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Abstract: Our work is development of simplified model of elastic cylindrical tube by 
making several assumptions. We approximate tube walls to be thin but we do not 
neglect the stress exerted by the wall on the fluid inside. We also study expansion of 
such tubes under internal pressure and develop balance and kinematic equations of the 
model and then study kinematic properties of its deformation. We then modify 
Reynold's transport theorem and test its agreement with obtained results from the 
model. After that we perform further analysis for some of the results obtained. 
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1. Introduction 

Expansion of an elastic tube under internal pressure is a phenomenon which occurs due to 
deformation of solid walls under influence of some properties of fluid. Such entire class of 
problems fall under the study of fluid-structure interaction. Fluid-structure interaction (FSI) is a 
multiphysics coupling between the laws that describe fluid dynamics and structural mechanics. 
This phenomenon is characterized by interactions which can be stable or oscillatory between a 
deformable or moving structure and a surrounding or internal fluid flow [3]. When a fluid flow 
encounters a structure, stresses and strains are exerted on the solid object forces that can lead to 
deformations. We limit our study of FSI problems to the mathematical modeling of pressurized 
flows in pipes. Study of this kind is very important in understanding the nature of deformation of 
materials under external force. Study of FSI of pressurized flow in pipes seems to be very limited 
in terms of numbers of different aspects of FSI problems that can be studied but it has wide range 
of engineering and bio-medical applications along with increasing of our understanding of one of 
the most ubiquitous phenomenon of nature. It can be used to simulate the pressurized flows in 
supply pipes in hydroelectric installations, blood flow in artherosclerotic arteries and so on. If 
accurate mathematical and numerical models for such flow can be produced, then it will have 
significant impact on human life. 
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2.  Theoretical Background 

Reynold’s Transport Theorem: Reynold’s tranport theorem is 3 dimensional generalization of 
Leibniz integral rule. RTT is used to convert system analysis to control volume analysis and it 
can be applied to all conservation laws in classical mechanics. The formula of RTT differs on 
whether the control volume is fixed, moving or deformable. 

2.1 For Fixed Control Volume 

Let B be any property of the fluid (mass, energy, momentum, enthalpy etc.) and let 𝛽𝛽 𝑑𝑑𝐵𝐵
𝑑𝑑𝑚𝑚   be B 

per unit mass in any small element of the control volume of the fluid. Then, RTT can be written 

as,  
𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡 𝑡𝑡   𝐶𝐶𝑉𝑉 𝛽𝛽𝜌𝜌𝑑𝑑𝑉𝑉  𝐶𝐶𝑆𝑆 𝛽𝛽𝜌𝜌𝑢𝑢𝑐𝑐𝑜𝑜𝑠𝑠𝜃𝜃𝑑𝑑𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡 −  𝐶𝐶𝑆𝑆 𝛽𝛽𝜌𝜌𝑢𝑢𝑐𝑐𝑜𝑜𝑠𝑠𝜃𝜃𝑑𝑑𝐴𝐴𝑖𝑖𝑛𝑛  

where u is the velocity of fluid flow across CS making angle 𝜃𝜃 with the surface. 

2.2 For Control Volume Moving at Constant Velocity 

If a control volume is moving with fixed velocity 𝑢𝑢𝑠𝑠 and an observer fixed at CV will see fluid 
moving through CV at a relative velocity 𝑢𝑢𝑟𝑟  such that  𝑢𝑢𝑟𝑟 𝑢𝑢 − 𝑢𝑢𝑠𝑠 

where u is the fluid velocity measured at the same coordinate system in which 𝑢𝑢𝑠𝑠 is measured. 

Then, RTT can be written as  
𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡 𝑡𝑡   𝐶𝐶𝑉𝑉 𝛽𝛽𝜌𝜌𝑑𝑑𝑉𝑉  𝐶𝐶𝑆𝑆 𝛽𝛽𝜌𝜌 𝑢𝑢𝑟𝑟 𝑛𝑛 𝑑𝑑𝐴𝐴 

where n is the outward normal unit vector everywhere on the control surface. 

This formula reduces to RTT for fixed CV when 𝑢𝑢𝑠𝑠 . 

