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Abstract: Hemodialysis  is the process  of purifying  the blood  which removes  the 
waste product  such as urea  from  blood  through  the  semi-permeable membrane  of 
dialyzer. In dialyzer, the rate of blood flow velocity is maintained around five times less 
than the dialyzed flow velocity during hemodialysis. The study focuses on the urea 
concentration distribution in the blood during dialysis using partial differential equation 
of diffusion process developed by J. N. Kapur, assuming blood is Newtonian, and 
laminar flow. The solution of urea concentration is obtained using Galerkin 
approximation method associated with appropriate boundary conditions. 
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1. Introduction 

Dialysis  is  primarily  used  to  provide  an artificial replacement  for lost  of  kidney function  
due to renal failure. Dialysis treatment replaces waste removal like urea through the semi-
permeable membrane of artificial kidney which is performed by the dialyzer through diffusion 
process. Various dialyzers are in use; especially parallel plate dialyzer and hollow dialyzer. The 
first successful hemodialysis treatment in human was reported in 1944 [10]. A 67-year old  
woman  in urea  coma  who  regained consciousness after  11  hours  of  hemodialysis   is 
considered to be first successful  treated patient with  Kolff’s  dialyzer  in  1945 [3].  Before a 
mass transfer in dialyzers assumed that (a) the urea  concentration  of  the solute in  the  dialyzed 
is zero or constant everywhere and  that (b) the mass  transfer  resistance in  the  dialyzed is 
constant and may be added linearly to the resistance  of membrane to give a composite resistance 
[2]. Very few articles are available working in mathematical model for hemodialysis. Cooney et 
al. [2] were first to work in this direction. They studied mass transfer in semi-infinite parallel 
plate dialyzers solving convective diffusion equation for blood and dialyzates. Their work was 
further extended by J. N. Kaptur in conjugate boundary value problem [5]. 

The  present  study is based  on  the model  that   consists  of  the partial differential  equation 
defining the  process  of  diffusion in artificial  kidney, especially  in  circular  duct dialyzer. The  
solution of the model equation  is  obtained  in  the  form  of  urea  concentration  in  blood  and  
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constant and may be added linearly to the resistance  of membrane to give a composite resistance 
[2]. Very few articles are available working in mathematical model for hemodialysis. Cooney et 
al. [2] were first to work in this direction. They studied mass transfer in semi-infinite parallel 
plate dialyzers solving convective diffusion equation for blood and dialyzates. Their work was 
further extended by J. N. Kaptur in conjugate boundary value problem [5]. 

The  present  study is based  on  the model  that   consists  of  the partial differential  equation 
defining the  process  of  diffusion in artificial  kidney, especially  in  circular  duct dialyzer. The  
solution of the model equation  is  obtained  in  the  form  of  urea  concentration  in  blood  and  

dialyzate by using the Galerkin approximation method by converting a continuous problem (such 
as a differential  equation) to  a  discrete  problem. In principle, it is equivalent of applying the 
method of variation of parameter to a function space, by converting the equation to a weak 
formulation. The Galerkin method of residuals is the most common method of calculating the 
global stiffness matrix in finite element method [1,9]. The aims of  Galerkin’s  method  is  the  
production of a linear system of equations, and  so we build  its  matrix  form. The matrix of 
Galerkin equation is symmetric. 

To apply Galerkin’s method, we determine a sequence of functions satisfying the following 
conditions is determined. 

 Each of the functions is continuously twice differentiable. 
 Each function satisfies boundary conditions. 
 The functions are linearly independent. 
 The sequence of function is complete. 

2. Mathematical Equations 

The dialyzate is maintained more than blood flow in hemodialysis process. The flow of blood 
and  dialyzate in a circular duct  is  considered  to  be  axi- symmetric, i.e. it  is  symmetric  about  
an axis. We use the cylindrical co-ordinates  𝑟𝑟 𝜃𝜃 𝑧𝑧 where the components of velocity , namely  
𝑣𝑣𝑟𝑟 , along  the  radial  vector  perpendicular  to the  axis,  𝑣𝑣𝜃𝜃  perpendicular  to the axis  and  the  
radius  vector, and 𝑣𝑣𝑧𝑧   parallel  to the axis of  𝑧𝑧. For axi- symmetric case, we take 𝑣𝑣𝜃𝜃 . We 
also consider the velocity of solute is in the fully developed flow and so  𝑣𝑣𝑧𝑧  (Fig. 1).  

 

Fig 1: Circular dialyzer 

The basic governing equation of urea concentration in an incompressible fully developed flow of 
fluid in a circular duct in cylindrical co-ordinate is given by [5]  

 𝐶𝐶
 𝑡𝑡 𝑣𝑣 𝑟𝑟 𝑡𝑡 𝜕𝜕𝐶𝐶

𝜕𝜕𝑧𝑧 = 𝐷𝐷  𝜕𝜕 𝐶𝐶
𝜕𝜕𝑟𝑟 𝑟𝑟

𝜕𝜕𝐶𝐶
𝜕𝜕𝑟𝑟

𝜕𝜕 𝐶𝐶
𝜕𝜕𝑧𝑧   

where 𝐶𝐶 𝑟𝑟 𝑧𝑧 𝑡𝑡  is the concentration of urea in the fluid and 𝑣𝑣 𝑟𝑟 𝑡𝑡  is the fluid velocity in the 
fully  developed flow and D is the diffusivity  of  the  fluid. The magnitude of the convective 
term as compared to the diffusion term is given by the dimensional Peclet number 𝑃𝑃𝑒𝑒 𝑣𝑣𝑚𝑚𝑅𝑅

