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Abstract: In this paper, we analyze how the behavior of a chaotic dynamical system 
changes when we couple it with another. We focus our attention on two aspects: the 
possibility of chaos suppression and the possibility of synchronization. We consider a 
Symmetric Linear Coupling and several free dynamics. For each of them we study the 
evolution of the coupling behavior with the coupling strength constant, defining 
windows of behavior. We extend the analysis to some other couplings. This is a survey 
paper. 
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1. Introduction 

In our world, there is nothing isolated, whether it be an atom or a constellation, a person or a 
computer, information or matter, a cell or a tornado. The existence of interaction between 
dynamical systems can substantially alter certain characteristics of their behavior, so the study of 
the coupling of dynamical systems is particularly relevant. Two issues are particularly important: 
the possibility of the chaotic behavior of a dynamical system be suppressed when the dynamical 
system is coupled to another and the possibility of synchronization [10] between the two systems. 
The study of couplings, in addition to making it possible to identify and clarify some of the main 
issues arising from "not-being-alone", opens the door to the analysis of the immense world of 
networks.  

For the study of behaviors, we use an analytical approach and also a numerical approach. In 
Section 2, we expose some generalities regarding dynamical systems relevant to the foray into 
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dynamical systems can substantially alter certain characteristics of their behavior, so the study of 
the coupling of dynamical systems is particularly relevant. Two issues are particularly important: 
the possibility of the chaotic behavior of a dynamical system be suppressed when the dynamical 
system is coupled to another and the possibility of synchronization [10] between the two systems. 
The study of couplings, in addition to making it possible to identify and clarify some of the main 
issues arising from "not-being-alone", opens the door to the analysis of the immense world of 
networks.  

For the study of behaviors, we use an analytical approach and also a numerical approach. In 
Section 2, we expose some generalities regarding dynamical systems relevant to the foray into 

the suppression of chaos and synchronization that we make in the following section. With regard 
to these generalities, we present the dynamics we use to exemplify the results we obtain 
throughout the work. Bearing in mind that we want the emphasis to be placed on the clarification 
of questions that the existence of a coupling can cause and since such questions are to a large 
extent independent of certain characteristics of the chaotic dynamical systems that we use, we 
have chosen to consider only discrete, one-dimensional and autonomous dynamical systems. 
Most of the issues raised can all the same be treated using the type of coupling that the literature 
most often uses and which we refer to as the Symmetric Linear Coupling [3, 5, 7, 9, 12, 11]. In 
Section 3, Symmetrical Linear Coupling is defined and analyzed suppression of chaos and 
synchronization that may result from this coupling [8]. We also extend them to some other 
couplings. 
 
2. Chaotic Dynamical Systems 
2.1. Dynamical Systems 

Consider a dynamical system (𝑥𝑥, 𝑇𝑇, 𝑀𝑀), with 𝑥𝑥: 𝑇𝑇 × 𝑀𝑀 → 𝑀𝑀. This system is said to be discrete 
when 𝑇𝑇 = IN, i.e. when the evolution parameter 𝑡𝑡 is a natural number. The fact that a dynamical 
system is one-dimensional means the phase space 𝑀𝑀 is the set of real numbers or a subset of it, 𝐼𝐼, 
the iteration set. We will consider only autonomous dynamical systems, i.e. dynamical systems 
whose description of evolution does not involve explicit dependence on the parameter 𝑡𝑡. Such 
dynamical systems can be described by applications, i. e. by functions 𝑓𝑓: 𝐼𝐼 → 𝐼𝐼, since the set of 
all iterations x(𝑡𝑡), with 𝑡𝑡 ∈ IN, corresponding to an initial iteration 𝑥𝑥0, can be given by the 
solution of the differences equation 

           (2.1) 

It is said that two dynamical systems are identical if they are described by the same application. 
Establishing connections between 𝑁𝑁 one-dimensional dynamical systems, 𝑥𝑥1, 𝑥𝑥2, ..., 𝑥𝑥𝑁𝑁, i.e. 
creating a network of one-dimensional dynamical systems, gives rise to a dynamical system with 
𝑀𝑀 = 𝐼𝐼𝑁𝑁 described by a function 𝑓𝑓 𝐼𝐼𝑁𝑁 → 𝐼𝐼𝑁𝑁  

            (2.2) 

The coupling of two one-dimensional dynamical systems corresponds to the particular situation 
where 𝑁𝑁 = 2. The set of all iterations associated with an initial iteration 𝑥𝑥  defines a trajectory 
that is designated by (𝑥𝑥 𝑥𝑥   𝑥𝑥   … 𝑥𝑥  𝑡𝑡 …), or, more abbreviated, by (𝑥𝑥  𝑡𝑡 ). Some initial 

iterations 𝑥𝑥 , namely the solutions of 𝑥𝑥 𝑓𝑓 𝑛𝑛          𝑥𝑥 , with 𝑓𝑓 𝑛𝑛          𝑓𝑓 • 𝑓𝑓 • … • 𝑓𝑓  (𝑛𝑛 ∈ IN times), 
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give rise to trajectories that verify equality 𝑥𝑥    𝑡𝑡 𝑛𝑛 𝑥𝑥  𝑡𝑡 , ∀𝑡𝑡∈ IN. These trajectories are called 
periodic and are completely described by the enumeration of 𝑛𝑛 first iterations, 
(𝑥𝑥 𝑥𝑥   𝑥𝑥   … 𝑥𝑥  𝑛𝑛 −  ). The case where 𝑛𝑛  corresponds to the fixed-point situation, 
𝑥𝑥  𝑡𝑡 𝑥𝑥 . If initial iterates near a certain trajectory (𝑠𝑠 (t)) give rise to trajectories that, for 𝑡𝑡 large 
enough, approximate to (𝑠𝑠 (t)) as much as we want, then (𝑠𝑠 (t)) is said to be an attractive 
trajectory. An exponentially stable solution of 𝑥𝑥  𝑡𝑡  𝑓𝑓 𝑥𝑥  𝑡𝑡  is an attractive trajectory. 

Definition 1: It is said that (𝑠𝑠 (t)) is an exponentially stable solution (or trajectory) of 𝑥𝑥  𝑡𝑡
 𝑓𝑓 𝑥𝑥  𝑡𝑡  if there exist 𝑎𝑎, 𝑏𝑏, δ, ∈ R+ such that, if ||𝑥𝑥   − 𝑠𝑠   <δ, then 

 

Definition 2: The basin of attraction of a solution (𝑠𝑠 (t)) exponentially stable solution of 𝑥𝑥  𝑡𝑡
𝑓𝑓 𝑥𝑥𝑡𝑡  is the set of initial iterates 𝑥𝑥  for which 𝑡𝑡→+∞ 𝑥𝑥 𝑡𝑡− 𝑠𝑠 𝑡𝑡 =0. The immediate 

attraction basin of (𝑠𝑠 (t)) is the subset of the attraction basin for which all the separated parts 
that compose it comprise at least an iteration 𝑠𝑠 (t). 

