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Abstract: Despite of implicit flow conservation on every arc of traditional network 
flow model, the generalized network flow model assumes the proportional and 
symmetric loss factor on each arc. This paper considers two terminal lossy networks 
specifying the portion of flow entering an arc at its tail node that reaches to its head 
node. We studied the generalized maximum continuous dynamic contraflow 
(GMCDCF) and generalized continuous earliest arrival contraflow (GCEACF) 
problems. The problems are efficiently solved with pseudo-polynomial time algorithms. 
Moreover, a fully polynomial time approximation scheme (FPTAS) is proposed in 
polynomial time.  
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1.  Introduction  

As an inevitable part of disaster management, an evacuation planning is understood as a 
procedure of shifting evacuees from disaster (sources) areas to safety (sinks) areas as much as 
possible with minimum loss of life and properties. Due to a probable unfortunate death of 
evacuees, evacuees may not reach the destination with the same amount as departed [26, 9]. To 
make the issues more realistic and real-life based, we generalized the flow model which 
maximizes the real amount reaching to destination in continuous time setting. The lossy network 
captures many generalized properties where flow value is only lost or conserved when these are 
sent from the sources to the sinks.  

The static generalized flow problem was introduced by Dantzig [2] giving an LP formulation and 
can thus be solved in polynomial time. The combinatorial polynomial time algorithm was 
proposed in [7] and that has been improved later in [25]. Most of the polynomial-time algorithms 
for generalized maximum flow are developed and described in [26]. Authors in [13, 5, 9, 8] have 
presented efficient algorithms to solve this problem in static and dynamic networks. Gross and 
Skutella [9] proved that the generalized maximum dynamic flow (GMDF) model having both 
loss (gain) factors and transit time simultaneously is 𝑁𝑁𝑃𝑃-hard. Also, we can find pseudo-
polynomial time algorithm that has been presented for GMDF and generalized maximum earliest 
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arrival flow (GMEAF) problems in [9] on a lossy network in which the loss rate per time unit is 
identical on all arcs. Similarly, authors of [16, 17] studied the generalized dynamic contraflow on 
lossy network and extend the result for the FPTAS. Contraflow configuration is well-accepted 
model for evacuation planning which increase the outbound road capacities and reduce the 
evacuation time significantly. Authors in [12] showed that the evacuation time is increased at 
least 40 percent with at most 30 percent of the arc are reversals. This approach is important from 
the practical point of view. Some analytical solutions in different dynamic contraflow networks 
with discrete and continuous time can be found in [3, 12, 18-24].  

Rest of the papers is planned as follows: In Section 2, we give mathematical formulation. Section 
3 presents pseudo-polynomial time algorithms that solve the proposed problem. Approximate 
solution with FPTAS techniques are presented in Section 4 and finally Section 5 concludes the 
paper. 

2. Basic Denotations and Problem Formulation 

Let 𝑁𝑁  𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 𝜆𝜆 ≤  be the generalized dynamic lossy network, where 𝑉𝑉 
and 𝐴𝐴 denote the finite set of nodes and arcs with 𝑛𝑛 𝑉𝑉  and 𝑚𝑚 𝐴𝐴 . The nodes 𝑠𝑠 and 𝑑𝑑 
represent the source and the sink, respectively. The capacity 𝑐𝑐 𝑒𝑒 ∈ 𝑅𝑅  denotes the maximum 
amount of flow that may enter the arc 𝑒𝑒 ∈ 𝐴𝐴 per time period and transit time 𝜏𝜏 𝑒𝑒 ∈ 𝑍𝑍  gives the 
time needed to travel one unit of flow on arc 𝑒𝑒. The set of outgoing and incoming arcs for node 
𝑖𝑖 ∈ 𝑉𝑉 are denoted as 𝐴𝐴𝑖𝑖𝑜𝑜𝑢𝑢𝑡𝑡 𝑖𝑖 𝑗𝑗 ∈ 𝐴𝐴  and 𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛   𝑗𝑗 𝑖𝑖 ∈ 𝐴𝐴 ∀𝑗𝑗 ∈ 𝑉𝑉 respectively. We 
use 𝕋𝕋 𝑇𝑇  for the domain of continuous time interval. Here, each arc e ∈ 𝐴𝐴 has the 
proportional loss factor 𝜆𝜆 𝑒𝑒 ≡ 𝑘𝑘𝜏𝜏 𝑒𝑒 𝑘𝑘 , that is, in each time unit the same percentage of 
the remaining flow value is lost. 

A generalized maximum continuous dynamic flow (GMCDF) is defined by a function 𝑓𝑓 𝐴𝐴
𝕋𝕋 → 𝑅𝑅 , which maximizes Equation (1) with respect to the constraints (2)–(4), 

𝜗𝜗 𝑓𝑓 𝑇𝑇   𝜆𝜆 𝑒𝑒 𝑓𝑓 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  𝑑𝑑𝜎𝜎
𝑒𝑒∈𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛

𝑇𝑇

 

such that: 

(1) 
 
 

  𝜆𝜆 𝑒𝑒 𝑓𝑓 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  𝑑𝑑𝜎𝜎   𝑓𝑓 𝑒𝑒 𝜎𝜎 𝑑𝑑𝜎𝜎 ∀𝑖𝑖 ∉ 𝑠𝑠 𝑑𝑑
𝑒𝑒∈𝐴𝐴𝑖𝑖𝑜𝑜𝑢𝑢𝑡𝑡