𝐷𝐷 , 
where 𝑣𝑣𝑚𝑚  is the maximum velocity in the fluid which occurs at the center of the blood vessel and 
R is the radius of the duct. The value of 𝑃𝑃𝑒𝑒 may be as large as 15,000 for the hemodialyzer [4]. 
So the longitudinal diffusion term can be neglected and then the above convection diffusion 
equation simplifies to steady case: 
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       Blood:                          𝐷𝐷  𝜕𝜕 𝐶𝐶
𝜕𝜕𝑟𝑟 𝑟𝑟

𝜕𝜕𝐶𝐶
𝜕𝜕𝑟𝑟  = 𝑣𝑣  𝑟𝑟 𝜕𝜕𝐶𝐶𝜕𝜕𝑧𝑧                       (1) 

 

      Dialyzate: 𝐷𝐷  𝜕𝜕 𝐶𝐶
𝜕𝜕𝑟𝑟 𝑟𝑟

𝜕𝜕𝐶𝐶
𝜕𝜕𝑟𝑟  = 𝑣𝑣  𝑟𝑟 𝜕𝜕𝐶𝐶𝜕𝜕𝑧𝑧                                               (2)                                           

where 𝐶𝐶 𝑟𝑟 𝑧𝑧  and  𝐶𝐶 𝑟𝑟 𝑧𝑧  be the  urea  concentration  in blood  and  dialyzate  regions  
respectively,   𝐷𝐷 , 𝐷𝐷  be their respective diffusivities in the blood and dialyzate regions, and 
𝑣𝑣 𝑟𝑟 ,𝑣𝑣 𝑟𝑟  be the  velocity distributions in blood and dialyzate regions determined  from  
Newtonian  fluid  motion equation  which  depend  on  their  viscosity  coefficient, pressure  
gradient  and the radii 𝑟𝑟 𝑟𝑟 of inner and outer tubes. 

 

Fig. 2: Cross section of circular dialyzer 

 The approximation boundary conditions are: 

i) 𝜕𝜕𝐶𝐶
𝜕𝜕𝑟𝑟  at 𝑟𝑟                                                                                                         (3) 

ii) 𝜕𝜕𝐶𝐶
𝜕𝜕𝑟𝑟   at  𝑟𝑟 𝑟𝑟                                                                                                      (4) 

iii) –𝐷𝐷  𝜕𝜕𝐶𝐶𝜕𝜕𝑟𝑟  𝑟𝑟 𝑟𝑟
= −𝐷𝐷  𝜕𝜕𝐶𝐶𝜕𝜕𝑟𝑟  𝑟𝑟 𝑟𝑟

= 𝑃𝑃 𝐶𝐶  𝑟𝑟 𝑧𝑧 − 𝐶𝐶  𝑟𝑟 𝑧𝑧  = 𝑃𝑃 𝐶𝐶  𝑧𝑧 − 𝐶𝐶  𝑧𝑧           (5) 

 where 𝑃𝑃 is the permeability of the membrane of dialyzer. 

3. Solution of the Model Equations 
Applying the Laplace transform on convective diffusion equations for blood and dialyzate. 

𝐷𝐷  𝜕𝜕 𝐶𝐶 
𝜕𝜕𝑟𝑟 𝑟𝑟

𝜕𝜕𝐶𝐶 
𝜕𝜕𝑟𝑟  = 𝑣𝑣  𝑟𝑟  𝑠𝑠𝐶𝐶 − 𝐶𝐶                                                                                                     (6)           

𝐷𝐷  𝜕𝜕 𝐶𝐶 
𝜕𝜕𝑟𝑟 𝑟𝑟

𝜕𝜕𝐶𝐶 
𝜕𝜕𝑟𝑟    = 𝑣𝑣  𝑟𝑟   𝑠𝑠𝐶𝐶 − 𝐶𝐶                                                                                                    (7) 

where 𝐶𝐶 𝑟𝑟 𝑠𝑠  and 𝐶𝐶 𝑟𝑟 𝑠𝑠  are the Laplace  transform of  𝐶𝐶 𝑟𝑟 𝑧𝑧   and  𝐶𝐶 𝑟𝑟 𝑧𝑧 , 𝐶𝐶  and 𝐶𝐶  
are initial urea concentration in blood and dialyzate. Similarly applying the Laplace transform on 
the boundary conditions (3) - (5) 

i) 𝜕𝜕𝐶𝐶 
𝜕𝜕𝑟𝑟  at  𝑟𝑟                                                                                                                   (8) 
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𝜕𝜕𝑟𝑟   at  𝑟𝑟 𝑟𝑟                                                                                                                 (9) 

iii) −𝐷𝐷  𝜕𝜕𝐶𝐶 𝜕𝜕𝑟𝑟  𝑟𝑟 𝑟𝑟
=−𝐷𝐷  𝜕𝜕𝐶𝐶 𝜕𝜕𝑟𝑟  𝑟𝑟 𝑟𝑟

= 𝑃𝑃 𝐶𝐶  𝑠𝑠 − 𝐶𝐶  𝑠𝑠                                                          (10) 

  where 𝐶𝐶  𝑠𝑠 𝐶𝐶 𝑟𝑟 𝑠𝑠 , 𝐶𝐶  𝑠𝑠 𝐶𝐶 𝑟𝑟 𝑠𝑠  at  𝑟𝑟 𝑟𝑟                                                                   (11) 

