A Note on Full-Rank Factorization of Matrix

Gyan Bahadur Thapa ${ }^{1}$, J. López-Bonilla ${ }^{2}$, R. López-Vázquez ${ }^{2}$
${ }^{1}$ Department of Applied Sciences, Pulchowk Campus, Institute of Engineering Tribhuvan University, Kathmandu, Nepal
${ }^{2}$ ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México; Corresponding author: jlopezb@ipn.mx

Received: Dec 10, 2018
Revised: April 27, 2019
Accepted: May 5, 2019

Abstract

We exhibit that the Singular Value Decomposition of a matrix $A_{n x m}$ implies a natural full-rank factorization of the matrix A.

Keywords: Full-rank factorization, singular value decomposition, factorization of matrices

1. Introduction

Let's consider a matrix $A_{n x m}$ such that rank $A=p$, then its full-rank factorization means the existence of matrices $F_{n x p}$ and $G_{p x m}$ with the properties [1]:

$$
\begin{equation*}
A=F G, \quad \operatorname{rank} F=\operatorname{rank} G=p ; \tag{1}
\end{equation*}
$$

then in Section 2, we show that the Singular Value Decomposition (SVD) [3, 4, 6, 7, 8, 9, 10, 12] gives a natural full-rank factorization of A :

$$
\begin{equation*}
A_{n x m}=U_{n x p} W_{p x m}, \quad \operatorname{Col} A=\operatorname{Col} U \quad \& \quad \text { Row } A=\operatorname{Row} W . \tag{2}
\end{equation*}
$$

2. SVD and Full-rank Factorization

For any real matrix $A_{n x m}$, Lanczos $[9,10]$ introduces the Jordan matrix $[5,11,13]$:

$$
S_{(n+m) x(n+m)}=\left(\begin{array}{cc}
0 & A \tag{3}\\
A^{T} & 0
\end{array}\right),
$$

and he studies the eigenvalue problem:

$$
\begin{equation*}
S \vec{\omega}=\lambda \vec{\omega}, \tag{4}
\end{equation*}
$$

where the proper values are real because S is a real symmetric matrix. Besides:

$$
\begin{equation*}
\operatorname{rank} A \equiv p=\text { Number of positive eigenvalues of } S \tag{5}
\end{equation*}
$$

such that $1 \leq p \leq \min (n, m)$. Then the singular values or canonical multipliers follow the scheme:

$$
\begin{equation*}
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p},-\lambda_{1},-\lambda_{2}, \ldots,-\lambda_{p}, 0,0, \ldots, 0 \tag{6}
\end{equation*}
$$

that is, $\lambda=0$ has the multiplicity $n+m-2 p$. Only in the case $p=n=m$ can occur the absence of the null eigenvalue.

The proper vectors of S, named 'essential axes' by Lanczos, can be written in the form:

$$
\begin{equation*}
\vec{\omega}_{(n+m) x 1}=\binom{\vec{u}}{\vec{v}}_{m}^{n}, \tag{7}
\end{equation*}
$$

then (3) and (4) imply the Modified Eigenvalue Problem:

$$
\begin{equation*}
A_{n x m} \vec{v}_{m x 1}=\lambda \vec{u}_{n x 1}, \quad A_{m x n}^{T} \vec{u}_{n x 1}=\lambda \vec{v}_{m x 1} \tag{8}
\end{equation*}
$$

hence:

$$
\begin{equation*}
A^{T} A \vec{v}=\lambda^{2} \vec{v}, \quad A A^{T} \vec{u}=\lambda^{2} \vec{u} \tag{9}
\end{equation*}
$$

with special interest in the associated independent vectors with the positive eigenvalues because they permit to introduce the matrices:

$$
\begin{equation*}
U_{n x p}=\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right), \quad V_{m x p}=\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right) \tag{10}
\end{equation*}
$$

verifying $U^{T} U=V^{T} V=I_{p x p}$ because:

$$
\begin{equation*}
\vec{u}_{j} \cdot \vec{u}_{k}=\vec{v}_{j} \cdot \vec{v}_{k}=\delta_{j k} \tag{11}
\end{equation*}
$$

therefore $\vec{\omega}_{j} \cdot \vec{\omega}_{k}=2 \delta_{j k}, j, k=1,2, \ldots, p$. Thus, the SVD express $[7,8,9,10,14]$ that A is the product of three matrices:

$$
\begin{equation*}
A_{n x m}=U_{n x p} \Lambda_{p x p} V_{p x m}^{T}, \quad \Lambda=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right) . \tag{12}
\end{equation*}
$$