2.3  For Control Volume Moving at Variable Velocity 

If non-deformable control volume moving with variable velocity 𝑢𝑢𝑠𝑠 𝑡𝑡 , then the boundary 
relative velocity [4]  𝑢𝑢𝑟𝑟 𝑢𝑢 𝑟𝑟 𝑡𝑡 − 𝑢𝑢𝑠𝑠 𝑡𝑡 . Then, RTT can be written as  

 
𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡 𝑡𝑡   𝐶𝐶𝑉𝑉 𝛽𝛽𝜌𝜌𝑑𝑑𝑉𝑉  𝐶𝐶𝑆𝑆 𝛽𝛽𝜌𝜌 𝑢𝑢𝑟𝑟 𝑛𝑛 𝑑𝑑𝐴𝐴 

where n is the outward normal unit vector everywhere on the control surface. 

2.3    For Arbitrarily Moving and Deforming Control Volume 

The control surface has a deformation, so its velocity 𝑢𝑢𝑠𝑠 𝑢𝑢𝑠𝑠 𝑟𝑟 𝑡𝑡 , so that the relative velocity 
𝑢𝑢𝑟𝑟 𝑢𝑢 𝑟𝑟 𝑡𝑡 − 𝑢𝑢𝑠𝑠 𝑟𝑟 𝑡𝑡 . Then, RTT can be written as  

 
𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡 𝑡𝑡   𝐶𝐶𝑉𝑉 𝛽𝛽𝜌𝜌𝑑𝑑𝑉𝑉  𝐶𝐶𝑆𝑆 𝛽𝛽𝜌𝜌 𝑢𝑢𝑟𝑟 𝑛𝑛 𝑑𝑑𝐴𝐴 

where n is the outward normal unit vector everywhere on the control surface. 

This is the most general case, which can be compared with the equivalent form for a fixed 
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control volume as  
𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡  𝐶𝐶𝑉𝑉

∂ 𝛽𝛽𝜌𝜌
∂𝑡𝑡 𝑑𝑑𝑉𝑉  𝐶𝐶𝑆𝑆 𝛽𝛽𝜌𝜌 𝑢𝑢 𝑛𝑛 𝑑𝑑𝐴𝐴 

The moving and deforming control volume, contains only two complications [4]: 

(1) The time derivative of the first integral on the right must be taken outside and 

(2) The second integral involves the relative velocity 𝑢𝑢𝑟𝑟  between the fluid system and the control 
surface. 

3. Model Description 

We model the expansion of cylindrical elastic tube of length 𝐿𝐿 with uneven opening under 
constant internal pressure (𝑃𝑃 ). Eventhough the outlet opening of the tube Γ𝑜𝑜𝑢𝑢𝑡𝑡  has diameter 
smaller than the diameter of the inlet opening Γ𝑖𝑖𝑛𝑛 , we ignore any sort of tapering and bulging 
near the openings and  assume that the main body of the tube is perfectly cylindrical. We also 
assume that the pressure difference between Ω and surrounding is 𝑃𝑃 . This implies that the 
velocity of efflux (𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 ) remains constant. We assume the density (𝜌𝜌) of fluid remains constant 
and we ignore all the effect of viscosity, gravity and other forces unless they are declared to be in 
use later on. We also ignore the pressure gradient that appears across two openings due to inflow 
and outflow of the fluid. Velocity by which the fluid flows inside Ω i.e. 𝑢𝑢𝑖𝑖𝑛𝑛  must be increased 
continuously to maintain 𝑃𝑃 . We assume boundary wall (Γ𝑤𝑤 ) to be thin with thickness (𝜏𝜏) which is 
initially stress free and boundary material to be in-compressible. We restrict the axial extension 
of the boundary. So, the control volume Ω expands due to radial expansion only which has effect 
in thickness of boundary wall. So, we can finally describe our model of main mathematically as 
used in some popular literature such as [1].  

 Γ𝑤𝑤 𝑟𝑟 𝜃𝜃 𝑧𝑧 𝑟𝑟 𝑅𝑅 ≤ 𝑧𝑧 ≤ 𝐿𝐿 ≤ 𝜃𝜃 ≤ 𝜋𝜋  

 Γ𝑤𝑤𝑡𝑡 𝑟𝑟 𝜃𝜃 𝑧𝑧 𝑟𝑟 𝑟𝑟 𝑡𝑡 ≤ 𝑧𝑧 ≤ 𝐿𝐿 ≤ 𝜃𝜃 ≤ 𝜋𝜋  

 
Fig. 1: Thickness of boundary material as a function of time 
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4.  Development of Differential Equations for Describing Gross Effect 