2.2. Chaotic Behavior 

When a trajectory does not approach a periodic one, we can be dealing with a dynamical system 
with chaotic behavior. The study of chaos is relatively recent, so there are still several alternative 
definitions of chaotic behavior, not all equivalent [1], [2], [6]. In 1989, Devaney defined that a 
dynamical system 𝑥𝑥  described by the application 𝑓𝑓    𝐼𝐼𝑁𝑁 → 𝐼𝐼𝑁𝑁 has chaotic behavior if there exists a 
set 𝐾𝐾 ⊂ 𝐼𝐼𝑁𝑁 such that 𝑓𝑓  satisfies the following conditions [4]: 1-- 𝑓𝑓  has sensitive dependence on 
the initial iterate, i.e. there exists a δ> 0 such which, for any 𝑥𝑥  ∈ 𝐾𝐾 and any neighborhood of it, 
there is a 𝑥𝑥  in that neighborhood and a value 𝑡𝑡 ∈ IN such that ||𝑥𝑥 𝑡𝑡 𝑥𝑥   )- 𝑥𝑥 𝑡𝑡 𝑥𝑥   )||> δ. 2 - the 
set of periodic trajectories is dense in 𝐾𝐾 3 - 𝑓𝑓  is topologically transitive in 𝐾𝐾, i.e. for each pair of 
open sets 𝑈𝑈, 𝑉𝑉 ⊂ 𝐾𝐾 there exists a 𝑡𝑡 ∈ IN such that 𝑥𝑥 (t,U)∩ 𝑉𝑉 ≠ ∅. It is common to all definitions 
of chaotic behavior, the notion that such a behavior determines a sensitive dependence on the 
initial iteration, which entails a "spreading" of trajectories. This dependence can be quantified by 
the Lyapunov exponents that account for the increase of the distance between neighboring 
trajectories. Since we are considering one-dimensional dynamical systems, when these systems 
are described by sectionally differentiable maps, the expression of their unique Lypaunov 
exponent can be reduced to 

𝜇𝜇
𝑇𝑇→ ∞ 𝑇𝑇 𝑓𝑓  𝑥𝑥 𝑡𝑡  

𝑇𝑇−

𝑡𝑡
 

                                                                    
(2.3) 

A dynamical system with a positive Lyapunov exponent has a sensitive dependence on the initial 
iteration. In fact, if the iteration set is limited, the "spreading" of the trajectories that a positive 
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(2.3) 

A dynamical system with a positive Lyapunov exponent has a sensitive dependence on the initial 
iteration. In fact, if the iteration set is limited, the "spreading" of the trajectories that a positive 

Lyapunov exponent determines, imposes a behavior that we identify as being chaotic. In this 
paper we use a limited iteration set, so we adopted the following definition of chaotic behavior.  

Definition 3: If 𝐼𝐼𝑁𝑁 ⊂ IR𝑁𝑁 is a limited set, it is said that a dynamical system 𝑥𝑥   described by 𝑓𝑓 : 𝐼𝐼𝑁𝑁 
→ 𝐼𝐼𝑁𝑁 has a chaotic behavior if at least one of its Lyapunov exponents is positive. In these 
circumstances it is also said that 𝑓𝑓  is a chaotic map. 

The maps that we use in the following section are unidimensional continuous maps, with 
iteration interval 𝐼𝐼 = [0, 1] and that present chaotic behavior, namely the ones we call tent, 
logistic, saw and cubic maps. 

(i) The tent map, is defined by,  

𝑓𝑓𝑇𝑇 𝑢𝑢  
𝑢𝑢 𝑢𝑢 ∈

− 𝑢𝑢 𝑢𝑢 ∈
  

                                                                     
(2.4) 

It has chaotic behavior, since its value of Lyapunov exponent is μ𝑇𝑇= ln 2. 

(ii) If we take the polynomial interpolation obtained using the extreme points of the graph of 𝑓𝑓𝑇𝑇 - 
the points (0, 0), ( , 1), (1, 0) - as nodes, we obtain: 

𝑓𝑓𝐿𝐿 𝑢𝑢 𝑢𝑢 − 𝑢𝑢                                                                   (2.5) 

It is the logistic map, 𝑓𝑓 (𝑢𝑢) = 𝑟𝑟𝑢𝑢 (1 - 𝑢𝑢), with 𝑟𝑟 = 4. 

Since 𝑓𝑓𝐿𝐿∘𝑕𝑕 = 𝑕𝑕𝑕𝑓𝑓𝑇𝑇, with  𝑕𝑕 𝑢𝑢 𝑠𝑠𝑒𝑒𝑛𝑛  𝜋𝜋𝑢𝑢  , the maps 𝑓𝑓𝑇𝑇 and 𝑓𝑓𝐿𝐿 are topologically conjugated. 

That determines that 𝑓𝑓𝐿𝐿 and 𝑓𝑓𝑇𝑇 have the same Lyapunov exponent. So, the logistic map also has 
chaotic behavior. 

Considering that 𝑓𝑓𝑇𝑇 and 𝑓𝑓𝐿𝐿 are both unimodal maps, we also wanted to use other maps that are 
not unimodal ones. We chose two that are related to each other in the same way as 𝑓𝑓𝑇𝑇 and 𝑓𝑓𝐿𝐿 are, 
i.e. the saw map, 𝑓𝑓𝑆𝑆  is a sectional linear, continuous map, such as 𝑓𝑓𝑇𝑇, and the cubic map, 𝑓𝑓𝐶𝐶  is 
the polynomial interpolation that is obtained using the extreme points of 𝑓𝑓𝑆𝑆 as nodes. 

(iii) Let us define the saw map, fS, a map with 𝑓𝑓𝑆𝑆 (1)=1 and such that the image of the referred 
polynomial interpolation is contained in I, i.e. 𝑓𝑓𝐶𝐶 𝐼𝐼 ⊂ 𝐼𝐼, by: 

𝑓𝑓𝑆𝑆 𝑢𝑢  
𝑢𝑢 𝑢𝑢 ∈ 𝑢𝑢

− 𝑢𝑢 𝑢𝑢 ∈  𝑢𝑢 𝑢𝑢  
𝑢𝑢 − 𝑢𝑢 ∈  𝑢𝑢  

  
                                                                       

(2.6) 
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with 𝑢𝑢1 =  and 𝑢𝑢2  = . The exponent of Lyapunov of 𝑓𝑓 is μ𝑆𝑆 = ln 2.4, a positive value, 
corresponding to the desired chaotic behavior. 