𝑇𝑇

𝑒𝑒∈𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛

𝑇𝑇

 (2) 

  𝜆𝜆 𝑒𝑒 𝑓𝑓 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  𝑑𝑑𝜎𝜎 ≥   𝑓𝑓 𝑒𝑒 𝜎𝜎 𝑑𝑑𝜎𝜎 ∀𝑖𝑖 ∉  𝑠𝑠 𝑑𝑑 
𝑒𝑒∈𝐴𝐴𝑖𝑖𝑜𝑜𝑢𝑢𝑡𝑡

𝜉𝜉

𝑒𝑒∈𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛

𝜉𝜉

𝜉𝜉 ∈  𝑇𝑇  (3) 

≤ 𝑓𝑓 𝑒𝑒 𝜎𝜎 ≤ 𝑐𝑐 𝑒𝑒 𝜎𝜎 ∀𝑒𝑒 ∈ 𝐴𝐴 𝜎𝜎 ∈  𝑇𝑇   (4) 
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Similarly, 𝑓𝑓 𝐴𝐴 𝕋𝕋 → 𝑅𝑅  be the generalized maximum continuous earliest arrival flow 
(GMCEAF) function, which maximizes the flow value given by Equation (5) in every 
subinterval of the time 𝜎𝜎 𝜎𝜎 𝜏𝜏 𝑒𝑒  with respect to the constraints (2)–(4), 
 

𝜗𝜗 𝑓𝑓 𝜎𝜎   𝜆𝜆 𝑒𝑒 𝑓𝑓 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  𝑑𝑑𝜎𝜎 ∀𝑒𝑒 ∈ 𝐴𝐴 𝜎𝜎 𝜉𝜉 ∈  𝑇𝑇 
𝑒𝑒∈𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛

𝜉𝜉

 (5) 

For the residual network 𝑁𝑁𝑅𝑅 𝑉𝑉 𝐴𝐴 ∪ 𝐴𝐴−  of𝑁𝑁, each arc 𝑒𝑒 𝑖𝑖 𝑗𝑗 ∈ 𝐴𝐴 has corresponding 
reverse arc 𝑒𝑒− 𝑗𝑗 𝑖𝑖 . Similarly, the set 𝐴𝐴  contains all arcs 𝑒𝑒  𝑖𝑖 𝑗𝑗  with static flow 𝑔𝑔 𝑒𝑒 
𝑐𝑐 𝑒𝑒  and we assign a capacity of 𝑐𝑐 𝑒𝑒 − 𝑔𝑔 𝑒𝑒 , transit time 𝜏𝜏 𝑒𝑒  and loss factor 𝜆𝜆 𝑒𝑒 . The set 𝐴𝐴− 
contains all reverse arcs 𝑒𝑒− 𝑗𝑗 𝑖𝑖  with 𝑔𝑔 𝑒𝑒  and we assign a capacity of 𝑐𝑐 𝑒𝑒 , transit time 
−𝜏𝜏 𝑒𝑒  and loss factor 𝜆𝜆 𝑒𝑒 .  The GMDF problem is solved using the time-expanded network [9] 

whose size depends on the time horizon 𝑇𝑇. Let 𝑁𝑁𝑇𝑇  𝑉𝑉𝑇𝑇 𝐴𝐴𝑇𝑇 𝜆𝜆𝑇𝑇 𝑐𝑐𝑇𝑇 be the generalized time-
expanded network of 𝑁𝑁. Then, networks 𝑁𝑁𝑇𝑇  and  𝑁𝑁 send exactly the same amount of flow to the 
sink, [9, 8].  

Standard flow decomposition simplifies the generalized flow by canceling the cycles which do 
not reach the destination. In contrast to the standard chain-decomposition, authors in [10, 11] 
introduce a nonstandard chain-decomposable flow that also works in a similar fashion. Recall 
that any network without flow-generating cycles can be turned into a lossy network. 

Contraflow technique configures the given network as 𝑁𝑁 𝑉𝑉 𝐸𝐸 𝑐𝑐𝐸𝐸 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 , where 
corresponding data are defined as follows: 

𝑐𝑐 𝑒𝑒  𝑐𝑐 𝑒𝑒 𝑐𝑐 𝑒𝑒−  and 𝜏𝜏 𝑒𝑒  𝜏𝜏 𝑒𝑒 𝑖𝑖𝑓𝑓 𝑒𝑒 ∈ 𝐴𝐴
𝜏𝜏 𝑒𝑒− 𝑜𝑜𝑡𝑡𝑕𝑕𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

  for all 𝑒𝑒 ∈ 𝐸𝐸 in 𝑁𝑁  if 𝑒𝑒 ∨ 𝑒𝑒 ∈ 𝐴𝐴 in 𝑁𝑁 and 

remaining graph structure and the data are unaltered. The modified loss factor is 𝜆𝜆 𝑒𝑒 ≡ 𝑘𝑘𝜏𝜏 𝑒𝑒  

𝑘𝑘 . 