We study the gross effect, i.e. mass flow, induced force, energy exchange [4] etc. of the model 
we have constructed. For this, we first approach the problem by using control volume analysis, 
and develop differential equations from there. We use three of the most fundamental principles of 
physics in control volume to develop our relations. They are as follows: 

4.1.  Conservation of Mass 

Since we have considered that the fluid in action is in-compressible, i.e. 𝜌𝜌 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡, so the 
volumetric flow must be conserved,  

 𝑄𝑄𝑖𝑖𝑛𝑛
𝑉𝑉Ω
𝑡𝑡 𝑄𝑄𝑜𝑜𝑢𝑢𝑡𝑡                                                               

 ⇒ 𝑉𝑉Ω
𝑡𝑡 𝐴𝐴𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛 − 𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡                                                       

where 𝐴𝐴𝑖𝑖𝑛𝑛  and 𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡  are areas of Γ𝑖𝑖𝑛𝑛  and Γ𝑜𝑜𝑢𝑢𝑡𝑡  respectively and 𝑉𝑉Ω  is volume of Ω. 𝐴𝐴𝑖𝑖𝑛𝑛  is constant 
but 𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡  is function of time and is given by 𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡 𝜋𝜋𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡 . Also, 𝑉𝑉Ω 𝜋𝜋𝑟𝑟 𝐿𝐿. We establish a 
condition that rate of expansion of the radius of Γ𝑜𝑜𝑢𝑢𝑡𝑡  is equal to the rate of expansion of radius of 

cross section Ω., i.e. 𝑟𝑟
𝑡𝑡

𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡
𝑡𝑡 →  . Also, we write 𝑟𝑟

𝑡𝑡 𝜂𝜂 𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟
𝑡𝑡

𝜂𝜂
𝑡𝑡 𝜂𝜂 → . Now, 

we can write above equation as  

⇒ 𝜋𝜋𝐿𝐿 𝑟𝑟𝜂𝜂 𝜂𝜂  𝐴𝐴𝑖𝑖𝑛𝑛
𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡 − 𝜋𝜋𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡 𝜂𝜂                                                                   

4.2  Conservation of Linear Momentum 

The mass entering (𝑚𝑚𝑖𝑖𝑛𝑛 ) and (𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 ) the mass exiting out of control volume are both functions of 
time. From (1), we see that we have relation for volumetric rate of flow but not volume itself. So, 
we have relation for mass flow (𝑚𝑚 𝑖𝑖𝑛𝑛 𝜌𝜌𝐴𝐴𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛  and 𝑚𝑚 𝑜𝑜𝑢𝑢𝑡𝑡 𝜌𝜌𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 ) but it is not possible to 
measure the mass of fluid entering or exiting at some time ‘t’ and we can only measure the mass 
entering or exiting for some time interval ‘Δ𝑡𝑡’. The mass entering and leaving Ω changes for 
every time interval Δ𝑡𝑡𝑖𝑖  as shown in figures 2 a. and 2 b., where i = 1, 2, 3, ..., n and ’n’ is number 
of such time intervals. If ‘n’ is made sufficiently large, then we get significantly good 
approximation for net flow of mass in Ω.  

Then we have,  

𝑚𝑚𝑖𝑖𝑛𝑛 𝑖𝑖 𝜌𝜌𝐴𝐴𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛Δ𝑡𝑡𝑖𝑖                                                         

𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 𝑖𝑖 𝜌𝜌𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 Δ𝑡𝑡𝑖𝑖                                                     

where 𝑚𝑚𝑖𝑖𝑛𝑛 𝑖𝑖  and 𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 𝑖𝑖  are mass entering and exiting Ω in time period = Δ𝑡𝑡𝑖𝑖 .  

Also, Total mass entering Ω in given period of time =  𝑖𝑖 𝜌𝜌𝐴𝐴𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛Δ𝑡𝑡𝑖𝑖 , 
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𝑡𝑡 →  . Also, we write 𝑟𝑟

𝑡𝑡 𝜂𝜂 𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟
𝑡𝑡

𝜂𝜂
𝑡𝑡 𝜂𝜂 → . Now, 

we can write above equation as  

⇒ 𝜋𝜋𝐿𝐿 𝑟𝑟𝜂𝜂 𝜂𝜂  𝐴𝐴𝑖𝑖𝑛𝑛
𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡 − 𝜋𝜋𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡 𝜂𝜂                                                                   