To apply Galerkin approach, we try with the following solutions for equations (6) and (7) 

𝐶𝐶  𝑟𝑟 𝑠𝑠 − 𝐶𝐶  𝑠𝑠 =   𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖𝑟𝑟 𝑖𝑖 𝑛𝑛
𝑖𝑖 𝑓𝑓𝑖𝑖 𝑠𝑠  =  𝑕𝑕𝑖𝑖 𝑟𝑟 𝑛𝑛

𝑖𝑖 𝑓𝑓𝑖𝑖 𝑠𝑠                                                       (12) 

𝐶𝐶  𝑟𝑟 𝑠𝑠 − 𝐶𝐶  𝑠𝑠   =    𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖 𝑟𝑟 − 𝑟𝑟  𝑖𝑖 𝑛𝑛
𝑖𝑖 𝐹𝐹𝑖𝑖 𝑠𝑠  =  𝐻𝐻𝑖𝑖 𝑟𝑟 𝑛𝑛

𝑖𝑖 𝐹𝐹𝑖𝑖 𝑠𝑠                                      (13) 

where the sequence of functions  𝑓𝑓𝑖𝑖 𝑠𝑠  and   𝐹𝐹𝑖𝑖 𝑠𝑠   ≤ 𝑖𝑖 ≤ 𝑛𝑛  satisfy the conditions to  apply 
Galerkin approach. The above two tried solutions consists  𝑛𝑛  functions   

𝑓𝑓  𝑠𝑠 , 𝑓𝑓 𝑠𝑠 , 𝑓𝑓  𝑠𝑠  … , 𝑓𝑓𝑛𝑛 𝑠𝑠 ;   𝐹𝐹  𝑠𝑠 , 𝐹𝐹  𝑠𝑠 , 𝐹𝐹  𝑠𝑠 , … , 𝐹𝐹𝑛𝑛 𝑠𝑠  and  𝐶𝐶  𝑠𝑠 , 𝐶𝐶  𝑠𝑠   and the 𝑛𝑛  
constants. 

𝑎𝑎 , 𝑎𝑎 , 𝑎𝑎 , … , 𝑎𝑎𝑛𝑛 ;   𝑏𝑏 , 𝑏𝑏 , 𝑏𝑏 ,… 𝑏𝑏𝑛𝑛 ; 𝐴𝐴 , 𝐴𝐴 , 𝐴𝐴 , … , 𝐴𝐴  𝐵𝐵 , 𝐵𝐵  , 𝐵𝐵  ,…., 𝐵𝐵𝑛𝑛  . 

−𝐷𝐷 𝜕𝜕
𝜕𝜕𝑟𝑟   𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖𝑟𝑟 𝑖𝑖  𝑟𝑟 𝑟𝑟 𝑓𝑓𝑖𝑖 𝑠𝑠  

𝑛𝑛
𝑖𝑖 =− 𝐷𝐷 𝜕𝜕

𝜕𝜕𝑟𝑟   𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖  𝑟𝑟 − 𝑟𝑟  𝑖𝑖 𝑟𝑟 𝑟𝑟 𝐹𝐹𝑖𝑖 𝑠𝑠 
𝑛𝑛
𝑖𝑖  

𝑃𝑃 𝐶𝐶  𝑠𝑠 − 𝐶𝐶  𝑠𝑠  = -𝑃𝑃 𝐶𝐶  𝑠𝑠 − 𝐶𝐶  𝑠𝑠                                                                                               (14) 

If we put, − 𝑖𝑖𝑏𝑏𝑖𝑖𝐷𝐷 𝑟𝑟 𝑖𝑖− 𝐶𝐶 ,          − 𝑖𝑖𝐵𝐵𝑖𝑖𝐷𝐷    𝑟𝑟 − 𝑟𝑟  𝑖𝑖−  =  𝐶𝐶                                         (15)                         

𝑃𝑃 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖𝑟𝑟 𝑖𝑖 𝐶𝐶 ,   −𝑃𝑃 𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖  𝑟𝑟 − 𝑟𝑟  𝑖𝑖 𝐶𝐶                      (16)                     

We find values of  𝑎𝑎𝑖𝑖  𝑏𝑏𝑖𝑖 , 𝐴𝐴𝑖𝑖 , 𝐵𝐵𝑖𝑖 , where 𝐶𝐶  is a constant  value , and  using (14) in (13). 

 𝑓𝑓𝑖𝑖 𝑠𝑠𝑛𝑛
𝑖𝑖 =  𝐹𝐹𝑖𝑖 𝑠𝑠𝑛𝑛

𝑖𝑖   =  𝑄𝑄 𝑠𝑠  , say                            (17) 

 For simplicity our calculation, we assume  𝑄𝑄 𝑠𝑠  = 𝐾𝐾
𝑠𝑠   and then using equation (16) and (17) 

                 𝐶𝐶  𝑠𝑠 − 𝐶𝐶  𝑠𝑠 =  𝐶𝐶𝑃𝑃 𝑄𝑄 𝑠𝑠 ,                       𝐶𝐶  𝑠𝑠 − 𝐶𝐶  𝑠𝑠 =  - 𝐶𝐶𝑃𝑃 𝑄𝑄 𝑠𝑠  