Natural transformation helps to transfer the discrete dynamic flow into a continuous dynamic 
flow and vice versa. Authors in [4] show the feasibility and continuity of the natural 
transformation. Authors define the flow rate 𝑓𝑓 𝑒𝑒  on arc 𝑒𝑒 in time interval  𝜎𝜎 𝜎𝜎  𝜎𝜎 ∈ 𝑍𝑍  
and 𝑓𝑓𝑑𝑑 𝑒𝑒  on arc 𝑒𝑒 at time 𝜎𝜎 ∈ 𝑍𝑍   and prove that the total amount of flow is 𝑓𝑓 𝑒𝑒  in both 
situation, numerically: 𝑓𝑓𝑑𝑑 𝑒𝑒 𝜎𝜎 𝑓𝑓 𝑒𝑒  𝜎𝜎 𝜎𝜎  . This transformation has the nice property that 
the amount of flow arriving at 𝑗𝑗 via arc 𝑖𝑖 𝑗𝑗  in the unit time interval beginning at time 𝜎𝜎 in the 
continuous flow will equal the amount of flow that arrives at 𝑗𝑗 via 𝑖𝑖 𝑗𝑗  at time step 𝜎𝜎 in the 
discrete flow. For the integral time horizon, natural transformation of chain decomposition flows 
is also feasible. If the time horizon 𝑇𝑇 is not integral, then we create a continuous 𝑇𝑇-horizon flow 
by natural transformation of discrete  𝑇𝑇 −horizon chain decomposable flow into a continuous 
chain decomposable flow and stop sending flow along each chain flow 𝛾𝛾 at time 𝑇𝑇 − 𝜏𝜏 𝛾𝛾  
instead of time  𝑇𝑇 − 𝜏𝜏 𝛾𝛾 . 
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3. Generalized Maximum Continuous Dynamic Contraflow Problem 

Generalization of maximum flow on continuous time setting has not been sufficiently studied 
before. There is no any strong polynomial time algorithm to solve GMCDF problem. Authors in 
[6] give a pseudo-polynomial time algorithm to solve Problem 1.  

Problem 1: Given a network 𝑁𝑁 𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 , the GMCDCF problem is to find a 
maximum continuous flow by maximizing objective (1) with respect to constraints (2)–(4) that 
can be sent from  to  within time , if the direction of arcs can be reversed at time zero. 

To solve Problem (1), we converted the given network into auxiliary network using contraflow 
configuration. On the auxiliary network, we compute the GMDF using the algorithm of [9, 8]. 
Then, we transform the discrete dynamic flow into the continuous flow by natural transformation 
of [4] in the same time complexity. We started with the zero flow, computed a maximum flow in 
the minimum loss path, augmented this flow and repeated this process until no 𝑠𝑠 − 𝑑𝑑 path exists 
in the static residual network. It took pseudo-polynomial time to compute the GMCDCF on an 
auxiliary network. 

Algorithm 1: Generalized maximum continuous dynamic contraflow (GMCDCF) 

1. Given a  network  𝑁𝑁 𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇  
2. Obtain the auxiliary network 𝑁𝑁  𝑉𝑉 𝐸𝐸 𝑐𝑐𝐸𝐸 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇  of  𝑁𝑁. 
3. Compute the GMDF using the algorithm of [9, 8] on auxiliary network. 
4. Transform discrete dynamic flow into the continuous dynamic flow using the natural 

transformation: 𝑓𝑓𝑑𝑑 𝑒𝑒 𝜎𝜎 𝑓𝑓 𝑒𝑒  𝜎𝜎 𝜎𝜎    for 𝜎𝜎 ∈ 𝑇𝑇 , [4]. 
5. Arc 𝑗𝑗 𝑖𝑖 ∈ 𝐴𝐴 is reversed, if and only if the flow along arc 𝑖𝑖 𝑗𝑗  is greater than 𝑐𝑐 𝑖𝑖 𝑗𝑗 or 

if there is a nonnegative flow along arc 𝑖𝑖 𝑗𝑗 ∉ 𝐴𝐴 and the resulting flow is GMCDCF 
with arc reversals on 𝑁𝑁. 

For the optimality of Algorithm 1, we prove Lemma 1. 

Lemma 1: The GMCDCF is less than or equal to the generalized maximum static contraflow 
(GMSCF) for the corresponding time-expanded network 𝑇𝑇  of two terminal lossy network 𝑁𝑁. 

Proof: Authors in [16, 18] show that every feasible flow in the GMDCF problem has an 
equivalent feasible flow to the GMSCF in the corresponding time-expanded network. Authors in 
[20] show that every feasible flow to the MCDCF problem has an equivalent feasible flow to the 
MSCF problem in the corresponding time-expanded network. Now, we conclude that every 
feasible flow to the GMCDCF problem has equivalent feasible GMSCF on the corresponding 
time-expanded network.  

Theorem 1: The GMCDCF problem can be computed optimally by Algorithm 1 in two terminal 
lossy network 𝑁𝑁 𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 . 
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Proof: Steps 2 and 3 of Algorithm 1 are well defined and trivial. Step 4 is also feasible since the 
natural transformation converts the feasible  𝑇𝑇 -horizon maximum discrete dynamic flow into the 
feasible 𝑇𝑇-horizon MCDF. Moreover, there is no any cycle flow on Step 3. Therefore, flow is 
either in an arc 𝑖𝑖 𝑗𝑗  or 𝑗𝑗 𝑖𝑖  but never in both arcs in Step 5. The flow is not greater than the 
reversed capacities on all the arcs at all-time units, thus, Step 5 is also feasible. 

We proved the optimality. We know from feasibility that every feasible GMCDF solution of the 
MCDF problem in the 𝑁𝑁  is feasible to the GMCDCF solution in the original network 𝑁𝑁. 