4.2  Conservation of Linear Momentum 

The mass entering (𝑚𝑚𝑖𝑖𝑛𝑛 ) and (𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 ) the mass exiting out of control volume are both functions of 
time. From (1), we see that we have relation for volumetric rate of flow but not volume itself. So, 
we have relation for mass flow (𝑚𝑚 𝑖𝑖𝑛𝑛 𝜌𝜌𝐴𝐴𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛  and 𝑚𝑚 𝑜𝑜𝑢𝑢𝑡𝑡 𝜌𝜌𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 ) but it is not possible to 
measure the mass of fluid entering or exiting at some time ‘t’ and we can only measure the mass 
entering or exiting for some time interval ‘Δ𝑡𝑡’. The mass entering and leaving Ω changes for 
every time interval Δ𝑡𝑡𝑖𝑖  as shown in figures 2 a. and 2 b., where i = 1, 2, 3, ..., n and ’n’ is number 
of such time intervals. If ‘n’ is made sufficiently large, then we get significantly good 
approximation for net flow of mass in Ω.  

Then we have,  

𝑚𝑚𝑖𝑖𝑛𝑛 𝑖𝑖 𝜌𝜌𝐴𝐴𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛Δ𝑡𝑡𝑖𝑖                                                         

𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 𝑖𝑖 𝜌𝜌𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 Δ𝑡𝑡𝑖𝑖                                                     

where 𝑚𝑚𝑖𝑖𝑛𝑛 𝑖𝑖  and 𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 𝑖𝑖  are mass entering and exiting Ω in time period = Δ𝑡𝑡𝑖𝑖 .  

Also, Total mass entering Ω in given period of time =  𝑖𝑖 𝜌𝜌𝐴𝐴𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛Δ𝑡𝑡𝑖𝑖 , 

And, Total mass leaving Ω in given period of time =  𝑖𝑖 𝜌𝜌𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 Δ𝑡𝑡𝑖𝑖 . 

Now, we establish the relation of conservation of linear momentum.  

 𝑚𝑚𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛 𝑚𝑚𝑜𝑜𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑢𝑢𝑚𝑚 𝑜𝑜𝑓𝑓 𝑚𝑚𝑜𝑜𝑣𝑣𝑖𝑖𝑛𝑛𝑔𝑔 𝑏𝑏𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑𝑎𝑎𝑟𝑟𝑦𝑦 𝑤𝑤𝑎𝑎𝑙𝑙𝑙𝑙 𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡  

                

Fig. 2 a: Mass entering through 𝜞𝜞𝒊𝒊𝒏𝒏 in certain                          Fig. 2 b: Mass leaving through 𝜞𝜞𝒐𝒐𝒖𝒖𝒕𝒕 in 
certain time interval                                                                  time interval  

 

For establishing equation (6), we need to calculate momentum of moving boundary wall (𝑃𝑃Γ𝑤𝑤 ). 
Let us  consider the wall to be of infinitesimal thickness and length, i.e. we take our elastic tube 
to be like a ring. Let us take a small portion of that ring of mass 𝑑𝑑𝜇𝜇 with volume 𝑑𝑑𝜈𝜈 (where 𝜇𝜇 is 
the mass of the boundary wall) and the boundary is moving with velocity 𝜂𝜂1. Then, the 
momentum of that small section is given by  

𝑃𝑃Γ𝑤𝑤 𝜂𝜂  
𝜋𝜋
 
𝜏𝜏
 
𝐿𝐿
𝜌𝜌𝜇𝜇𝑟𝑟𝑑𝑑𝜃𝜃𝑑𝑑𝜏𝜏𝑑𝑑𝐿𝐿 ⇒ 𝑃𝑃Γ𝑤𝑤 𝜋𝜋𝜂𝜂𝜌𝜌𝜇𝜇𝑟𝑟𝐿𝐿𝜏𝜏 

Here, 𝜌𝜌𝜇𝜇  is the density of the boundary material. Also, equation 6 becomes 

 𝑚𝑚𝑖𝑖𝑛𝑛
𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡 𝑚𝑚 𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛 𝜋𝜋𝜌𝜌𝜇𝜇𝐿𝐿𝑟𝑟𝜏𝜏 𝜂𝜂 𝜂𝜂  𝜋𝜋𝜌𝜌𝜇𝜇𝐿𝐿𝑟𝑟𝜂𝜂

𝜏𝜏
𝑡𝑡 𝑚𝑚 𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡  

                                                                      

Fig. 3 a: Small volume element 𝒅𝒅𝝂𝝂 of boundary material      Fig. 3 b: Total momentum of boundary 
                                                                                                     wall   moving with momentum 𝜼𝜼𝒅𝒅𝝁𝝁 

 

                                                     
1 the value of 𝜂𝜂 should be taken for mid-point of each time interval 
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4.3  Conservation of Energy 

We use the same concept of mass entering and mass exiting out of Ω developed during 
formulation of equations for conservation of momentum. We know, some of the kinetic energy 
of mass of fluid entering Ω will be used to move the boundary wall while some energy will be 
spent by mass exiting out of Ω. The total energy in the process will be conserved. So, we get  

 𝑚𝑚𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛 𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡  

For this, we first need to find the expression for energy used in moving the boundary. 