(iv So, we define the cubic map by,  

𝑓𝑓𝐶𝐶 𝑢𝑢 
𝑢𝑢 𝑢𝑢 − 𝑢𝑢 𝑢𝑢 −

𝑢𝑢 𝑢𝑢 − 𝑢𝑢 𝑢𝑢 −
𝑢𝑢 𝑢𝑢 − 𝑢𝑢 𝑢𝑢 −

𝑢𝑢 𝑢𝑢 − 𝑢𝑢 𝑢𝑢 −
𝑢𝑢 𝑢𝑢 − 𝑢𝑢 𝑢𝑢 − 𝑢𝑢

− 𝑢𝑢 − 𝑢𝑢  

(2.7) 

Calculating numerically the Lyapunov exponent of 𝑓𝑓𝐶𝐶, using an initial random condition and  
iterates, we obtain μ𝐶𝐶 ≃ 0.715, a positive value to which also corresponds the intended chaotic 
behavior of 𝑓𝑓𝐶𝐶. These maps have the following graphs: 

 
 

 Fig. 1: Graphics of the tent, logistic, saw and cubic maps  

3. Chaotic Dynamical System Couplings 

We analyze in this section the coupling of discrete, unidimensional and autonomous dynamical 
systems with chaotic behavior. This coupling can be defined by 

 𝑥𝑥
 𝑡𝑡  𝑓𝑓 𝑥𝑥 𝑡𝑡  𝐹𝐹 𝑥𝑥 𝑡𝑡 𝑦𝑦 𝑡𝑡 𝑡𝑡

𝑦𝑦 𝑡𝑡  𝑔𝑔 𝑦𝑦 𝑡𝑡  𝐺𝐺 𝑥𝑥 𝑡𝑡 𝑦𝑦 𝑡𝑡 𝑡𝑡
  

                                                                (3.1) 

where 𝐹𝐹, 𝐺𝐺: R3 → R are the interaction functions, and the terms 𝐹𝐹(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡),𝑡𝑡) and 𝐺𝐺(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡),𝑡𝑡) 
give an account of the interaction which is established between the two dynamical systems. 
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Each choice of 𝐹𝐹 and 𝐺𝐺 corresponds to a different coupling. For its study it is useful to introduce 
a parameter, the coupling constant, that allows us to control, in a linear way, the extent of the 
interaction between the coupled dynamical systems: 

 𝑥𝑥
 𝑡𝑡  𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑐𝑐 𝐹𝐹 𝑥𝑥 𝑡𝑡 𝑦𝑦 𝑡𝑡 𝑡𝑡

𝑦𝑦 𝑡𝑡  𝑔𝑔 𝑦𝑦 𝑡𝑡  𝑐𝑐 𝐺𝐺 𝑥𝑥 𝑡𝑡 𝑦𝑦 𝑡𝑡 𝑡𝑡
  

                                                                (3.2) 

It can be considered, without loss of generality, that 𝑐𝑐 ∈ [0, 1]. 

Definition 4: We designate by coupling-𝑐𝑐0 (of the dynamic systems described by maps 𝑓𝑓 and 𝑔𝑔) 
the particularization of (3.2) corresponding to the coupling constant 𝑐𝑐0. 

Definition 5: We designate by coupling (of the dynamic systems described by maps 𝑓𝑓 and 𝑔𝑔), the 
set of all coupling-𝑐𝑐0 defined by (3.2) that a given choice of 𝐹𝐹 and 𝐺𝐺 determines. 

If the interactions are autonomous and decomposable in relation to each one of the dynamical 
systems 𝑥𝑥 and 𝑦𝑦, i.e. if we consider interactions 𝐹𝐹(𝑢𝑢,𝑣𝑣,𝑡𝑡)=𝐹𝐹1(𝑢𝑢)+𝐹𝐹2(𝑣𝑣) and 𝐺𝐺(𝑢𝑢,𝑣𝑣,𝑡𝑡)=𝐺𝐺1(𝑢𝑢)+𝐺𝐺2(𝑣𝑣), 
we obtain 

 𝑥𝑥
 𝑡𝑡  𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑐𝑐 𝐹𝐹 𝑥𝑥 𝑡𝑡 𝐹𝐹 𝑦𝑦 𝑡𝑡 

𝑦𝑦 𝑡𝑡  𝑔𝑔 𝑦𝑦 𝑡𝑡  𝑐𝑐 𝐺𝐺 𝑥𝑥 𝑡𝑡 𝐺𝐺 𝑦𝑦 𝑡𝑡 
  

                                                       (3.3) 

Further, if we consider that the next iteration of each of the coupled dynamical systems results 
from replacing a fraction of what would be the next-iteration if they were free from each other by 
what the other free dynamical system would impose, and if that fraction is measured by the 
coupling constant 𝑐𝑐, we obtain the following coupling 

 𝑥𝑥 𝑡𝑡  − 𝑐𝑐 𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑐𝑐 𝑔𝑔 𝑦𝑦 𝑡𝑡 
𝑦𝑦 𝑡𝑡  𝑐𝑐 𝑓𝑓 𝑥𝑥 𝑡𝑡  − 𝑐𝑐 𝑔𝑔 𝑦𝑦 𝑡𝑡 

  
                                                                 (3.4) 

This form corresponds to the choice 𝐺𝐺 −𝐹𝐹 𝑓𝑓 and 𝐹𝐹 −𝐺𝐺 𝑔𝑔

Definition 6: The coupling defined in (3.4) is called Linear Coupling. 

In a linear coupling, the interaction terms depend linearly on the maps describing the free 
dynamics of the coupled dynamical systems and it should be noted that the iterations do not leave 
the iteration interval. 

3.1. Symmetrical Linear Coupling 

We consider the relevant case where the linear coupling is performed between two identical 
dynamic systems. This coupling is defined by, 
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 𝑥𝑥 𝑡𝑡  − 𝑐𝑐 𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑐𝑐 𝑓𝑓 𝑦𝑦 𝑡𝑡 
𝑦𝑦 𝑡𝑡  𝑐𝑐 𝑓𝑓 𝑥𝑥 𝑡𝑡  − 𝑐𝑐 𝑓𝑓 𝑦𝑦 𝑡𝑡 

  
       (3.5) 

Definition 7: The coupling defined in (3.5) is called Symmetrical Linear Coupling. 

3.1.1. Numerical Approach with Logistic Map 

We begin by choosing that the dynamic of free dynamical systems is described by the logistic 
map, i. e., 𝑓𝑓 is assumed to be the logistic map. In order to have an overview of the behavior of 
the coupling after the transient regime, we consider the following numerical approach: we 
compute the iterations 𝑥𝑥 (𝑡𝑡) and 𝑦𝑦 (𝑡𝑡) for sufficiently large values of t, namely between 𝑡𝑡 = 100 
and 𝑡𝑡 = 200, using random initial iterates and we use different initial random iterations for each 
of the values of 𝑐𝑐 considered (𝑐𝑐 = 𝑖𝑖 / 1000, with 𝑖𝑖 = 0, 1, ..., 1000). The three-dimensional graph 
of the iterations (𝑥𝑥 (𝑡𝑡), 𝑦𝑦 (𝑡𝑡)) is constructed as a function of 𝑐𝑐, which is shown in the Fig. 2. 