𝑁𝑁  𝐺𝐺𝑀𝑀𝐶𝐶𝐷𝐷𝐹𝐹 ≤ 𝑁𝑁 𝐺𝐺𝑀𝑀𝐶𝐶𝐷𝐷𝐶𝐶𝐹𝐹            (6) 

where 𝑁𝑁  𝐺𝐺𝑀𝑀𝐶𝐶𝐷𝐷𝐹𝐹  and 𝑁𝑁 𝐺𝐺𝑀𝑀𝐶𝐶𝐷𝐷𝐶𝐶𝐹𝐹  represent the optimal flows on 𝑁𝑁  and 𝑁𝑁  respectively. 

Using Lemma 1, the GMSCF in  𝑁𝑁𝑇𝑇 and GMCDCF in 𝑁𝑁 has the following relation 

𝑁𝑁 𝐺𝐺𝑀𝑀𝐶𝐶𝐷𝐷𝐶𝐶𝐹𝐹 ≤ 𝑁𝑁𝑇𝑇 𝐺𝐺𝑀𝑀𝑆𝑆𝐶𝐶𝐹𝐹             (7) 

As in [1, 24], the GMSCF in 𝑁𝑁𝑇𝑇  and GMSF in auxiliary 𝑁𝑁 𝑇𝑇  has the equivalent optimal outcome.  

𝑁𝑁𝑇𝑇 𝐺𝐺𝑆𝑆𝑀𝑀𝐶𝐶𝐹𝐹 ≡ 𝑁𝑁 𝑇𝑇 𝐺𝐺𝑀𝑀𝑆𝑆𝐹𝐹       (8) 

Since the holdover flow is not allowed, the data for 𝑁𝑁  are defined as follows. An auxiliary 
network of 𝑁𝑁𝑇𝑇 is 𝑁𝑁 𝑇𝑇 𝑉𝑉𝑇𝑇 𝐸𝐸 𝑇𝑇  . The node set remains unaltered but the arc set is defined as: 

𝐸𝐸 𝑇𝑇  𝑖𝑖 𝑗𝑗 𝑖𝑖𝑓𝑓 𝑖𝑖 𝑗𝑗 ∈ 𝐸𝐸𝑇𝑇
𝑗𝑗 𝑖𝑖 𝑜𝑜𝑡𝑡𝑕𝑕𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

  

Capacity function 𝑐𝑐𝐸𝐸 𝑇𝑇
𝜏𝜏  is define as, 𝑐𝑐𝐸𝐸 𝑇𝑇

𝜏𝜏  𝑒𝑒  𝑐𝑐𝐸𝐸𝑇𝑇
𝜏𝜏  𝑒𝑒 𝑐𝑐𝐸𝐸𝑇𝑇

𝜏𝜏 𝑒𝑒−   and the lost factor remains 

the same, 𝜆𝜆  𝑒𝑒  ≡ 𝑘𝑘𝜏𝜏 𝑒𝑒  𝑘𝑘 ∀𝑒𝑒 ∈ 𝐸𝐸 𝑇𝑇 . Moreover, the GMDF in network 𝑁𝑁   can be obtained 
by a temporally repeating chain flow of a generalized maximum flow in the time-expanded 
network  𝑁𝑁 𝑇𝑇 . 

𝑁𝑁  𝐺𝐺𝑀𝑀𝐷𝐷𝐹𝐹 𝑁𝑁 𝑇𝑇 𝐺𝐺𝑀𝑀𝑆𝑆𝐹𝐹       (9) 
 

Applying the natural transformation of [4] for the Equation (9) and using above equations, we get 

𝑁𝑁 𝐺𝐺𝑀𝑀𝐶𝐶𝐷𝐷𝐶𝐶𝐹𝐹 ≤ 𝑁𝑁  𝐺𝐺𝑀𝑀𝐶𝐶𝐷𝐷𝐹𝐹     (10) 
 

Combining inequalities (6) and (10) we have the optimum flow 𝑁𝑁 𝐺𝐺𝑀𝑀𝐶𝐶𝐷𝐷𝐶𝐶𝐹𝐹 𝑁𝑁  𝐺𝐺𝑀𝑀𝐶𝐶𝐷𝐷𝐹𝐹 . 
Corollary 1: The two terminal GMCDCF problem can be solved in pseudo-polynomial time. 

Proof: Steps 2 and 4 of Algorithm 1 are solved in linear time. A 𝑚𝑚𝑎𝑎𝑥𝑥𝑓𝑓𝑙𝑙𝑜𝑜𝑤𝑤 can be computed in 
𝑂𝑂 𝑛𝑛𝑚𝑚  time [15]. Thus, the time complexity of these steps is dominated by Step 3. The running 
time in Step3 is 𝑂𝑂 𝑚𝑚𝑎𝑎𝑥𝑥𝑓𝑓𝑙𝑙𝑜𝑜𝑤𝑤 𝑇𝑇 [8, 9]. According to [4] discrete flow can convert in to 
continuous flow in the same time complexity. So, the complexity of Algorithm 1 is 𝑂𝑂 𝑛𝑛𝑚𝑚 𝑇𝑇 . 
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Since, the complexity of maximum flow directly depends upon the time 𝑇𝑇, it is pseudo-
polynomial time. 