We have considered that Γ𝑤𝑤  to be elastic. Let Φ  be the stress exerted by the structure on the fluid. 
We have assumed the expansion to be axisymmetric, so we claim Φ  is acting normally on the 
fluid as shown in figure 4. We know, that the expansion of Ω is due to pressure difference 𝑃𝑃  and 
Φ  opposes the expansion of the main body under 𝑃𝑃 . There is expansion only if 𝑃𝑃 Φ  and the 
expansion occurs due to the effect of net pressure 𝑃𝑃 − Φ  experienced by Γ𝑤𝑤 . Therefore, at some 
time ’t’, the energy spent in attaining certain shape of Ω is given by 𝐸𝐸 𝑃𝑃 − Φ 𝑉𝑉, where V is 
the volume of Ω. This energy E is the energy spent in moving the boundary wall, thus we can 
write equation (7) as  

𝑚𝑚𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛
𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡 𝑚𝑚 𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛

− Φ 
𝑡𝑡 𝑉𝑉 𝜋𝜋𝑟𝑟𝜂𝜂𝐿𝐿 𝑃𝑃 − Φ  𝑚𝑚 𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡  

5. Modifications in Reynold’s Transport Theorem 

Some modifications in RTT were necessary for it to be compatible with our model because our 
model is constructed in such a way that there is two open boundaries (Γ𝑖𝑖𝑛𝑛  and Γ𝑜𝑜𝑢𝑢𝑡𝑡 ) where mass 
is free to flow and there is boundary wall Γ𝑤𝑤  from where mass can neither enter or exit. Also, in 
our model, the momentum of system can not be expressed in terms of 𝑀𝑀𝑉𝑉, where M is mass in 
action, because 𝑉𝑉 is very difficult to understand. So, we modify RTT, such that it follows all the 
fundamental concepts of the theorem and overcome above mentioned difficulties. Let, 

∂Γ Γ𝑖𝑖𝑛𝑛 ∪ Γ𝑤𝑤 ∪ Γ𝑜𝑜𝑢𝑢𝑡𝑡  

Then, from RTT, we say that 

Rate of change of some factor of the system = Rate of change of some factor of the control 
volume + Change in factor caused due to system of boundaries i.e.  

 
𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡

𝐵𝐵Ω
𝑡𝑡  ∂Γ 𝑑𝑑𝛽𝛽

∗ 

 ⇒ 𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡

𝐵𝐵Ω
𝑡𝑡  Γ𝑖𝑖𝑛𝑛 𝑑𝑑𝛽𝛽Γ𝑖𝑖𝑛𝑛

∗  Γ𝑤𝑤 𝑑𝑑𝛽𝛽Γ𝑤𝑤
∗  Γ𝑜𝑜𝑢𝑢𝑡𝑡 𝑑𝑑𝛽𝛽Γ𝑜𝑜𝑢𝑢𝑡𝑡

∗  

Study of the Expansion of Cylindrical Elastic Tube with Uneven Opening under Constant Internal Pressure 
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4.3  Conservation of Energy 

We use the same concept of mass entering and mass exiting out of Ω developed during 
formulation of equations for conservation of momentum. We know, some of the kinetic energy 
of mass of fluid entering Ω will be used to move the boundary wall while some energy will be 
spent by mass exiting out of Ω. The total energy in the process will be conserved. So, we get  

 𝑚𝑚𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛 𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡  

For this, we first need to find the expression for energy used in moving the boundary. 