 

Fig. 2: Graph of (𝑥𝑥 (𝑡𝑡), 𝑦𝑦 (𝑡𝑡)) as a function of 𝑐𝑐 (bottom left) for Symmetric Linear Coupling  
of logistic, presenting perspectives of 𝑦𝑦 (𝑡𝑡) as a function of 𝑥𝑥 (𝑡𝑡) (above) and 𝑦𝑦 (𝑡𝑡)  

as a function of 𝑥𝑥 (𝑡𝑡) (bottom right) 

The graph identifies three zones in which coupling establish a relation between dynamical 
systems: 

zone 1 - for values of 𝑐𝑐 in a set that includes 𝑐𝑐 ≃ 0.15 and values near this one, the behavior of 
dynamical systems ceases to be chaotic. 

zone 2 - for values of 𝑐𝑐 in a set that includes 𝑐𝑐 ≃ 0.5 and values near this one, the behavior of 
dynamical systems remains chaotic but x(𝑡𝑡) = 𝑦𝑦 (𝑡𝑡), ∀𝑡𝑡, which is responsible for the diagonal 𝑦𝑦 = 
𝑥𝑥 being highlighted in the perspective that presents 𝑦𝑦 (𝑡𝑡) as a function of 𝑥𝑥 (𝑡𝑡). 
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 𝑥𝑥 𝑡𝑡  − 𝑐𝑐 𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑐𝑐 𝑓𝑓 𝑦𝑦 𝑡𝑡 
𝑦𝑦 𝑡𝑡  𝑐𝑐 𝑓𝑓 𝑥𝑥 𝑡𝑡  − 𝑐𝑐 𝑓𝑓 𝑦𝑦 𝑡𝑡 

  
       (3.5) 

Definition 7: The coupling defined in (3.5) is called Symmetrical Linear Coupling. 

3.1.1. Numerical Approach with Logistic Map 

We begin by choosing that the dynamic of free dynamical systems is described by the logistic 
map, i. e., 𝑓𝑓 is assumed to be the logistic map. In order to have an overview of the behavior of 
the coupling after the transient regime, we consider the following numerical approach: we 
compute the iterations 𝑥𝑥 (𝑡𝑡) and 𝑦𝑦 (𝑡𝑡) for sufficiently large values of t, namely between 𝑡𝑡 = 100 
and 𝑡𝑡 = 200, using random initial iterates and we use different initial random iterations for each 
of the values of 𝑐𝑐 considered (𝑐𝑐 = 𝑖𝑖 / 1000, with 𝑖𝑖 = 0, 1, ..., 1000). The three-dimensional graph 
of the iterations (𝑥𝑥 (𝑡𝑡), 𝑦𝑦 (𝑡𝑡)) is constructed as a function of 𝑐𝑐, which is shown in the Fig. 2. 

 

Fig. 2: Graph of (𝑥𝑥 (𝑡𝑡), 𝑦𝑦 (𝑡𝑡)) as a function of 𝑐𝑐 (bottom left) for Symmetric Linear Coupling  
of logistic, presenting perspectives of 𝑦𝑦 (𝑡𝑡) as a function of 𝑥𝑥 (𝑡𝑡) (above) and 𝑦𝑦 (𝑡𝑡)  

as a function of 𝑥𝑥 (𝑡𝑡) (bottom right) 

The graph identifies three zones in which coupling establish a relation between dynamical 
systems: 

zone 1 - for values of 𝑐𝑐 in a set that includes 𝑐𝑐 ≃ 0.15 and values near this one, the behavior of 
dynamical systems ceases to be chaotic. 

zone 2 - for values of 𝑐𝑐 in a set that includes 𝑐𝑐 ≃ 0.5 and values near this one, the behavior of 
dynamical systems remains chaotic but x(𝑡𝑡) = 𝑦𝑦 (𝑡𝑡), ∀𝑡𝑡, which is responsible for the diagonal 𝑦𝑦 = 
𝑥𝑥 being highlighted in the perspective that presents 𝑦𝑦 (𝑡𝑡) as a function of 𝑥𝑥 (𝑡𝑡). 

zone 3 - for values of 𝑐𝑐 in a set that includes 𝑐𝑐 ≃ 0.85 and values near this one, the behavior of 
dynamical systems ceases to be chaotic. 

These three important zones correspond to different behaviors that need to be analyzed in detail. 

Definition 8: We call non-chaotic window of (3.3) the set of values of 𝑐𝑐 for which there exists an 
exponentially stable non-chaotic solution of (3.3). 

Definition 9: We call complete synchronization window (CSW) of (3.3), the set of values of 𝑐𝑐 for 
which there exists a function 𝑠𝑠 (𝑡𝑡) such that (x(t), y(t))=(s(t),s(t)) is an exponentially stable 
solution of (3.3). 

Considering the previous definitions, zones 1 and 3 correspond to values of 𝑐𝑐 of the non-chaotic 
window, while zone 2 corresponds to values of the complete-synchronization window. Although 
zones 1 and 3 have similar aspects, they correspond to different forms of destruction of the 
chaotic behavior as can be verified by registering the iterations as a function of t for values of c 
in each one of the two windows. This distinct behavior is evidenced in the figure 3. In this figure 
we show the graphs of 𝑥𝑥 and 𝑦𝑦 as functions of 𝑡𝑡 for 𝑐𝑐 = 0.15 (zone 1) and 𝑐𝑐 = 0.85 (zone 3): the 
subset of the non-chaotic window corresponding to zone 3 is related to a fixed point, whereas the 
subset of the non-chaotic window corresponding to zone 1 is related to a period-2-synchronized-
out-of-phase behavior. It is useful to define two subsets of the non-chaotic window. 

3.1.2. Fixed Point Window and Period 2 - Synchronized Window 
 

Definition 10: We call fixed point window of (3.3) the set of values of 𝑐𝑐 for which there exist 𝑥𝑥0 
and 𝑦𝑦0 such that (𝑥𝑥 (𝑡𝑡), 𝑦𝑦 (𝑡𝑡)) = (𝑥𝑥0, 𝑦𝑦0) is an exponentially stable solution of (3.3), i.e. the set of 
values of 𝑐𝑐 for which the coupling-𝑐𝑐 (3.3) has an exponentially stable fixed point (𝑥𝑥0, 𝑦𝑦0). 

 

Fig. 3:  Graphs of the iterations 𝑥𝑥 (𝑡𝑡) and 𝑦𝑦 (𝑡𝑡) as a function of 𝑡𝑡 for the symmetric  
linear coupling of the logistic with 𝑐𝑐 = 0.15 (left) and 𝑐𝑐 = 0.85 (right) 
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According to the previous definition, zone 3 corresponds to a fixed point window. 

Definition 11: We call period 2 - synchronized window of (3.3), the set of values of c for which 
there exists an exponentially stable non-constant solution (x(t+1),y(t+1))=(y(t),x(t)) of (3.3), i.e. 
the set of values of 𝑐𝑐 for which the coupling-𝑐𝑐 ( 3.3) has an exponentially stable period-2 orbit 
{(𝑥𝑥1, 𝑥𝑥2}, (𝑥𝑥2, 𝑥𝑥1)} (with 𝑥𝑥 ≠ 𝑥𝑥 . 

According to the previous definition, zone 1 corresponds to a period 2 - synchronized window. It 
should be noted that the possibility of a non-empty non-chaotic window determines that coupling 
one chaotic dynamical system to another may be a strategy to suppress chaotic behavior (it will 
be when the non-chaotic window is not empty). It is, therefore, important to look at the fixed 
point window and the period2- synchronized window that we have found.  