Example 1: Consider the network  in Fig. 1(a) to having a capacity, loss factor and transit 
times. Fig. 1(b) represents the corresponding auxiliary network. Fig. 1(c) represents the 
generalized continuous dynamic network and Fig. 1(d) gives the reconfigured network of 𝑁𝑁   with 
minimum loss. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: (a) Given lossy network 𝑵𝑵  (b) Auxiliary network 𝑵𝑵   (c) Contraflow reconfiguration towards 
sink (d) Minimum loss network of 𝑵𝑵  

We apply Algorithm 1 to compute GMCDCF through minimum loss path. In Fig. 1(c), let us 
consider the following successive shortest paths on 𝑁𝑁 : 

𝑃𝑃 𝑠𝑠 → 𝑖𝑖 → 𝑑𝑑 𝑤𝑤𝑖𝑖𝑡𝑡𝑕𝑕 𝜆𝜆 𝑃𝑃  Π𝑒𝑒∈𝑃𝑃 𝜆𝜆 𝑒𝑒  

𝑃𝑃 𝑠𝑠 → 𝑗𝑗 → 𝑑𝑑 𝑤𝑤𝑖𝑖𝑡𝑡𝑕𝑕 𝜆𝜆 𝑃𝑃  Π𝑒𝑒∈𝑃𝑃 𝜆𝜆 𝑒𝑒  

𝑃𝑃 𝑠𝑠 → 𝑖𝑖 → 𝑗𝑗 → 𝑑𝑑 𝑤𝑤𝑖𝑖𝑡𝑡𝑕𝑕 𝜆𝜆 𝑃𝑃  Π𝑒𝑒∈𝑃𝑃 𝜆𝜆 𝑒𝑒  

𝑃𝑃 𝑠𝑠 → 𝑗𝑗 → 𝑖𝑖 → 𝑑𝑑 𝑤𝑤𝑖𝑖𝑡𝑡𝑕𝑕 𝜆𝜆 𝑃𝑃  Π𝑒𝑒∈𝑃𝑃 𝜆𝜆 𝑒𝑒  
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Since 𝜆𝜆 𝑃𝑃  𝜆𝜆 𝑃𝑃  𝜆𝜆 𝑃𝑃  𝜆𝜆 𝑃𝑃   the path 𝑃𝑃 𝑠𝑠 → 𝑖𝑖 → 𝑗𝑗 → 𝑑𝑑  is the minimum loss path 
and path 𝑃𝑃 𝑠𝑠 → 𝑗𝑗 → 𝑖𝑖 → 𝑑𝑑   is the highest loss path according to the SSPA presented by Onaga 
[13, 14].  

Now the Fig. 2 (a) and (b) give the GMCDCF with respective to Fig. 1 (c) and (d). 

  

 

 

 

 

 

Fig. 2: Corresponding time-expanded network for Fig. 1(a) and (b) 

3.1 Maximum Continuous Earliest Arrival Contraflow Problem 

Earliest arrival flow ensures that the maximal number of evacuees is evacuated from the 
beginning of the process which is a most realistic approach to it. We define and solve Problem 2 
in this section.  

Problem 2: Given 𝑁𝑁  𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 the GCEACF problem computes the maximum 
flow that can be sent in every time period ≤ 𝜉𝜉 ≤ 𝑇𝑇  from  to  with arc reversal capability. 

Lemma 2: Any GMCDCF solution induced by Algorithm 1 has the earliest arrival property. 

Proof: Algorithm 1 gives an optimal solution of GMCDCF problem inducing temporally 
repeated flow on auxiliary network 𝑁𝑁 . However, authors [9] proved that the arrival pattern of 
GMDF without holdovers in intermediate nodes fulfills the earliest arrival property. Also, they 
decomposed the generalized flows into five types of elementary generalized flows on the basis of 
Onaga's optimality criterion [13]. The fact that the temporarily repeated GMCDCF obtained by 
this Algorithm has the earliest arrival flow property which is followed from the results of GEAF 
presented in [8, 9]. 

Corollary 2: The GMCDCF and GCEACF solutions are equivalent for two terminal lossy 
network. 

Theorem 2: An optimal GCEACF on 𝑁𝑁  𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇  can be obtained in pseudo-
polynomial time.  

64           Total input 
s 

i 

j 

d 

[0,1) [1,2) [2,3) [3,4) [4,5) [5,6) 

Total output  8 10 10 

64 32 64 32          Total input 
s 

i 

j 

d 

[0,1) [1,2) [2,3) [3,4) [4,5) [5,6) 

Total output  8 10 10+1 

64 32 64 32 96 

Gautam et al.



178

 

 
 

GCEACF problem on two terminal lossy network has the same arrival property of GMCDCF 
problem. So, the time complexity for the GMCEAF problem has to be the same. Theorem 1 has 
proven the time complexity for GMCDCF is pseudo-polynomial. 

4. Approximate Generalized Maximum Dynamic Contraflow 

There is no any polynomial time algorithm to approximate the GMCDF solution without 
contraflow. We propose an FPTAS that computes an approximate solution of GMCDCF problem 
in a continuous time setting. 

Theorem 3: [8, 9] There is neither a polynomial time algorithm nor a polynomial time 
approximation algorithm for the GMDF problem even on proportional gains, unless ℙ 𝑁𝑁𝑃𝑃. 

Problem 3: Given 𝑁𝑁  𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 and 𝜖𝜖 , does there exist an approximate 
GMCDCF solution with value at least within a factor − 𝜖𝜖  of an optimal GMCDCF solution 
within time 𝑇𝑇 if the direction of the arcs can be reversed at time zero? 