Both equations give,   𝐿𝐿 𝐶𝐶  𝑧𝑧 − 𝐶𝐶  𝑧𝑧    = 𝐶𝐶
𝑃𝑃 𝑄𝑄 𝑠𝑠                                           (18) 

Then,       𝑄𝑄 𝑠𝑠 𝑃𝑃
𝐶𝐶  
𝐶𝐶  𝑧𝑧 −𝐶𝐶 𝑧𝑧

𝑠𝑠                                       (19)                        

Thus from equation (17), (18), (19), we get 

 𝑓𝑓𝑖𝑖 𝑠𝑠𝑛𝑛
𝑖𝑖   𝐹𝐹𝑖𝑖 𝑠𝑠𝑛𝑛

𝑖𝑖   𝐶𝐶 −𝐶𝐶
𝑠𝑠                           (20)                                  

Without loss of generality, if we assume  𝐶𝐶 𝑃𝑃  

𝑎𝑎𝑖𝑖
𝑟𝑟 𝑃𝑃
𝑖𝑖𝐷𝐷   𝑆𝑆𝑕𝑕𝑤𝑤

𝑖𝑖  ;       𝑏𝑏𝑖𝑖 − 𝑟𝑟 𝑃𝑃
𝑖𝑖𝐷𝐷 𝑟𝑟 𝑖𝑖  − 𝑖𝑖

𝑆𝑆𝑕𝑕𝑤𝑤
𝑖𝑖                                    (21) 

𝐴𝐴𝑖𝑖 − −  𝑟𝑟 −𝑟𝑟  𝑃𝑃
𝑖𝑖𝐷𝐷  − − 𝑠𝑠𝑕𝑕𝑤𝑤′

𝑖𝑖  ; 𝐵𝐵𝑖𝑖 𝑖𝑖
 𝑟𝑟 −𝑟𝑟  𝑃𝑃
𝐷𝐷  𝑟𝑟 −𝑟𝑟  𝑖𝑖 − 𝑖𝑖

𝑆𝑆𝑕𝑕𝑊𝑊′
 𝑟𝑟 −𝑟𝑟  𝑖𝑖                 (22) 

 Then, the equation (20) to (22) 

Gumanju and Gurung
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𝑎𝑎𝑖𝑖  , 𝑏𝑏𝑖𝑖  , 𝐴𝐴𝑖𝑖   , 𝐵𝐵𝑖𝑖  , 𝑕𝑕𝑖𝑖 𝑟𝑟  , 𝐻𝐻𝑖𝑖 𝑟𝑟   

 The orthogonality relation gives, 

 𝑅𝑅  𝑟𝑟 𝑠𝑠 𝑕𝑕𝑗𝑗 𝑟𝑟 𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟 , for all  𝑗𝑗 … 𝑛𝑛                                 (23) 

  𝑅𝑅  𝑟𝑟 𝑠𝑠 𝐻𝐻𝑗𝑗 𝑟𝑟 − 𝑟𝑟𝑟𝑟
𝑟𝑟 𝑑𝑑𝑟𝑟 , for all  𝑗𝑗 … 𝑛𝑛                                        (24) 

Then,         𝑎𝑎𝑖𝑖𝑗𝑗 𝑠𝑠𝑏𝑏𝑖𝑖𝑗𝑗 𝑟𝑟 𝑖𝑖  𝑛𝑛
𝑖𝑖 𝑓𝑓𝑖𝑖  𝑠𝑠 𝑝𝑝𝑗𝑗  𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶                         (25) 

                   𝐴𝐴𝑖𝑖𝑗𝑗 𝑠𝑠𝐵𝐵𝑖𝑖𝑗𝑗  𝑟𝑟 − 𝑟𝑟  𝑖𝑖 𝑛𝑛
𝑖𝑖 𝐹𝐹𝑖𝑖 𝑠𝑠 𝑃𝑃𝑗𝑗  𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶                        (26) 

where, 𝑎𝑎𝑖𝑖𝑗𝑗 −𝐷𝐷  𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟  

𝑟𝑟𝜕𝜕𝑕𝑕𝑖𝑖
𝜕𝜕𝑟𝑟  

𝑟𝑟 𝑕𝑕𝑗𝑗  𝑟𝑟 𝑑𝑑𝑟𝑟 , 

                    𝑏𝑏𝑖𝑖𝑗𝑗  𝑣𝑣  𝑟𝑟 𝑟𝑟 𝑕𝑕𝑖𝑖 𝑟𝑟 𝑕𝑕𝑗𝑗  𝑟𝑟 𝑟𝑟 𝑑𝑑𝑟𝑟 ,        𝑝𝑝𝑗𝑗  𝑣𝑣  𝑟𝑟 𝑟𝑟 𝑕𝑕𝑗𝑗  𝑟𝑟 𝑟𝑟𝑑𝑑𝑟𝑟 , 

                   𝐴𝐴𝑖𝑖𝑗𝑗 𝐷𝐷  𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟  

𝑟𝑟𝜕𝜕𝐻𝐻𝑖𝑖
𝜕𝜕𝑟𝑟  𝑟𝑟

𝑟𝑟 𝐻𝐻𝑗𝑗  𝑟𝑟 − 𝑟𝑟  𝑑𝑑𝑟𝑟 , 

                    𝐵𝐵𝑖𝑖𝑗𝑗  𝑣𝑣  𝑟𝑟 𝑟𝑟
𝑟𝑟 𝐻𝐻𝑖𝑖 𝑟𝑟 𝐻𝐻𝑗𝑗  𝑟𝑟 − 𝑟𝑟  𝑑𝑑𝑟𝑟 ,     𝑃𝑃𝑗𝑗 − 𝑣𝑣  𝑟𝑟 𝑟𝑟 𝑕𝑕𝑗𝑗  𝑟𝑟 − 𝑟𝑟  𝑑𝑑𝑟𝑟  