3.1.2.1. Fixed point window 

We start by analyzing the fixed-point window, corresponding to zone 3. For this purpose, we 
define a fixed-point line as one where the values of x and y correspond to the solutions of fixed 
point of the coupling. The fixed points (𝑥𝑥0, 𝑦𝑦0) of a Symmetric Linear Coupling correspond to the 
values 𝑥𝑥0 and 𝑦𝑦0 that satisfy 

 𝑥𝑥  − 𝑐𝑐 𝑓𝑓 𝑥𝑥  𝑐𝑐 𝑓𝑓 𝑦𝑦
𝑦𝑦 𝑐𝑐 𝑓𝑓 𝑥𝑥  − 𝑐𝑐 𝑓𝑓 𝑦𝑦

                                                                    (3.6) 

This system of equations describes a line in the plane 𝑥𝑥𝑦𝑦 that we designate by line-of-fixed-point 
of the Symmetrical Linear Coupling. 

Definition 12: We call fixed-point line of (3.3) the line of the plane 𝑥𝑥𝑦𝑦, which is described by the 
points (𝑥𝑥, 𝑦𝑦) = (𝑥𝑥0, 𝑦𝑦0) such that 

 𝑥𝑥 𝑓𝑓 𝑥𝑥  𝑐𝑐 𝐹𝐹 𝑥𝑥 𝐹𝐹 𝑦𝑦
𝑦𝑦 𝑔𝑔 𝑦𝑦  𝑐𝑐 𝐺𝐺 𝑥𝑥 𝐺𝐺 𝑦𝑦

                                                                   (3.7) 

or, equivalently, by 

𝑥𝑥 − 𝑓𝑓 𝑥𝑥 𝐺𝐺 𝑥𝑥 𝐺𝐺 𝑦𝑦 𝑦𝑦 − 𝑔𝑔 𝑦𝑦 𝐹𝐹 𝑥𝑥 𝐹𝐹 𝑦𝑦                 (3.8) 

We designate by 3D-fixed-point line of coupling (3.3), the line of the space 𝑥𝑥𝑦𝑦𝑐𝑐 described by 
(3.7). 

By summing up the two equations of (3-6), the fixed-line description of the symmetric linear 
coupling takes the form 

𝑥𝑥 𝑦𝑦 𝑓𝑓 𝑥𝑥  𝑓𝑓 𝑦𝑦                                                                     (3.9) 
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According to the previous definition, zone 3 corresponds to a fixed point window. 

Definition 11: We call period 2 - synchronized window of (3.3), the set of values of c for which 
there exists an exponentially stable non-constant solution (x(t+1),y(t+1))=(y(t),x(t)) of (3.3), i.e. 
the set of values of 𝑐𝑐 for which the coupling-𝑐𝑐 ( 3.3) has an exponentially stable period-2 orbit 
{(𝑥𝑥1, 𝑥𝑥2}, (𝑥𝑥2, 𝑥𝑥1)} (with 𝑥𝑥 ≠ 𝑥𝑥 . 

According to the previous definition, zone 1 corresponds to a period 2 - synchronized window. It 
should be noted that the possibility of a non-empty non-chaotic window determines that coupling 
one chaotic dynamical system to another may be a strategy to suppress chaotic behavior (it will 
be when the non-chaotic window is not empty). It is, therefore, important to look at the fixed 
point window and the period2- synchronized window that we have found.  

3.1.2.1. Fixed point window 

We start by analyzing the fixed-point window, corresponding to zone 3. For this purpose, we 
define a fixed-point line as one where the values of x and y correspond to the solutions of fixed 
point of the coupling. The fixed points (𝑥𝑥0, 𝑦𝑦0) of a Symmetric Linear Coupling correspond to the 
values 𝑥𝑥0 and 𝑦𝑦0 that satisfy 

 𝑥𝑥  − 𝑐𝑐 𝑓𝑓 𝑥𝑥  𝑐𝑐 𝑓𝑓 𝑦𝑦
𝑦𝑦 𝑐𝑐 𝑓𝑓 𝑥𝑥  − 𝑐𝑐 𝑓𝑓 𝑦𝑦

                                                                    (3.6) 

This system of equations describes a line in the plane 𝑥𝑥𝑦𝑦 that we designate by line-of-fixed-point 
of the Symmetrical Linear Coupling. 

Definition 12: We call fixed-point line of (3.3) the line of the plane 𝑥𝑥𝑦𝑦, which is described by the 
points (𝑥𝑥, 𝑦𝑦) = (𝑥𝑥0, 𝑦𝑦0) such that 

 𝑥𝑥 𝑓𝑓 𝑥𝑥  𝑐𝑐 𝐹𝐹 𝑥𝑥 𝐹𝐹 𝑦𝑦
𝑦𝑦 𝑔𝑔 𝑦𝑦  𝑐𝑐 𝐺𝐺 𝑥𝑥 𝐺𝐺 𝑦𝑦

                                                                   (3.7) 

or, equivalently, by 

𝑥𝑥 − 𝑓𝑓 𝑥𝑥 𝐺𝐺 𝑥𝑥 𝐺𝐺 𝑦𝑦 𝑦𝑦 − 𝑔𝑔 𝑦𝑦 𝐹𝐹 𝑥𝑥 𝐹𝐹 𝑦𝑦                 (3.8) 

We designate by 3D-fixed-point line of coupling (3.3), the line of the space 𝑥𝑥𝑦𝑦𝑐𝑐 described by 
(3.7). 

By summing up the two equations of (3-6), the fixed-line description of the symmetric linear 
coupling takes the form 

𝑥𝑥 𝑦𝑦 𝑓𝑓 𝑥𝑥  𝑓𝑓 𝑦𝑦                                                                     (3.9) 

Only some of its points correspond to exponentially stable solutions. 

Proposition 1: Considering a point (𝑥𝑥0, 𝑦𝑦0) of the fixed point-line of the Symmetric Linear 
Coupling (3.5), if the absolute values of both eigenvalues of matrix 

𝐷𝐷𝐽𝐽 𝑥𝑥 𝑦𝑦   − 𝑐𝑐 𝑓𝑓´ 𝑥𝑥 𝑐𝑐𝑓𝑓´ 𝑦𝑦
𝑐𝑐𝑓𝑓´ 𝑥𝑥  − 𝑐𝑐 𝑓𝑓´ 𝑦𝑦   

with 𝑐𝑐 𝑥𝑥 −𝑓𝑓 𝑥𝑥
𝑓𝑓 𝑦𝑦 −𝑓𝑓 𝑥𝑥 , are less than one, then (𝑥𝑥0, 𝑦𝑦0) is an exponentially fixed point of (3.5), i. e. 

𝑐𝑐 belongs to the fixed-point window of (3.5). If at least one of the eigenvalues of 𝐷𝐷𝐽𝐽 (𝑥𝑥0, 𝑦𝑦0) has 
absolute value greater than one, then (𝑥𝑥0 , 𝑦𝑦0) is an unstable fixed point of (3.5), i.e. 𝑐𝑐 does not 
belong to the fixed-point window of (3.5). 

Applying the proposition to the Linear Symmetric Coupling of logistic and tent maps, we can 
identify which points of the fixed-point lines correspond to values of 𝑐𝑐 belonging to the fixed-
point window. 