Algorithm 2 computes an approximate GMCDCF solution for Problem 3. It constructs an 
auxiliary network by contraflow configuration at time zero. In the configured network, capacity 
will increase but transit time and loss factor remain unaltered. Moreover, in Step 3, we use  
FPTAS [9, 8] to compute an approximate GMDF on auxiliary lossy network. Authors provide 
algorithms that have a running time polynomial in the input size of the problem and 𝜖𝜖−  and 
terminates after a polynomial number of iterations. In Step 4 we transferred the discrete dynamic 
flow into the continuous dynamic flow using natural transformation [4] in the same time 
complexity. There is no cycle with a positive flow in Step 3, thus Step 5 is well defined because 
the flow is either in are 𝑖𝑖 𝑗𝑗  or  𝑗𝑗 𝑖𝑖  only. 

Algorithm 2: Approximate GMCDCF on lossy network 

1. Given a lossy network 𝑁𝑁  𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 . 
2. Construct the auxiliary lossy network 𝑁𝑁  𝑉𝑉 𝐸𝐸 𝑐𝑐𝐸𝐸 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 ,   𝜖𝜖  
3. On 𝑁𝑁 , compute an approximate GMDF using an FPTAS of [9, 8]. 
4. Transform discrete dynamic flow into the continuous dynamic flow using the natural 

transformation:𝑓𝑓𝑑𝑑 𝑒𝑒 𝜎𝜎 𝑓𝑓 𝑒𝑒  𝜎𝜎 𝜎𝜎    for 𝜎𝜎 ∈  𝑇𝑇   [4]. 
5. Arc 𝑗𝑗 𝑖𝑖 ∈ 𝐴𝐴 is reversed, if and only if the flow along arc 𝑖𝑖 𝑗𝑗  is greater than c(i, j) or if 

there is a nonnegative flow along arc 𝑖𝑖 𝑗𝑗 ∉ 𝐴𝐴 and the resulting flow is GMCDCF with 
the arc reversals on 𝑁𝑁. 

 
First, we prove following lemma to prove the optimality of Algorithm 2. 

Lemma 3: For given 𝜖𝜖 and 𝑈𝑈 𝑚𝑚𝑎𝑎𝑥𝑥𝑒𝑒 ∈𝐸𝐸𝑏𝑏𝐸𝐸 𝑒𝑒 , let 𝑂𝑂𝑃𝑃𝑇𝑇 be the value of an optimal 
solution to the GMCDCF problem on 𝑁𝑁 . Algorithm 2 obtains a GMCDCF solution of value at 
least 𝑂𝑂𝑃𝑃𝑇𝑇 − 𝜖𝜖, after all paths of length≤ 𝜏𝜏∗ where,  

Generalized Dynamic Flow on Lossy Network



179

 

 
 

GCEACF problem on two terminal lossy network has the same arrival property of GMCDCF 
problem. So, the time complexity for the GMCEAF problem has to be the same. Theorem 1 has 
proven the time complexity for GMCDCF is pseudo-polynomial. 

4. Approximate Generalized Maximum Dynamic Contraflow 

There is no any polynomial time algorithm to approximate the GMCDF solution without 
contraflow. We propose an FPTAS that computes an approximate solution of GMCDCF problem 
in a continuous time setting. 

Theorem 3: [8, 9] There is neither a polynomial time algorithm nor a polynomial time 
approximation algorithm for the GMDF problem even on proportional gains, unless ℙ 𝑁𝑁𝑃𝑃. 

Problem 3: Given 𝑁𝑁  𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 and 𝜖𝜖 , does there exist an approximate 
GMCDCF solution with value at least within a factor − 𝜖𝜖  of an optimal GMCDCF solution 
within time 𝑇𝑇 if the direction of the arcs can be reversed at time zero? 

Algorithm 2 computes an approximate GMCDCF solution for Problem 3. It constructs an 
auxiliary network by contraflow configuration at time zero. In the configured network, capacity 
will increase but transit time and loss factor remain unaltered. Moreover, in Step 3, we use  
FPTAS [9, 8] to compute an approximate GMDF on auxiliary lossy network. Authors provide 
algorithms that have a running time polynomial in the input size of the problem and 𝜖𝜖−  and 
terminates after a polynomial number of iterations. In Step 4 we transferred the discrete dynamic 
flow into the continuous dynamic flow using natural transformation [4] in the same time 
complexity. There is no cycle with a positive flow in Step 3, thus Step 5 is well defined because 
the flow is either in are 𝑖𝑖 𝑗𝑗  or  𝑗𝑗 𝑖𝑖  only. 

Algorithm 2: Approximate GMCDCF on lossy network 

1. Given a lossy network 𝑁𝑁  𝑉𝑉 𝐴𝐴 𝑐𝑐 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 . 
2. Construct the auxiliary lossy network 𝑁𝑁  𝑉𝑉 𝐸𝐸 𝑐𝑐𝐸𝐸 𝜆𝜆 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 ,   𝜖𝜖  
3. On 𝑁𝑁 , compute an approximate GMDF using an FPTAS of [9, 8]. 
4. Transform discrete dynamic flow into the continuous dynamic flow using the natural 

transformation:𝑓𝑓𝑑𝑑 𝑒𝑒 𝜎𝜎 𝑓𝑓 𝑒𝑒  𝜎𝜎 𝜎𝜎    for 𝜎𝜎 ∈  𝑇𝑇   [4]. 
5. Arc 𝑗𝑗 𝑖𝑖 ∈ 𝐴𝐴 is reversed, if and only if the flow along arc 𝑖𝑖 𝑗𝑗  is greater than c(i, j) or if 

there is a nonnegative flow along arc 𝑖𝑖 𝑗𝑗 ∉ 𝐴𝐴 and the resulting flow is GMCDCF with 
the arc reversals on 𝑁𝑁. 