Here 𝑎𝑎𝑖𝑖𝑗𝑗 )  and ( 𝑏𝑏𝑖𝑖𝑗𝑗 ) are symmetric matrices with all positive   elements. If 𝑣𝑣 𝑟𝑟 , then the 
dialyzate  flow  is  in  same  direction  as  blood  flow  and  if  𝑣𝑣 𝑟𝑟 , then  the  dialyzate 
flow  is  in  opposite  direction  of  the  blood  flow. 𝐵𝐵𝑖𝑖𝑗𝑗    is  symmetric  and  has  all  negative  
elements  and  if 𝑣𝑣 𝑟𝑟   and   has  all  positive  elements  if 𝑣𝑣 𝑟𝑟  . All  𝑝𝑝𝑗𝑗 ′𝑠𝑠  are 
negative and  𝑃𝑃𝑗𝑗 ′𝑠𝑠  are negative if  𝑣𝑣 𝑟𝑟   and   positive if  𝑣𝑣 𝑟𝑟    Let us denote  

𝑔𝑔𝑖𝑖 𝑠𝑠
𝑓𝑓𝑖𝑖 𝑠𝑠

𝑠𝑠𝐶𝐶 𝑠𝑠 −𝐶𝐶                                                                                      (27)                                                                                                                            

                                                𝐺𝐺𝑖𝑖 𝑠𝑠
𝐹𝐹𝑖𝑖 𝑠𝑠

𝑠𝑠𝐶𝐶 𝑠𝑠 −𝐶𝐶                                                                                      (28)                                                

After simplification, we get 

  𝑎𝑎𝑖𝑖𝑗𝑗 𝑠𝑠𝑏𝑏𝑖𝑖𝑗𝑗  𝑛𝑛
𝑖𝑖 𝑔𝑔𝑖𝑖 𝑠𝑠 𝑝𝑝𝑗𝑗 ;  𝑗𝑗 … 𝑛𝑛                (29)                  

                   𝐴𝐴𝑖𝑖𝑗𝑗 𝑠𝑠𝐵𝐵𝑖𝑖𝑗𝑗  𝑛𝑛
𝑖𝑖 𝐺𝐺𝑖𝑖 𝑠𝑠 𝑃𝑃𝑗𝑗  ;  𝑗𝑗 … 𝑛𝑛                  (30)                  

From these equations we can obtain 𝑔𝑔𝑖𝑖 𝑠𝑠  and  𝐺𝐺𝑖𝑖 𝑠𝑠 , and we find that each is rational  function 
of 𝑠𝑠 whose numerator is a polynomial of   𝑛𝑛 −  th degree and denominator is a polynomial of 
nth degree, and is denoted by  𝑅𝑅 𝑛𝑛 − 𝑛𝑛 From equations (20) , (27), (28), we obtain  

 𝑔𝑔𝑖𝑖  𝑠𝑠 
 𝑓𝑓𝑖𝑖 𝑠𝑠

𝑠𝑠𝐶𝐶  𝑠𝑠 −𝐶𝐶     and   𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶 𝐶𝐶 −𝐶𝐶
𝑠𝑠 𝑔𝑔𝑖𝑖 𝑠𝑠 

                  (31) 

 𝐺𝐺𝑖𝑖  𝑠𝑠 
 𝐹𝐹𝑖𝑖 𝑠𝑠

𝑠𝑠𝐶𝐶  𝑠𝑠 −𝐶𝐶      and  𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶 𝐶𝐶 −𝐶𝐶
𝑠𝑠  𝑔𝑔𝑖𝑖 𝑠𝑠 

                  (32) 

Both    𝑔𝑔𝑖𝑖  𝑠𝑠  ,  𝐺𝐺𝑖𝑖  𝑠𝑠   are 𝑅𝑅 𝑛𝑛 − 𝑛𝑛  functions and  

𝐶𝐶  𝑠𝑠 𝐶𝐶
𝑠𝑠

𝐶𝐶 −𝐶𝐶
𝑠𝑠  𝑔𝑔𝑖𝑖 𝑠𝑠 

 ,         𝐶𝐶  𝑠𝑠 𝐶𝐶
𝑠𝑠

𝐶𝐶 −𝐶𝐶
𝑠𝑠  𝐺𝐺𝑖𝑖 𝑠𝑠 

  

which are 𝑅𝑅 𝑛𝑛 𝑛𝑛 functions. Using equation (31) and (32), we have  
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𝑎𝑎𝑖𝑖  , 𝑏𝑏𝑖𝑖  , 𝐴𝐴𝑖𝑖   , 𝐵𝐵𝑖𝑖  , 𝑕𝑕𝑖𝑖 𝑟𝑟  , 𝐻𝐻𝑖𝑖 𝑟𝑟   

 The orthogonality relation gives, 

 𝑅𝑅  𝑟𝑟 𝑠𝑠 𝑕𝑕𝑗𝑗 𝑟𝑟 𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟 , for all  𝑗𝑗 … 𝑛𝑛                                 (23) 