 

Fig. 4:  Graph of iterations 𝑥𝑥 (𝑡𝑡) as a function of 𝑐𝑐 for Symmetric Linear Coupling of logistic 
 maps (top right) and corresponding fixed-point-line (top left), line-3D-of the fixed  

points (bottom left) and its projection onto xc plane (bottom right). The points  
corresponding to exponentially stable solutions are marked in red 

In Fig. 4 and Fig. 5, the points corresponding to values of 𝑐𝑐 of the fixed-point window are shown 
in red, that corresponding to | λ | <1. When the dynamic of the free systems is described by a 
sectionally linear map, it is easy to obtain analytically the fixed-point window. 

Proposition 2: The fixed-point window for the tent map is empty. 
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Fig. 5: Graph of the iterations 𝑥𝑥 (𝑡𝑡) as a function of 𝑐𝑐 for the Symmetrical Linear Coupling of tent  
maps (top right) and the corresponding fixed-point line (top left), line-3D-of fixed points  

(bottom left) and its projection onto the xc plane (bottom right) 

It will therefore be desirable to obtain a strategy to try to find out if a coupling has an empty or 
non-empty fixed-point window and to locate it when it is not empty. The following proposition 
provides a procedure to check whether the symmetric linear coupling of maps 𝑓𝑓 admits a non-
empty fixed-point window. 

Proposition 3: If   − 𝑐𝑐 𝑓𝑓 𝑦𝑦   with c 𝑥𝑥 −𝑓𝑓 𝑥𝑥
𝑓𝑓 𝑦𝑦  −𝑓𝑓 𝑥𝑥  , 𝑥𝑥0 and 𝑦𝑦0 such that 𝑓𝑓 '(𝑥𝑥0)=0 and 

𝑥𝑥0+𝑦𝑦0 =𝑓𝑓(𝑥𝑥0)+𝑓𝑓(𝑦𝑦0  ) then the Symmetric Linear Coupling of dynamical systems described by the 
map 𝑓𝑓 admits a non-empty fixed-point window. 

We exemplify the use of this procedure, applying it to the case of the cubic map, following the 
strategy described in the proposition. 

i)  𝑓𝑓′(𝑥𝑥0) = 0 ⇔ 𝑥𝑥0 ≃  0.253 or 𝑥𝑥0 ≃  0.747 
ii)  for 𝑥𝑥0   0.253, 𝑥𝑥0 + 𝑦𝑦0 = 𝑓𝑓(𝑥𝑥0) + 𝑓𝑓(𝑦𝑦0) provides 𝑦𝑦0 ≃ 0.747, and for 𝑥𝑥0   

0.747, 𝑥𝑥0 + 𝑦𝑦0 =  𝑓𝑓(𝑥𝑥0) + 𝑓𝑓(𝑦𝑦0) provides 𝑦𝑦0 ≃ 0.253 
iii)  in both situations (𝑥𝑥0 = 0.253 or 𝑥𝑥0 = 0.747), 𝑐𝑐 𝑥𝑥 −𝑓𝑓 𝑥𝑥

𝑓𝑓 𝑦𝑦  −𝑓𝑓 𝑥𝑥 ≃ 0.776, to which  

  corresponds  |(1 − 𝑐𝑐)・𝑓𝑓′(𝑦𝑦0)| ≃ 0.001 < 1. 

Fig. 6 summarizes the behavior of the Symmetric Linear Coupling for the cubic, as Figs. 4 and 5 
summarized for 𝑓𝑓𝐿𝐿 and 𝑓𝑓 , respectively, and confirms the existence of a non-empty fixed-point 
window including the value of 𝑐𝑐 = 0.776 provided by the strategy used. 

So, we conclude that the chaotic behavior of a dynamical system corresponding to the cubic map 
is destructible if we couple it (with the appropriate value of 𝑐𝑐) to an identical dynamic system 
using a symmetric linear coupling. 
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Fig. 5: Graph of the iterations 𝑥𝑥 (𝑡𝑡) as a function of 𝑐𝑐 for the Symmetrical Linear Coupling of tent  
maps (top right) and the corresponding fixed-point line (top left), line-3D-of fixed points  

(bottom left) and its projection onto the xc plane (bottom right) 

It will therefore be desirable to obtain a strategy to try to find out if a coupling has an empty or 
non-empty fixed-point window and to locate it when it is not empty. The following proposition 
provides a procedure to check whether the symmetric linear coupling of maps 𝑓𝑓 admits a non-
empty fixed-point window. 

Proposition 3: If   − 𝑐𝑐 𝑓𝑓 𝑦𝑦   with c 𝑥𝑥 −𝑓𝑓 𝑥𝑥
𝑓𝑓 𝑦𝑦  −𝑓𝑓 𝑥𝑥  , 𝑥𝑥0 and 𝑦𝑦0 such that 𝑓𝑓 '(𝑥𝑥0)=0 and 

𝑥𝑥0+𝑦𝑦0 =𝑓𝑓(𝑥𝑥0)+𝑓𝑓(𝑦𝑦0  ) then the Symmetric Linear Coupling of dynamical systems described by the 
map 𝑓𝑓 admits a non-empty fixed-point window. 

We exemplify the use of this procedure, applying it to the case of the cubic map, following the 
strategy described in the proposition. 

i)  𝑓𝑓′(𝑥𝑥0) = 0 ⇔ 𝑥𝑥0 ≃  0.253 or 𝑥𝑥0 ≃  0.747 
ii)  for 𝑥𝑥0   0.253, 𝑥𝑥0 + 𝑦𝑦0 = 𝑓𝑓(𝑥𝑥0) + 𝑓𝑓(𝑦𝑦0) provides 𝑦𝑦0 ≃ 0.747, and for 𝑥𝑥0   

0.747, 𝑥𝑥0 + 𝑦𝑦0 =  𝑓𝑓(𝑥𝑥0) + 𝑓𝑓(𝑦𝑦0) provides 𝑦𝑦0 ≃ 0.253 
iii)  in both situations (𝑥𝑥0 = 0.253 or 𝑥𝑥0 = 0.747), 𝑐𝑐 𝑥𝑥 −𝑓𝑓 𝑥𝑥

𝑓𝑓 𝑦𝑦  −𝑓𝑓 𝑥𝑥 ≃ 0.776, to which  

  corresponds  |(1 − 𝑐𝑐)・𝑓𝑓′(𝑦𝑦0)| ≃ 0.001 < 1. 

Fig. 6 summarizes the behavior of the Symmetric Linear Coupling for the cubic, as Figs. 4 and 5 
summarized for 𝑓𝑓𝐿𝐿 and 𝑓𝑓 , respectively, and confirms the existence of a non-empty fixed-point 
window including the value of 𝑐𝑐 = 0.776 provided by the strategy used. 

So, we conclude that the chaotic behavior of a dynamical system corresponding to the cubic map 
is destructible if we couple it (with the appropriate value of 𝑐𝑐) to an identical dynamic system 
using a symmetric linear coupling. 

