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1. Introduction 

We know the Riordan’s relation [7]: 

                                          𝑥𝑥𝑘𝑘
𝑘𝑘

𝑛𝑛
𝑘𝑘 − 𝐻𝐻𝑛𝑛   𝑛𝑛𝑘𝑘 

𝑛𝑛
𝑘𝑘

𝑥𝑥− 𝑘𝑘

𝑘𝑘 ∀ 𝑥𝑥 𝜖𝜖 ℂ                         (1) 

for the harmonic numbers [6]: 

                                                            𝐻𝐻𝑛𝑛  𝑘𝑘
𝑛𝑛
𝑘𝑘                                (2) 

It is usual to show (1) employing the geometric series and the binomial theorem of Newton; we 
observe that Agoh [1] also obtained this identity of Riordan. In Section 2, we exhibit an 
alternative proof of (1) via Stirling numbers [6, 7]. 

2. Riordan’s formula 

The generating function for the Stirling numbers of the second kind is given by [6]: 

    𝑧𝑧𝑟𝑟
𝑟𝑟

∞
𝑟𝑟 𝑘𝑘 𝑆𝑆𝑟𝑟

𝑘𝑘
𝑘𝑘 𝑒𝑒𝑧𝑧 − 𝑘𝑘                         (3) 

with the property [3, 2]: 
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                                                            𝐻𝐻𝑛𝑛  𝑘𝑘
𝑛𝑛
𝑘𝑘                                (2) 

It is usual to show (1) employing the geometric series and the binomial theorem of Newton; we 
observe that Agoh [1] also obtained this identity of Riordan. In Section 2, we exhibit an 
alternative proof of (1) via Stirling numbers [6, 7]. 

2. Riordan’s formula 

The generating function for the Stirling numbers of the second kind is given by [6]: 

    𝑧𝑧𝑟𝑟
𝑟𝑟

∞
𝑟𝑟 𝑘𝑘 𝑆𝑆𝑟𝑟

𝑘𝑘
𝑘𝑘 𝑒𝑒𝑧𝑧 − 𝑘𝑘                         (3) 

with the property [3, 2]: 

 
 

                                               𝑘𝑘𝑟𝑟−𝑛𝑛
𝑘𝑘   𝑛𝑛𝑘𝑘 

𝑛𝑛
𝑘𝑘  𝑘𝑘 −  𝑆𝑆𝑟𝑟

𝑘𝑘                              (4) 

then: 

                               𝑒𝑒𝑘𝑘𝑧𝑧
𝑘𝑘

𝑛𝑛
𝑘𝑘  𝑘𝑘

𝑛𝑛
𝑘𝑘   𝑘𝑘𝑟𝑟𝑧𝑧𝑟𝑟

𝑟𝑟
∞
𝑟𝑟  𝐻𝐻𝑛𝑛  𝑧𝑧𝑟𝑟

𝑟𝑟
∞
𝑟𝑟  𝑘𝑘𝑟𝑟−𝑛𝑛

𝑘𝑘    

that is: 

               𝑒𝑒𝑘𝑘𝑧𝑧
𝑘𝑘

𝑛𝑛
𝑘𝑘 − 𝐻𝐻𝑛𝑛   𝑛𝑛𝑘𝑘 

𝑛𝑛
𝑘𝑘  𝑘𝑘 −   𝑧𝑧𝑟𝑟

𝑟𝑟
∞
𝑟𝑟 𝑘𝑘 𝑆𝑆𝑟𝑟

𝑘𝑘   𝑛𝑛𝑘𝑘 
𝑛𝑛
𝑘𝑘

𝑒𝑒𝑧𝑧− 𝑘𝑘

𝑘𝑘  

where we can use  𝑥𝑥 𝑒𝑒𝑧𝑧   to deduce (1), q. e. d. 

Our procedure is simple and shows the connection between the harmonic numbers and the 
Stirling numbers of the second kind [5]. For 𝑥𝑥 , the relation (1) implies the known expression 
of Euler [6]: 

         𝐻𝐻𝑛𝑛   𝑛𝑛𝑘𝑘 
𝑛𝑛
𝑘𝑘

− 𝑘𝑘

𝑘𝑘                                                                            (5) 

Besides, from (1) is immediate the identity: 

            𝐻𝐻𝑛𝑛𝑚𝑚
𝑛𝑛  𝑚𝑚   𝑥𝑥𝑘𝑘

𝑘𝑘
𝑚𝑚
𝑘𝑘 −  𝑥𝑥𝑘𝑘𝑚𝑚

𝑘𝑘 −   𝑚𝑚𝑘𝑘  𝑚𝑚
𝑘𝑘

𝑥𝑥− 𝑘𝑘

𝑘𝑘                                (6) 

where was applied the property   𝑛𝑛𝑘𝑘 
𝑚𝑚
𝑛𝑛 𝑘𝑘  𝑚𝑚𝑘𝑘   [4]. The formula (6) with 𝑥𝑥   and  

𝑥𝑥  implies [6]: 

        𝐻𝐻𝑛𝑛𝑚𝑚
𝑛𝑛  𝑚𝑚  𝐻𝐻𝑚𝑚 −𝑚𝑚  𝑚𝑚   𝐻𝐻𝑚𝑚 −    𝑚𝑚𝑘𝑘  𝑚𝑚

𝑘𝑘
− 𝑘𝑘

𝑘𝑘              (7) 

Similarly from (1), it is simple to obtain for 𝑥𝑥  

                  𝑛𝑛𝑚𝑚
𝑛𝑛 𝐻𝐻𝑛𝑛

𝑚𝑚   𝑚𝑚  𝐻𝐻𝑚𝑚  − 𝑚𝑚  𝑚𝑚 𝑚𝑚  𝐻𝐻𝑚𝑚 −                           (8) 

3. Conclusion 

Our procedure to prove (1) shows the important relationship between the harmonic numbers and 
the Stirling numbers of the second kind, without the participation of geometric series and the 
Newton’s binomial theorem. 
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