 
First, we prove following lemma to prove the optimality of Algorithm 2. 

Lemma 3: For given 𝜖𝜖 and 𝑈𝑈 𝑚𝑚𝑎𝑎𝑥𝑥𝑒𝑒 ∈𝐸𝐸𝑏𝑏𝐸𝐸 𝑒𝑒 , let 𝑂𝑂𝑃𝑃𝑇𝑇 be the value of an optimal 
solution to the GMCDCF problem on 𝑁𝑁 . Algorithm 2 obtains a GMCDCF solution of value at 
least 𝑂𝑂𝑃𝑃𝑇𝑇 − 𝜖𝜖, after all paths of length≤ 𝜏𝜏∗ where,  

 

 
 

𝜏𝜏∗ −𝑘𝑘 𝑙𝑙𝑜𝑜𝑔𝑔 𝜖𝜖 𝑙𝑙𝑜𝑜𝑔𝑔𝑚𝑚 𝑙𝑙𝑜𝑜𝑔𝑔𝑈𝑈 𝑙𝑙𝑜𝑜𝑔𝑔𝑇𝑇  

Proof: We compute an 𝑂𝑂𝑃𝑃𝑇𝑇 solution for GMCDCF problem using our Algorithm 2 on two 
terminal network 𝑁𝑁   . Let  𝑖𝑖 𝑖𝑖  ∈ 𝑇𝑇  be the subinterval and 𝑎𝑎𝑖𝑖  be the amount of the flow 
sent into a path of length 𝑖𝑖. According to the natural transformation of [4] total flow amount 𝑎𝑎𝑖𝑖  
on  𝑖𝑖 𝑖𝑖   is same with discrete transit time 𝑖𝑖 (path of length 𝑖𝑖) in the time step 𝜎𝜎 ∈ 𝑇𝑇 − 𝑖𝑖  
or 𝜎𝜎 ∈ … 𝑇𝑇 − 𝑖𝑖 − . Numerically: 𝑓𝑓 𝑒𝑒 𝑖𝑖 𝑖𝑖 𝑓𝑓𝑑𝑑 𝑒𝑒 𝑖𝑖 . According to the 
assumption the length of paths are monotonically increasing and there is no holdover. Therefore, 
the loss factor is 𝑘𝑘 𝑖𝑖and the flow is sent into a path of length 𝑖𝑖 for 𝑇𝑇 − 𝑖𝑖 𝑇𝑇 − 𝑖𝑖  interval. 
Suppose we have all paths of length ≤ 𝑖𝑖 are found. Then, there remains only the path of length 
𝑖𝑖 𝑇𝑇 intact. Now, the total flow reaches to the sink using the remaining paths that equals 

 𝑎𝑎𝜔𝜔 𝑘𝑘𝜔𝜔  𝑇𝑇 − 𝜔𝜔 𝑑𝑑𝜔𝜔
𝑇𝑇

𝜔𝜔 𝑖𝑖
 

For 𝑘𝑘 , we have  𝑘𝑘 𝑖𝑖  … 𝑘𝑘 𝑇𝑇  𝑘𝑘 𝑖𝑖 . Furthermore, it is clear that 𝑇𝑇 − 𝜔𝜔 𝑇𝑇. 
The total flow sent into the paths in one-time step is bounded by 𝑚𝑚 𝑈𝑈  This gives 

 𝑎𝑎𝜔𝜔 𝑘𝑘𝜔𝜔  𝑇𝑇 − 𝜔𝜔 𝑑𝑑𝜔𝜔 ≤
𝑇𝑇

𝜔𝜔 𝑖𝑖
 𝑎𝑎𝜔𝜔 𝑘𝑘 𝑖𝑖  𝑇𝑇𝑑𝑑𝜔𝜔 ≤ 𝑚𝑚 𝑈𝑈 𝑘𝑘 𝑖𝑖 𝑇𝑇
𝑇𝑇

𝜔𝜔 𝑖𝑖
 

If we set 𝑖𝑖 − 𝑘𝑘  𝑙𝑙𝑜𝑜𝑔𝑔 𝜖𝜖 𝑙𝑙𝑜𝑜𝑔𝑔𝑚𝑚 𝑙𝑙𝑜𝑜𝑔𝑔𝑈𝑈 𝑙𝑙𝑜𝑜𝑔𝑔𝑇𝑇 −  then we get right hand side that 

equals 𝜖𝜖.  