 

Fig. 6: Graph of the iterations 𝑥𝑥 (𝑡𝑡) as a function of 𝑐𝑐 for the Symmetric Linear Coupling of  
cubic maps (top right) and the corresponding fixed-point line (top left), 3D-line of  

fixed points (bottom left) and its projection onto the xc plane (bottom right).  
The exponentially stable fixed points are marked in red 

3.1.2.2. Period 2 - Synchronized Window 

In this Section, we analyze the phase 2 synchronized window of a Symmetric Linear Coupling, 
corresponding to zone 1. In order that a trajectory {(α, β), (β, α)} is a solution of (3.5) the 
following four equations need to be satisfied: 

 𝛽𝛽  − 𝑐𝑐 𝑓𝑓 𝛼𝛼 𝑐𝑐 𝑓𝑓 𝛽𝛽
𝛼𝛼 𝑐𝑐 𝑓𝑓 𝛼𝛼  − 𝑐𝑐 𝑓𝑓 𝛽𝛽

  

 𝛼𝛼  − 𝑐𝑐 𝑓𝑓 𝛽𝛽 𝑐𝑐 𝑓𝑓 𝛼𝛼
𝛽𝛽 𝑐𝑐 𝑓𝑓 𝛽𝛽  − 𝑐𝑐 𝑓𝑓 𝛼𝛼

  

Since the last two equations are exactly the same as the first ones, we introduce the following 
definition of line-of-period-2-synchronized-of a Symmetric Linear Coupling: 

Definition 13: We call period-2-synchronized line of (3.5), the line of the plane 𝑥𝑥𝑦𝑦 which is 
described by the points (𝑥𝑥, 𝑦𝑦) = (α, β) such that 

 𝛽𝛽  − 𝑐𝑐 𝑓𝑓 𝛼𝛼 𝑐𝑐 𝑓𝑓 𝛽𝛽
𝛼𝛼 𝑐𝑐 𝑓𝑓 𝛼𝛼  − 𝑐𝑐 𝑓𝑓 𝛽𝛽

                                            (3.10) 

or, equivalently, by 

𝛼𝛼 𝛽𝛽 𝑓𝑓 𝛼𝛼 𝑓𝑓 𝛽𝛽                                                          (3.11) 

We call period-2-3D-synchronized line of the coupling (3.5) the line of space 𝑥𝑥𝑦𝑦𝑐𝑐 described by 
(3.10). 
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A point (α, β) of the period-2-synchronized line only corresponds to a situation of suppression of 
the chaotic behavior, i.e. only corresponds to values of 𝑐𝑐 belonging to the period-2-synchronized 
window, if it is associated with an exponentially stable solution of (3.5). The following 
proposition determines which points of the period-2-synchronized line of a Symmetric Linear 
Coupling correspond to values of 𝑐𝑐 belonging to the window-of-period-2-synchronized 

Proposition 4: Considering a point (α, β) of the period-2-synchronized line of the Symmetric 
Linear Coupling (3.5), if the absolute values of the eigenvalues of 

𝐷𝐷𝐽𝐽  𝛼𝛼 𝛽𝛽   − 𝑐𝑐 𝑓𝑓 𝛽𝛽 𝑐𝑐𝑓𝑓 𝛼𝛼
𝑐𝑐𝑓𝑓 𝛽𝛽  − 𝑐𝑐 𝑓𝑓 𝛼𝛼    − 𝑐𝑐 𝑓𝑓 𝛼𝛼 𝑐𝑐𝑓𝑓 𝛽𝛽

𝑐𝑐𝑓𝑓 𝛼𝛼  − 𝑐𝑐 𝑓𝑓 𝛽𝛽   

with 𝑐𝑐 𝛽𝛽−𝑓𝑓 𝛼𝛼
𝑓𝑓 𝛽𝛽 −𝑓𝑓 𝛼𝛼 , are less than one, then {(α, β), (α, β)} is a trajectory exponentially stable of 

(3.5), i.e. 𝑐𝑐 belongs to the period-2-synchronized window of (3.5). If at least one of the 
eigenvalues of 𝐷𝐷𝐽𝐽2 (α, β) has an absolute value greater than one, then {(α, β), (α, β)} is an 
unstable trajectory of (3.5), i.e. 𝑐𝑐 does not belong to the period-2-sync window of (3.5). 

Applying this proposition to the Symmetric Linear Coupling of the maps that we used in 
subsection 3.1.2.1, i.e., applying this proposition to the maps of the logistic and the tent, we can 
identify what are the points of its period- 2-synchronized line that correspond to values of 𝑐𝑐 
belonging to the period-2-synchronized window. In Figs. 7 and 8 we present the period-2-
synchronized lines for the two couplings, marking in red the points corresponding to 
exponentially stable solutions {(α, β), (α, β)}. 

 

Fig. 7: Graph of iterations 𝑥𝑥 (𝑡𝑡) as a function of 𝑐𝑐 for Symmetrical Linear Coupling of logistic  
maps (top right) and corresponding period-2-synchronized line (top left), 3D- 2-synchronized 

(bottom left) and its projection onto plane 𝑥𝑥𝑐𝑐 (bottom right). The points corresponding to 
exponentially stable solutions are marked in red 
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A point (α, β) of the period-2-synchronized line only corresponds to a situation of suppression of 
the chaotic behavior, i.e. only corresponds to values of 𝑐𝑐 belonging to the period-2-synchronized 
window, if it is associated with an exponentially stable solution of (3.5). The following 
proposition determines which points of the period-2-synchronized line of a Symmetric Linear 
Coupling correspond to values of 𝑐𝑐 belonging to the window-of-period-2-synchronized 

Proposition 4: Considering a point (α, β) of the period-2-synchronized line of the Symmetric 
Linear Coupling (3.5), if the absolute values of the eigenvalues of 

𝐷𝐷𝐽𝐽  𝛼𝛼 𝛽𝛽   − 𝑐𝑐 𝑓𝑓 𝛽𝛽 𝑐𝑐𝑓𝑓 𝛼𝛼
𝑐𝑐𝑓𝑓 𝛽𝛽  − 𝑐𝑐 𝑓𝑓 𝛼𝛼    − 𝑐𝑐 𝑓𝑓 𝛼𝛼 𝑐𝑐𝑓𝑓 𝛽𝛽

𝑐𝑐𝑓𝑓 𝛼𝛼  − 𝑐𝑐 𝑓𝑓 𝛽𝛽   

with 𝑐𝑐 𝛽𝛽−𝑓𝑓 𝛼𝛼
𝑓𝑓 𝛽𝛽 −𝑓𝑓 𝛼𝛼 , are less than one, then {(α, β), (α, β)} is a trajectory exponentially stable of 

(3.5), i.e. 𝑐𝑐 belongs to the period-2-synchronized window of (3.5). If at least one of the 
eigenvalues of 𝐷𝐷𝐽𝐽2 (α, β) has an absolute value greater than one, then {(α, β), (α, β)} is an 
unstable trajectory of (3.5), i.e. 𝑐𝑐 does not belong to the period-2-sync window of (3.5). 

Applying this proposition to the Symmetric Linear Coupling of the maps that we used in 
subsection 3.1.2.1, i.e., applying this proposition to the maps of the logistic and the tent, we can 
identify what are the points of its period- 2-synchronized line that correspond to values of 𝑐𝑐 
belonging to the period-2-synchronized window. In Figs. 7 and 8 we present the period-2-
synchronized lines for the two couplings, marking in red the points corresponding to 
exponentially stable solutions {(α, β), (α, β)}. 