  𝑅𝑅  𝑟𝑟 𝑠𝑠 𝐻𝐻𝑗𝑗 𝑟𝑟 − 𝑟𝑟𝑟𝑟
𝑟𝑟 𝑑𝑑𝑟𝑟 , for all  𝑗𝑗 … 𝑛𝑛                                        (24) 

Then,         𝑎𝑎𝑖𝑖𝑗𝑗 𝑠𝑠𝑏𝑏𝑖𝑖𝑗𝑗 𝑟𝑟 𝑖𝑖  𝑛𝑛
𝑖𝑖 𝑓𝑓𝑖𝑖  𝑠𝑠 𝑝𝑝𝑗𝑗  𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶                         (25) 

                   𝐴𝐴𝑖𝑖𝑗𝑗 𝑠𝑠𝐵𝐵𝑖𝑖𝑗𝑗  𝑟𝑟 − 𝑟𝑟  𝑖𝑖 𝑛𝑛
𝑖𝑖 𝐹𝐹𝑖𝑖 𝑠𝑠 𝑃𝑃𝑗𝑗  𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶                        (26) 

where, 𝑎𝑎𝑖𝑖𝑗𝑗 −𝐷𝐷  𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟  

𝑟𝑟𝜕𝜕𝑕𝑕𝑖𝑖
𝜕𝜕𝑟𝑟  

𝑟𝑟 𝑕𝑕𝑗𝑗  𝑟𝑟 𝑑𝑑𝑟𝑟 , 

                    𝑏𝑏𝑖𝑖𝑗𝑗  𝑣𝑣  𝑟𝑟 𝑟𝑟 𝑕𝑕𝑖𝑖 𝑟𝑟 𝑕𝑕𝑗𝑗  𝑟𝑟 𝑟𝑟 𝑑𝑑𝑟𝑟 ,        𝑝𝑝𝑗𝑗  𝑣𝑣  𝑟𝑟 𝑟𝑟 𝑕𝑕𝑗𝑗  𝑟𝑟 𝑟𝑟𝑑𝑑𝑟𝑟 , 

                   𝐴𝐴𝑖𝑖𝑗𝑗 𝐷𝐷  𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟  

𝑟𝑟𝜕𝜕𝐻𝐻𝑖𝑖
𝜕𝜕𝑟𝑟  𝑟𝑟

𝑟𝑟 𝐻𝐻𝑗𝑗  𝑟𝑟 − 𝑟𝑟  𝑑𝑑𝑟𝑟 , 

                    𝐵𝐵𝑖𝑖𝑗𝑗  𝑣𝑣  𝑟𝑟 𝑟𝑟
𝑟𝑟 𝐻𝐻𝑖𝑖 𝑟𝑟 𝐻𝐻𝑗𝑗  𝑟𝑟 − 𝑟𝑟  𝑑𝑑𝑟𝑟 ,     𝑃𝑃𝑗𝑗 − 𝑣𝑣  𝑟𝑟 𝑟𝑟 𝑕𝑕𝑗𝑗  𝑟𝑟 − 𝑟𝑟  𝑑𝑑𝑟𝑟  

Here 𝑎𝑎𝑖𝑖𝑗𝑗 )  and ( 𝑏𝑏𝑖𝑖𝑗𝑗 ) are symmetric matrices with all positive   elements. If 𝑣𝑣 𝑟𝑟 , then the 
dialyzate  flow  is  in  same  direction  as  blood  flow  and  if  𝑣𝑣 𝑟𝑟 , then  the  dialyzate 
flow  is  in  opposite  direction  of  the  blood  flow. 𝐵𝐵𝑖𝑖𝑗𝑗    is  symmetric  and  has  all  negative  
elements  and  if 𝑣𝑣 𝑟𝑟   and   has  all  positive  elements  if 𝑣𝑣 𝑟𝑟  . All  𝑝𝑝𝑗𝑗 ′𝑠𝑠  are 
negative and  𝑃𝑃𝑗𝑗 ′𝑠𝑠  are negative if  𝑣𝑣 𝑟𝑟   and   positive if  𝑣𝑣 𝑟𝑟    Let us denote  

𝑔𝑔𝑖𝑖 𝑠𝑠
𝑓𝑓𝑖𝑖 𝑠𝑠

𝑠𝑠𝐶𝐶 𝑠𝑠 −𝐶𝐶                                                                                      (27)                                                                                                                            

                                                𝐺𝐺𝑖𝑖 𝑠𝑠
𝐹𝐹𝑖𝑖 𝑠𝑠

𝑠𝑠𝐶𝐶 𝑠𝑠 −𝐶𝐶                                                                                      (28)                                                

After simplification, we get 

  𝑎𝑎𝑖𝑖𝑗𝑗 𝑠𝑠𝑏𝑏𝑖𝑖𝑗𝑗  𝑛𝑛
𝑖𝑖 𝑔𝑔𝑖𝑖 𝑠𝑠 𝑝𝑝𝑗𝑗 ;  𝑗𝑗 … 𝑛𝑛                (29)                  

                   𝐴𝐴𝑖𝑖𝑗𝑗 𝑠𝑠𝐵𝐵𝑖𝑖𝑗𝑗  𝑛𝑛
𝑖𝑖 𝐺𝐺𝑖𝑖 𝑠𝑠 𝑃𝑃𝑗𝑗  ;  𝑗𝑗 … 𝑛𝑛                  (30)                  