Lemma 4: For given 𝜖𝜖 and 𝑈𝑈 𝑚𝑚𝑎𝑎𝑥𝑥𝑒𝑒 ∈𝐸𝐸𝑏𝑏𝐸𝐸 𝑒𝑒 , let 𝑂𝑂𝑃𝑃𝑇𝑇 be the value of an optimal 
solution to the GMCDCF problem on 𝑁𝑁 . Then Algorithm 2 obtains a GMCDCF solution of value 
at least − 𝜖𝜖 𝑂𝑂𝑃𝑃𝑇𝑇  after 𝜏𝜏∗-iterations where, 

𝜏𝜏∗ −𝑘𝑘  𝑙𝑙𝑜𝑜𝑔𝑔 𝜖𝜖 𝑙𝑙𝑜𝑜𝑔𝑔𝑚𝑚 𝑙𝑙𝑜𝑜𝑔𝑔𝑈𝑈 𝑙𝑙𝑜𝑜𝑔𝑔𝑇𝑇   

Proof: Using the argument and notation of Lemma 3, let 𝑖𝑖  be the length of the paths in the first 
iteration. We furthermore assume that the lossy network has the minimum capacity 1, so that at 
least 𝑘𝑘𝑖𝑖 flow is sent in the first iteration. The problem is to find 𝜏𝜏∗ such that the flow amount 
reached to the sink by later iterations is ≤ 𝜖𝜖 𝑂𝑂𝑃𝑃𝑇𝑇. Then we obtain 

 𝑎𝑎𝜔𝜔 𝑘𝑘𝜔𝜔  𝑇𝑇 − 𝜔𝜔 𝑑𝑑𝜔𝜔 ≤
𝑇𝑇

𝜔𝜔 𝑖𝑖 𝜏𝜏∗
𝑚𝑚 𝑈𝑈 𝑘𝑘 𝑖𝑖 𝜏𝜏∗ 𝑇𝑇 ≤ 𝜖𝜖 𝑘𝑘𝑖𝑖 ≤ 𝜖𝜖 𝑂𝑂𝑃𝑃𝑇𝑇

Now, from the above inequality, we can write, 
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𝑚𝑚 𝑈𝑈 𝑘𝑘𝜏𝜏∗ 𝑇𝑇 ≤ 𝜖𝜖 ⇔ 𝜏𝜏∗ ≥ −𝑘𝑘  𝑙𝑙𝑜𝑜𝑔𝑔 𝜖𝜖 𝑙𝑙𝑜𝑜𝑔𝑔𝑚𝑚 𝑙𝑙𝑜𝑜𝑔𝑔𝑈𝑈 𝑙𝑙𝑜𝑜𝑔𝑔𝑇𝑇   

Based on these premises, the lemma is concluded.  

Theorem 4: Algorithm 2 solves the approximate GMCDCF problem optimally. 

Proof: We reverse the directions of arcs from sources to sinks in Step 2. According to contraflow 
configuration, transit time and unaltered loss factor do not influence the feasibility. So that Step 2 
is feasible. As the FPTAS introduced by [9, 8] is feasible, Step 3 is also feasible. In Step 3, there 
is no any cycle with a positive flow so that flow in Step 5 is either along arc 𝑖𝑖 𝑗𝑗  or 𝑗𝑗 𝑖𝑖  but 
never in both directions. Thus, Step 5 is also feasible. In Step 4,  𝑇𝑇 -horizon feasible maximum 
discrete dynamic flow is converted into 𝑇𝑇-horizon feasible maximum continuous dynamic flow 
by natural transformation [4]. So, Step 4 is also feasible. Thus, Algorithm 2 is feasible.  

 For the optimality of the Algorithm 2, based on the feasibility condition, every feasible 
approximate GMDF in the auxiliary network 𝑁𝑁   is feasible to the approximate GMDCF solution 
of the network 𝑁𝑁. Also every feasible discrete dynamic flow and continuous dynamic flow has 
the same time complexity with equivalent output [4]. The amount of flow obtained in Step 3 
cannot be changed in Step 4, the resulting flow is an optimal solution to the approximate 
GMDCF. Thus, the approximate GMCDF solution in 𝑁𝑁  is equal to the approximate GMCDCF 
solution on 𝑁𝑁   

Corollary 4: For given 𝜖𝜖 , 𝑈𝑈 𝑚𝑚𝑎𝑎𝑥𝑥𝑒𝑒 ∈𝐸𝐸𝑏𝑏𝐸𝐸 𝑒𝑒  and 𝑘𝑘 on 𝑁𝑁, Algorithm 2 solves the 
approximate GMCDCF problem in 𝑂𝑂 𝑚𝑚𝑎𝑎𝑥𝑥𝑓𝑓𝑙𝑙𝑜𝑜𝑤𝑤 𝑙𝑙𝑜𝑜𝑔𝑔𝜖𝜖− 𝑙𝑙𝑜𝑜𝑔𝑔𝑈𝑈 𝑙𝑙𝑜𝑜𝑔𝑔𝑇𝑇 ) time. 

5. Conclusion 

Flow models with flow conservation constraints may not address the real flow phenomena in 
some practical scenarios. The generalization of flow models with loss factor attached is 
proximate to reflect and resolve the real world situation more accurately. The continuous time 
approach gives more accurate results in spite of the higher computational complexity. Naturally, 
the nonexistence of integrality in solution makes the computation more challenging. In this 
paper, we study the GMCDCF and GCEACF problems and also provide the algorithms of 
pseudo-polynomial time complexity. While the generalized maximum flow containing loss factor 
and transit time simultaneously on each arc cannot be solved in polynomial time, unless 𝑃𝑃  NP 
holds, we have presented an FPTAS for the special case of a lossy network with proportional loss 
factors. To the best of our knowledge, these problems in a continuous time setting are introduced 
and solved for the first time.  
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