neighborhood  structure  of  irreducible 
sequences is a motivating problem from the beginning of this concept in the open shop.

REFERENCES

1. Andresen, M and Dhamala, T.N. (2010). New algorithms on the reducibility of open shop sequences 
minimizing the makespan, submitted to Mathematical Methods of Operations Research

2. Andresen, M. (2009). On the complexity of reducibility problems through H-comparability graphs, 
PhD thesis, University of Magdeburg, Germany

3. Braesel, H. (1990). Latin rectangles in scheduling theory, Dissertation B, University of Magdeburg, 
Germany

4. Braesel, H., and Kleinau, M. (1996). New steps in the amazing world of sequences and schedules, 
Math. Comput. Modeling 43: 195-214

5. Braesel,  H., Harborth, M. and Willenius,  P. (2001). Isomorphism for digraphs and sequences of 
shop scheduling problems. Journal of Combinatorial Mathematics and Combinatorial Computing 
37: 115-128

6. Braesel, H., Harborth, M. Tautenhahn, T. and Willenius, P. (1999). On the set of solutions of an 
open shop problem, Annals of Operations Research 92: 241-263

7. Denes,  J.  and  Keedwell,  A.D.  (1991).  Latin  squares:  new  developments  in  the  theory  and 
applications, Annals of Discrete Mathematics

8. Dhamala,  T.  N.  (2002).  Shop scheduling  solution  spaces  with  algebraic  characterizations,  PhD 
thesis, University of Magdeburg, Germany

9. Dhamala, T. N. (2007). On the potentially optimal solutions of classical shop scheduling problems, 
International Journal of Operations Research  4: 1-10

10. Dhamala, T.N. (2010). Reducibility problems of open shop sequences minimizing the makespan, 
Proceedings of the 19th Workshop on Discrete Optimization, Holzhau, Germany, 57-60

11. Garey, M.R. and Johnson, D.S. (1979). Computers and intractability: a guide to the theory of NP-
completeness, W.H. Freeman & Co., New York

12. Golumbic,  M.  C.  (1977).  Comparability  graphs  and  a  new  matroid,  Journal  of  Combinatorial 
Theory, Series B 22: 68-90

13. Golumbic, M. C. (2004). Algorithmic graph theory and perfect graphs, 2nd ed. Annals of Discrete 
Mathematics 57, Elsevier, 2004

14. Golumbic, M. C., Kaplan, H. and Shamir, R. (1995). Graph sandwich problems. J. Algorithms 19: 
449-473

15. Gonzalez, T. and Sahni S. (1976). Open shop scheduling to minimize finish time, Journal of Assoc. 
Comp. Mach. 23: 665-679

16. Harborth,  M.  (1999).  Structural  investigation  of  shop  scheduling  problems:  number  problems, 
potential  optimality  and  new  enumeration  algorithms,  PhD  thesis,  University  of  Magdeburg, 
Germany

17. Kleinau, M. (1993). On the structure of shop scheduling problems: number problems, reducibility 
and complexity, PhD thesis, University of Magdeburg, Germany



254   Journal of the Institute of the Engineering

18. LiSA - A Library of Scheduling Algorithms; http://lisa.math.uni-magdeburg.de/ 

19. McConnell,  R.  M.  and  Spinrad,  J.P.  (1999).  Modular  decomposition  and  transitive  orientation, 
Discrete Mathematics 201: 189-241

20. Redei, L. (1934). Ein Kombinatorischer Satz, Acta, Litt. Sci. Szeged 7:  39-43

21. Sussman, B. (1972). Scheduling problems with interval disjunctions, Z. Operations Research 16: 
165-178

22. Tautenhahn,  T.  and  Willenius,  P.  (2000).  How many sequences  solve  an  open  shop  problem? 
Preprint, University of Magdeburg, Germany

23. Willenius,  P.  (2000).  Irreducibility  theory  in  scheduling  theory,  PhD  thesis,  University  of 
Magdeburg, Germany

24. Yannakakis, M. (1981). Edge deletion problems. SIAM Journal of Computing 10: 297-309