We have considered that Γ𝑤𝑤  to be elastic. Let Φ  be the stress exerted by the structure on the fluid. 
We have assumed the expansion to be axisymmetric, so we claim Φ  is acting normally on the 
fluid as shown in figure 4. We know, that the expansion of Ω is due to pressure difference 𝑃𝑃  and 
Φ  opposes the expansion of the main body under 𝑃𝑃 . There is expansion only if 𝑃𝑃 Φ  and the 
expansion occurs due to the effect of net pressure 𝑃𝑃 − Φ  experienced by Γ𝑤𝑤 . Therefore, at some 
time ’t’, the energy spent in attaining certain shape of Ω is given by 𝐸𝐸 𝑃𝑃 − Φ 𝑉𝑉, where V is 
the volume of Ω. This energy E is the energy spent in moving the boundary wall, thus we can 
write equation (7) as  

𝑚𝑚𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛
𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡 𝑚𝑚 𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛

− Φ 
𝑡𝑡 𝑉𝑉 𝜋𝜋𝑟𝑟𝜂𝜂𝐿𝐿 𝑃𝑃 − Φ  𝑚𝑚 𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡  

5. Modifications in Reynold’s Transport Theorem 

Some modifications in RTT were necessary for it to be compatible with our model because our 
model is constructed in such a way that there is two open boundaries (Γ𝑖𝑖𝑛𝑛  and Γ𝑜𝑜𝑢𝑢𝑡𝑡 ) where mass 
is free to flow and there is boundary wall Γ𝑤𝑤  from where mass can neither enter or exit. Also, in 
our model, the momentum of system can not be expressed in terms of 𝑀𝑀𝑉𝑉, where M is mass in 
action, because 𝑉𝑉 is very difficult to understand. So, we modify RTT, such that it follows all the 
fundamental concepts of the theorem and overcome above mentioned difficulties. Let, 

∂Γ Γ𝑖𝑖𝑛𝑛 ∪ Γ𝑤𝑤 ∪ Γ𝑜𝑜𝑢𝑢𝑡𝑡  

Then, from RTT, we say that 

Rate of change of some factor of the system = Rate of change of some factor of the control 
volume + Change in factor caused due to system of boundaries i.e.  

 
𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡

𝐵𝐵Ω
𝑡𝑡  ∂Γ 𝑑𝑑𝛽𝛽

∗ 

 ⇒ 𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡

𝐵𝐵Ω
𝑡𝑡  Γ𝑖𝑖𝑛𝑛 𝑑𝑑𝛽𝛽Γ𝑖𝑖𝑛𝑛

∗  Γ𝑤𝑤 𝑑𝑑𝛽𝛽Γ𝑤𝑤
∗  Γ𝑜𝑜𝑢𝑢𝑡𝑡 𝑑𝑑𝛽𝛽Γ𝑜𝑜𝑢𝑢𝑡𝑡

∗  

And 𝛽𝛽∗ 𝐵𝐵
𝑡𝑡  is the main change from the RTT in usual form where 𝛽𝛽 𝐵𝐵

𝑚𝑚  . Also, usual sign 
convention of RTT is followed. 

5.1     Development of Relation for Mass Flow from Modified RTT 

For developing relation of mass flow, we replace B by m in equation 9 i.e.  

𝑚𝑚𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡

𝑚𝑚Ω
𝑡𝑡  

𝑚𝑚 Γ𝑖𝑖𝑛𝑛
𝑑𝑑𝑚𝑚 Γ𝑖𝑖𝑛𝑛  

𝑚𝑚 Γ𝑤𝑤
𝑑𝑑𝑚𝑚 Γ𝑤𝑤  

𝑚𝑚 Γ𝑜𝑜𝑢𝑢𝑡𝑡
𝑑𝑑𝑚𝑚 Γ𝑜𝑜𝑢𝑢𝑡𝑡  

⇒ 𝑉𝑉Ω
𝑡𝑡 𝐴𝐴𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛 − 𝐴𝐴𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡  

Here, equation (10) is in agreement with equation (2). Hence, our modification of RTT is 
applicable for developing relation of mass flow. 

5.2    Development of Momentum Relation from Modified RTT 

For developing momentum relation, we we replace B by P (momentum) in equation 9 i.e. 