From these equations we can obtain 𝑔𝑔𝑖𝑖 𝑠𝑠  and  𝐺𝐺𝑖𝑖 𝑠𝑠 , and we find that each is rational  function 
of 𝑠𝑠 whose numerator is a polynomial of   𝑛𝑛 −  th degree and denominator is a polynomial of 
nth degree, and is denoted by  𝑅𝑅 𝑛𝑛 − 𝑛𝑛 From equations (20) , (27), (28), we obtain  

 𝑔𝑔𝑖𝑖  𝑠𝑠 
 𝑓𝑓𝑖𝑖 𝑠𝑠

𝑠𝑠𝐶𝐶  𝑠𝑠 −𝐶𝐶     and   𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶 𝐶𝐶 −𝐶𝐶
𝑠𝑠 𝑔𝑔𝑖𝑖 𝑠𝑠 

                  (31) 

 𝐺𝐺𝑖𝑖  𝑠𝑠 
 𝐹𝐹𝑖𝑖 𝑠𝑠

𝑠𝑠𝐶𝐶  𝑠𝑠 −𝐶𝐶      and  𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶 𝐶𝐶 −𝐶𝐶
𝑠𝑠  𝑔𝑔𝑖𝑖 𝑠𝑠 

                  (32) 

Both    𝑔𝑔𝑖𝑖  𝑠𝑠  ,  𝐺𝐺𝑖𝑖  𝑠𝑠   are 𝑅𝑅 𝑛𝑛 − 𝑛𝑛  functions and  

𝐶𝐶  𝑠𝑠 𝐶𝐶
𝑠𝑠

𝐶𝐶 −𝐶𝐶
𝑠𝑠  𝑔𝑔𝑖𝑖 𝑠𝑠 

 ,         𝐶𝐶  𝑠𝑠 𝐶𝐶
𝑠𝑠

𝐶𝐶 −𝐶𝐶
𝑠𝑠  𝐺𝐺𝑖𝑖 𝑠𝑠 

  

which are 𝑅𝑅 𝑛𝑛 𝑛𝑛 functions. Using equation (31) and (32), we have  

𝑔𝑔𝑖𝑖 𝑠𝑠 
𝑓𝑓𝑖𝑖 𝑠𝑠 

𝑠𝑠𝐶𝐶  𝑠𝑠 −𝐶𝐶  ,  𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶 𝑓𝑓𝑖𝑖 𝑠𝑠 
𝑔𝑔𝑖𝑖 𝑠𝑠 

  

𝐺𝐺𝑖𝑖 𝑠𝑠
𝐹𝐹𝑖𝑖 𝑠𝑠

𝑠𝑠𝐶𝐶 𝑠𝑠 −𝐶𝐶  ,  𝑠𝑠𝐶𝐶  𝑠𝑠 − 𝐶𝐶 𝐹𝐹𝑖𝑖 𝑠𝑠 
𝐺𝐺𝑖𝑖 𝑠𝑠 

                                                                                                                                                                              

Putting the value of 𝑔𝑔𝑖𝑖 from equation (27)  in equation (31) 
𝐶𝐶 −𝐶𝐶
𝑠𝑠  𝑔𝑔𝑖𝑖 𝑠𝑠 

𝑓𝑓𝑖𝑖 𝑠𝑠 
𝑔𝑔𝑖𝑖 𝑠𝑠 

,                                   𝑓𝑓𝑖𝑖 𝑠𝑠 
𝐶𝐶 −𝐶𝐶
𝑠𝑠  𝑔𝑔𝑖𝑖 𝑠𝑠 

𝑔𝑔𝑖𝑖 𝑠𝑠 
 𝑔𝑔𝑖𝑖 𝑠𝑠 

 

Similarly, putting the value of 𝐺𝐺𝑖𝑖 from equation (28) in equation (32) 

 𝐶𝐶 −𝐶𝐶
𝑠𝑠  𝐺𝐺𝑖𝑖 𝑠𝑠 

𝐹𝐹𝑖𝑖 𝑠𝑠 
𝐺𝐺𝑖𝑖 𝑠𝑠 

 ,                              𝐹𝐹𝑖𝑖 𝑠𝑠 
𝐶𝐶 −𝐶𝐶

𝑠𝑠
𝐺𝐺𝑖𝑖 𝑠𝑠 
 𝐺𝐺𝑖𝑖 𝑠𝑠 

    

Both 𝑓𝑓𝑖𝑖 𝑠𝑠 and  𝐹𝐹𝑖𝑖 𝑠𝑠  are 𝑅𝑅 𝑛𝑛 − 𝑛𝑛 functions, we then obtain 𝐶𝐶 𝑧𝑧 , 𝐶𝐶 𝑧𝑧 , 𝐶𝐶 𝑟𝑟 𝑧𝑧 , 𝐶𝐶 𝑟𝑟 𝑧𝑧   
using the following Laplace Inverses , 

𝐶𝐶  𝑧𝑧   𝐿𝐿−  𝐶𝐶  𝑠𝑠   ,    𝐶𝐶  𝑧𝑧   𝐿𝐿−  𝐶𝐶 𝑠𝑠   
𝐶𝐶  𝑟𝑟 𝑧𝑧 − 𝐶𝐶  𝑧𝑧     𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖𝑟𝑟 𝑖𝑖 𝑛𝑛

𝑖𝑖 𝐿𝐿−  𝑓𝑓𝑖𝑖 𝑠𝑠   
𝐶𝐶  𝑟𝑟 𝑧𝑧 − 𝐶𝐶  𝑧𝑧     𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖 𝑟𝑟 − 𝑟𝑟 𝑖𝑖 𝑛𝑛

𝑖𝑖 𝐿𝐿−  𝐹𝐹𝑖𝑖 𝑠𝑠   
The above equations give for urea concentration in blood and dialyzate. 