This relation tells that in the construction of A we do not need information about the null proper value; the information from $\lambda=0$ is important to study the existence and uniqueness of the solutions for a linear system associated to A.

The expression (12) is a natural full-rank factorization of A because it has the structure (2) with $U_{n x p}$ given by (10) and:

$$
W_{p x m}=\Lambda_{p x p} V_{p x m}^{T}=\left(\begin{array}{c}
\lambda_{1} \vec{v}_{1}^{T} \tag{13}\\
\vdots \\
\lambda_{p} \vec{v}_{p}^{T}
\end{array}\right)
$$

then it is clear that $\operatorname{Col} U=\operatorname{Col} A \& R \operatorname{Row} W=\operatorname{Row} V^{T}=\operatorname{Col} V=\operatorname{Row} A$, in according with (2), therefore the columns of A are all linear combinations of the columns of U, and the rows of A are all linear combinations of the rows of W. In [2], there is the factorization of (1) for the particular case $n=m$ and $p<n$, that is, for singular square matrices.

3. Conclusion

Our approach shows that the Singular Value Decomposition gives a natural full-rank factorization for an arbitrary matrix, which is useful to determine the Moore-Penrose pseudoinverse [1, 10, 14].

References

[1] Ben-Israel A and Greville TNE (2003), Generalized inverses: Theory and applications, Springer, New York, USA.
[2] Frazer RA, Duncan WJ and Collar AR (1963), Elementary matrices and some applications to dynamics and differential equations, Cambridge University Press.
[3] Gaftoi V, López-Bonilla J and Ovando G (2007), Singular value decomposition and Lanczos potential, in "Current topics in quantum field theory research", Ed. O. Kovras, Nova Science Pub., New York, Chap. 10, 313-316.
[4] Guerrero-Moreno I, López-Bonilla J and Rosales-Roldán L (2012), SVD applied to Dirac super matrix, The SciTech, J. Sci. \& Tech. (India), Special Issue, 111-114.
[5] Jordan C (1874), Mémoire sur les forms bilinéaires, J. de Mathématiques Pures et Appliquées, Deuxiéme Série, 19: 35-54.
[6] Kalman D (1996), A singularly valuable decomposition: The SVD of a matrix, The College Mathematics Journal, 27: 2-23.
[7] Lanczos C (1958), Linear systems in self-adjoint form, Am. Math. Monthly, 65(9): 665-679.
[8] Lanczos C (1960), Extended boundary value problems, Proc. Int. Congr. Math. Edinburgh1958, Cambridge University Press, 154-181.
[9] Lanczos C (1966), Boundary value problems and orthogonal expansions, SIAM J. Appl. Math., 14(4): 831-863.
[10] Lanczos C (1997), Linear differential operators, Dover, New York, USA.
[11] Ruhe A (1998), Commentary on Lanczos 'Linear systems in self-adjoint form', Cornelius Lanczos Collected Published Papers. Vol. V, North Carolina State University, North Carolina, USA, 213.
[12] Schwerdtfeger H (1960), Direct proof of Lanczos decomposition theorem, Am. Math. Monthly, 67(9): 855-860.
[13] Stewart GW and Sun J (1990), Matrix perturbation theory, Academic Press, San Diego.
[14] Thapa GB, Lam-Estrada P and López-Bonilla J (2018), On the Moore-Penrose generalized inverse matrix, World Scientific News, 95: 100-110.