𝑃𝑃𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡

𝑃𝑃Ω
𝑡𝑡  

𝑃𝑃 Γ𝑖𝑖𝑛𝑛
𝑑𝑑  𝑃𝑃

𝑡𝑡 Γ𝑖𝑖𝑛𝑛
 
𝑃𝑃 Γ𝑤𝑤

𝑑𝑑  𝑃𝑃
𝑡𝑡 Γ𝑤𝑤

 
𝑃𝑃 Γ𝑜𝑜𝑢𝑢𝑡𝑡

𝑑𝑑  𝑃𝑃
𝑡𝑡 Γ𝑜𝑜𝑢𝑢𝑡𝑡

 

⇒ 𝑚𝑚𝑖𝑖𝑛𝑛
𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡 𝑚𝑚 𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛 𝜋𝜋𝜌𝜌𝜇𝜇𝐿𝐿  𝜏𝜏𝑟𝑟𝜂𝜂 𝑟𝑟𝜂𝜂 𝜏𝜏

𝑡𝑡 𝜏𝜏𝜂𝜂  𝑚𝑚 𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡  

Here, equation (11) is in agreement with equation (6). Hence, our modification of RTT is 
applicable for developing momentum relation. 

5.3     Development of Energy Relation from Modified RTT 

For developing energy relation, we we replace B by E (Energy) in equation 9 i.e. 

 
𝐸𝐸𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡

𝐸𝐸Ω
𝑡𝑡  𝐸𝐸 Γ𝑖𝑖𝑛𝑛

𝑑𝑑  𝐸𝐸
𝑡𝑡  Γ𝑖𝑖𝑛𝑛

 𝐸𝐸 Γ𝑤𝑤
𝑑𝑑  𝐸𝐸

𝑡𝑡  Γ𝑤𝑤
 𝐸𝐸 Γ𝑜𝑜𝑢𝑢𝑡𝑡

𝑑𝑑  𝐸𝐸
𝑡𝑡  Γ𝑜𝑜𝑢𝑢𝑡𝑡

 

⇒
𝑚𝑚𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡

𝑃𝑃 𝑉𝑉
𝑡𝑡 − Φ 𝑉𝑉

𝑡𝑡
𝑚𝑚𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡  

 ⇒ 𝑚𝑚𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛
𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡 𝑚𝑚 𝑖𝑖𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛 − Φ 

𝑡𝑡 𝑉𝑉 𝜋𝜋𝑟𝑟𝜂𝜂𝐿𝐿 𝑃𝑃 − Φ 𝑚𝑚 𝑜𝑜𝑢𝑢𝑡𝑡 𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡  

Here, equation (12) is in agreement with equation (8). Hence, our modification of RTT is 
applicable for developing energy relation. 
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6. Further Mathematical Analysis 

6.1 Rate of Change in Volume  

We can rearrange equation (3) from and get rate of change of rate of change in volume is given 

by,      𝑉𝑉Ω
𝑡𝑡 𝐴𝐴𝑖𝑖𝑛𝑛

𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡 − 𝜋𝜋𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡 𝜂𝜂 

If 𝑉𝑉Ω
𝑡𝑡 , then at some point, 𝑉𝑉Ω

𝑡𝑡  will be zero, i.e. 𝑟𝑟 𝑟𝑟𝑚𝑚𝑎𝑎𝑥𝑥  and 𝜂𝜂 . Let  

 𝑉𝑉Ω
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The inequality sign of (13) changes into equality sign of (14), when 𝑢𝑢𝑖𝑖𝑛𝑛 𝑢𝑢𝑖𝑖𝑛𝑛 𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑙𝑙  and 𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡
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6. Further Mathematical Analysis 

6.1 Rate of Change in Volume  

We can rearrange equation (3) from and get rate of change of rate of change in volume is given 

by,      𝑉𝑉Ω
𝑡𝑡 𝐴𝐴𝑖𝑖𝑛𝑛

𝑢𝑢𝑖𝑖𝑛𝑛
𝑡𝑡 − 𝜋𝜋𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡 𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡 𝜂𝜂 

If 𝑉𝑉Ω
𝑡𝑡 , then at some point, 𝑉𝑉Ω

𝑡𝑡  will be zero, i.e. 𝑟𝑟 𝑟𝑟𝑚𝑚𝑎𝑎𝑥𝑥  and 𝜂𝜂 . Let  
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𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡 𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑙𝑙 . Also, Equation (14) gives relationship between radius of maximum expansion and 
maximum influx velocity required to establish constant pressure 𝑃𝑃  in Ω. 

6.2   Relationship between K and 𝝀𝝀𝝉𝝉 

Let us define K as factor by which volume of Ω increases. If V be a reference volume and V’ be 
volume after some expansion, then 𝐾𝐾 𝑉𝑉′

𝑉𝑉 . 