4.  Numerical Results and Discussion 

In our simulation results, the integrals for  𝐴𝐴𝑖𝑖𝑗𝑗  and  𝐵𝐵𝑖𝑖𝑗𝑗  are evaluated using Simpson’s    rule. A  
parallel  plate  dialyzers  have two side by side  𝑐𝑐𝑚𝑚 𝑐𝑐𝑚𝑚 blood path per  layer , that is 
about  𝑚𝑚 of  membrane  per  layer. According to Cooney et al. [2], blood channel height is 
normally about  𝑐𝑐𝑚𝑚 under dynamic conditions. Blood flow rates in dialyzer is about  

𝑐𝑐𝑚𝑚 𝑚𝑚𝑖𝑖𝑛𝑛 per layer. Dialyzate flow rate is considered  𝑐𝑐𝑚𝑚 𝑚𝑚𝑖𝑖𝑛𝑛 per layer. Cooney et al. 
has experimentally observed that urea  concentration  in  blood  side  around  the permeable  
membrane  is  approximately  five times more than in  dialyzate  side . This results that urea  
concentration  in blood  side  at  any  instant  must  be more  than  the  urea in  dialyzate  side.  
The  urea  diffuses  through  semi-permeable  membrane  of  dialyzer  within  the  temperature  
range ℃− ℃. Within these temperature range, the investigators [10] suggested the 
membrane diffusivity values − 𝑐𝑐𝑚𝑚 𝑠𝑠𝑒𝑒𝑐𝑐 at  ℃  and ℃ respectively.  Cooney et 
al. [10] has  considered  the  inner  radius  of  dialyzer  𝑐𝑐𝑚𝑚, and  the  total  radius  of  the 
dialyzer  as  𝑐𝑐𝑚𝑚. They observed that 𝐷𝐷 − 𝑐𝑐𝑚𝑚 𝑠𝑠𝑒𝑒𝑐𝑐, 𝐷𝐷  and is greater than  𝐷𝐷  

Cooney et al. [2] has experimentally observed that the urea concentration in blood side around 
the permeable membrane is approximately five times more than in dialyzate side. The 
observation is exhibited in the simulated results of Fig. 1 and 2. In our simulated result, we 
observe same behavior in urea concentration distribution at the same radial distance measured 
from  𝑟𝑟  in blood side and 𝑟𝑟 𝑟𝑟 from dialyzate side. This is due to the fact of the 
adjustment of flow in blood and dialyzate side during hemodialysis process. In hemodialysis 
process, concentration is assumed to be maximum at the axis, i.e. 𝑟𝑟 . It then decreases 
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towards the semi- permeable membrane. This shows that the urea concentration in blood is left 
five times less than after it passing through the semi-permeable membrane. These results 
satisfying the condition that blood velocity is five times less than the velocity dialyzate. 

 

Fig. 3: Urea concentration in blood 
 

For various values of urea concentration in blood and assuming the other parameter values as: 
𝑣𝑣 cm3/min, 𝑣𝑣  cm3/min, 𝑟𝑟 cm, 𝑟𝑟 cm, 𝑃𝑃 − cm2/sec, 
𝐷𝐷 − cm2/sec, 𝐷𝐷 − cm2/sec                                                                                                                                                                                             

 

Fig. 4: Urea concentration in dialyzate 
 

Assuming the parameter values: 𝑣𝑣 cm3 /min,  𝑣𝑣  cm3/min, 𝑟𝑟 cm, 
𝑟𝑟 cm,  𝑃𝑃 − cm2/sec, 𝐷𝐷 − cm2/sec,  𝐷𝐷 − cm2/sec, 

Galerkin Approach for the Study of Urea Concentration Distribution in Artificial Kidney in Hemodialysis



217

towards the semi- permeable membrane. This shows that the urea concentration in blood is left 
five times less than after it passing through the semi-permeable membrane. These results 
satisfying the condition that blood velocity is five times less than the velocity dialyzate. 

 

Fig. 3: Urea concentration in blood 
 

For various values of urea concentration in blood and assuming the other parameter values as: 
𝑣𝑣 cm3/min, 𝑣𝑣  cm3/min, 𝑟𝑟 cm, 𝑟𝑟 cm, 𝑃𝑃 − cm2/sec, 
𝐷𝐷 − cm2/sec, 𝐷𝐷 − cm2/sec                                                                                                                                                                                             

 

Fig. 4: Urea concentration in dialyzate 
 

Assuming the parameter values: 𝑣𝑣 cm3 /min,  𝑣𝑣  cm3/min, 𝑟𝑟 cm, 
𝑟𝑟 cm,  𝑃𝑃 − cm2/sec, 𝐷𝐷 − cm2/sec,  𝐷𝐷 − cm2/sec, 

𝐶𝐶   initial condition of  urea concentration in blood, 𝐶𝐶  initial condition of  urea 
concentration in dialyzate.  

5. Conclusion 

From the study, it is observed the differences between the urea concentration in blood and 
dialyzate. It is due to decrease in the urea concentration in blood and increase in urea pass 
through the semi-permeable membrane in dialyzate during dialysis process. The blood velocity in 
dialyzate governs the velocity of urea concentration of dialyzate.    
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