𝜆𝜆𝜏𝜏 , 𝜆𝜆𝑟𝑟  and 𝜆𝜆𝐿𝐿  are used in many literatures such as [2] , [5] and are defined as 𝜆𝜆𝜏𝜏
𝜏𝜏′
𝜏𝜏 , 𝜆𝜆𝑟𝑟

𝑟𝑟′
𝑟𝑟  and 

𝜆𝜆𝐿𝐿
𝐿𝐿′
𝐿𝐿 , where 𝜏𝜏, r and L are thickness, radius and length of tube in reference configuration and 

𝜏𝜏′, r’ and L’ are thickness, radius and length of tube after some expansion. In our case,  𝜆𝜆𝐿𝐿 . 
Also, in-compressible material, 𝜆𝜆𝑟𝑟𝜆𝜆𝜏𝜏𝜆𝜆𝐿𝐿  

This is a very trivial relation but very fundamental in understanding relation between increasing 
volume and decreasing thickness of boundary material. 

 𝑉𝑉′ − 𝑉𝑉 𝜋𝜋 𝑟𝑟′ 𝐿𝐿 − 𝜋𝜋𝑟𝑟 𝐿𝐿 

 ⇒ 𝐾𝐾 𝜆𝜆𝑟𝑟  and 𝐾𝐾 𝜆𝜆𝜏𝜏
 

Also, it is important to note that 𝜆𝜆𝑟𝑟 ≥ , as the system never shrinks and 𝜆𝜆𝜏𝜏 ≤ , due to in-
compressibility of material. 

         
Fig. 5: Relation of K with different parameters 

 

7. Results and Discussions 

7.1   Modified Reynold’s Transport Theorem 

The modified form of RTT is given by  

 
𝐵𝐵𝑠𝑠𝑦𝑦𝑠𝑠
𝑡𝑡

𝐵𝐵Ω
𝑡𝑡  Γ𝑖𝑖𝑛𝑛 𝑑𝑑𝛽𝛽Γ𝑖𝑖𝑛𝑛

∗  Γ𝑤𝑤 𝑑𝑑𝛽𝛽Γ𝑤𝑤
∗  Γ𝑜𝑜𝑢𝑢𝑡𝑡 𝑑𝑑𝛽𝛽Γ𝑜𝑜𝑢𝑢𝑡𝑡

∗  

And we see that this modified RTT describes kinematics of our model. In traditional form of 
RTT, it was difficult to define 𝑢𝑢 such that 𝑚𝑚𝑢𝑢 describes the total momentum of the system. In 
our modification, we have solved that problem but we introduce a new problem of describing 𝑚𝑚. 
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7.2    Some other Relations 

The condition for rate of change in volume change rate to be decreasing was found to be 
𝑢𝑢𝑖𝑖𝑛𝑛 ≤ 𝜋𝜋𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡

𝐴𝐴𝑖𝑖𝑛𝑛
𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡  which is in the form of 𝑦𝑦 ≤ 𝑘𝑘𝑥𝑥  and from this relation we can conclude that rate 

of volume expansion is decreasing for 𝑢𝑢𝑖𝑖𝑛𝑛
𝜋𝜋𝑢𝑢𝑜𝑜𝑢𝑢 𝑡𝑡
𝐴𝐴𝑖𝑖𝑛𝑛

𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡  and rate of volume change is 0 when 

𝑢𝑢𝑖𝑖𝑛𝑛
𝜋𝜋𝑢𝑢𝑜𝑜𝑢𝑢𝑡𝑡
𝐴𝐴𝑖𝑖𝑛𝑛

𝑟𝑟𝑜𝑜𝑢𝑢𝑡𝑡 . 

The factor by which volume of tube changes is directly proportional to square of parameter by 
which radius of tube changes and inversely proportional to square of parameter by which 
thickness of material wall changes which is given by relations 𝐾𝐾 𝜆𝜆𝑟𝑟  and 𝐾𝐾 𝜆𝜆𝜏𝜏

. 

8. Conclusion  

We develop simple model for expansion of cylindrical elastic tubes which may be significant in 
reducing computation time for numerical simulations. Although, it ignores many important 
aspects of fluid flow such as head loss, it preserves important kinematic properties of expansion. 
So this model is somewhat acceptable to study kinematic features of deformation of the tube such 
as rate of change in stress exerted by material to the fluid inside the tube and so on. We also 
modify Reynold’s transport theorem to describe our model. Some of the graphical results 
obtained makes it easier to study the relationship between different parameters such as 𝐾𝐾, 𝜆𝜆𝜏𝜏  and 
𝜆𝜆𝑅𝑅 .  
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