 

Fig. 7: Graph of iterations 𝑥𝑥 (𝑡𝑡) as a function of 𝑐𝑐 for Symmetrical Linear Coupling of logistic  
maps (top right) and corresponding period-2-synchronized line (top left), 3D- 2-synchronized 

(bottom left) and its projection onto plane 𝑥𝑥𝑐𝑐 (bottom right). The points corresponding to 
exponentially stable solutions are marked in red 

These results confirm those shown in Fig. 2 in relation to the period-2-synchronized window, 
namely that the period-2-synchronized window of the Symmetric Linear Coupling of logistic 
maps is not empty. The same is confirmed for the tent map by obtaining that the period-2-
synchronized window of the Symmetric Linear Coupling of tent maps is empty. In addition, 
period-2-synchronized lines are exactly the same as the corresponding fixed-point lines, as we 
noted earlier. However, while the fixed-point window of the Symmetric Linear Coupling is 
]0.806, 0.861[ its period-2-synchronized window is approximately ]0.139, 0.194[ . 

 

Fig. 8: Graph of iterations 𝑥𝑥 (𝑡𝑡) as a function of 𝑐𝑐 for Symmetrical Linear Coupling of tent maps  
(top right) and corresponding period-2-synchronized line (top left), 3D- period-2-synchronized 

(bottom left) and its projection onto the plane 𝑥𝑥𝑐𝑐 (bottom right) 

3.1.3. Complete-Synchronization Window 

In this section we analyze the situation designated by zone 2 in Fig. 2 and that we identified as 
corresponding to the complete synchronization window. 

Note that for 𝑐𝑐 = 1/2 the coupling (3.5) is reduced to 

 
𝑥𝑥 𝑡𝑡  𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑓𝑓 𝑦𝑦 𝑡𝑡 

𝑦𝑦 𝑡𝑡  𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑓𝑓 𝑦𝑦 𝑡𝑡 
  

The coupled dynamic systems completely synchronize after the first iteration. So the complete 
synchronization window of the Symmetric Linear Coupling is always non-empty, whatever the 
free dynamics of the coupled systems are, i.e. whatever is 𝑓𝑓, the window will always contain 𝑐𝑐 = 
1/2. In the graphs of the iterations 𝑦𝑦 (𝑡𝑡) - 𝑥𝑥 (𝑡𝑡) as a function of 𝑐𝑐, the values of 𝑐𝑐

 complete-synchronization window correspond to ones that its images are null (since for such 
values of 𝑐𝑐  𝑦𝑦 (𝑡𝑡) ≃ 𝑥𝑥 (𝑡𝑡), for sufficiently large values of t). In Fig. 9, we present these graphs for 
Symmetric Linear Coupling of the four free dynamics that have been considered: logistic, tent, 
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cubic and saw. We verify that complete synchronization happens not only for 𝑐𝑐 = 1/2 but also 
other values in a set centered on 𝑐𝑐 = 1/2. 

In a Symmetric Linear Coupling, whatever the coupling constant, 𝑐𝑐, is, the system of equations 
(3.5) admits the solution (𝑥𝑥 (𝑡𝑡), 𝑦𝑦 (𝑡𝑡)) = (𝑠𝑠 (𝑡𝑡), 𝑠𝑠 (t)), where 𝑠𝑠 (𝑡𝑡) is a function that satisfies 𝑠𝑠 (𝑡𝑡) = 
𝑓𝑓 (𝑠𝑠 (𝑡𝑡)). However, a given value of 𝑐𝑐 will only belong to the complete-synchronization window 
if (𝑥𝑥 (𝑡𝑡), 𝑦𝑦 (𝑡𝑡)) = (𝑠𝑠 (𝑡𝑡), 𝑠𝑠 (𝑡𝑡)) is an exponentially stable solution. The complete-synchronized 
window can be determined analytically, as the following result states: 

 

Fig. 9: Graphs of the iterations 𝑦𝑦 (𝑡𝑡) -𝑥𝑥 (𝑡𝑡) as a function of c for the Symmetrical Linear Coupling 

Proposition 5: The complete-synchronization window of a Symmetric Linear Coupling (3.5) is,  

𝐶𝐶𝑆𝑆𝑊𝑊  − 𝑒𝑒−𝑕𝑕 𝑒𝑒−𝑕𝑕
 

where 𝑕𝑕 is the  Lyapunov exponent corresponding to the map f. 

Taking into account the values of the Lyapunov exponents of logistics, tent, cubic and saw maps 
obtained in section 2.2 (ln 2, ln 2, ln 2.4 and 0.715, respectively), the above proposition provides 
the following complete-synchronization windows for these maps: 

 Tent and logistic:  =] 0.25, 0.75 [ 

 Saw:  =] 0.291 (6), 0.708 (3)[ 

 Cubic: 𝐶𝐶  ≃] 0.25571, 0.74429 [ 

These results coincide with those obtained using the numerical approach that provided the graphs 
of Fig. 9. So, the basins of attraction of the exponentially stable completely synchronized 
solutions are large enough that a random choice of initial iterations does not mask the complete-
synchronized window. 
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cubic and saw. We verify that complete synchronization happens not only for 𝑐𝑐 = 1/2 but also 
other values in a set centered on 𝑐𝑐 = 1/2. 

In a Symmetric Linear Coupling, whatever the coupling constant, 𝑐𝑐, is, the system of equations 
(3.5) admits the solution (𝑥𝑥 (𝑡𝑡), 𝑦𝑦 (𝑡𝑡)) = (𝑠𝑠 (𝑡𝑡), 𝑠𝑠 (t)), where 𝑠𝑠 (𝑡𝑡) is a function that satisfies 𝑠𝑠 (𝑡𝑡) = 
𝑓𝑓 (𝑠𝑠 (𝑡𝑡)). However, a given value of 𝑐𝑐 will only belong to the complete-synchronization window 
if (𝑥𝑥 (𝑡𝑡), 𝑦𝑦 (𝑡𝑡)) = (𝑠𝑠 (𝑡𝑡), 𝑠𝑠 (𝑡𝑡)) is an exponentially stable solution. The complete-synchronized 
window can be determined analytically, as the following result states: 

 

Fig. 9: Graphs of the iterations 𝑦𝑦 (𝑡𝑡) -𝑥𝑥 (𝑡𝑡) as a function of c for the Symmetrical Linear Coupling 

Proposition 5: The complete-synchronization window of a Symmetric Linear Coupling (3.5) is,  

𝐶𝐶𝑆𝑆𝑊𝑊  − 𝑒𝑒−𝑕𝑕 𝑒𝑒−𝑕𝑕
 

where 𝑕𝑕 is the  Lyapunov exponent corresponding to the map f. 

Taking into account the values of the Lyapunov exponents of logistics, tent, cubic and saw maps 
obtained in section 2.2 (ln 2, ln 2, ln 2.4 and 0.715, respectively), the above proposition provides 
the following complete-synchronization windows for these maps: 

 Tent and logistic:  =] 0.25, 0.75 [ 

 Saw:  =] 0.291 (6), 0.708 (3)[ 

 Cubic: 𝐶𝐶  ≃] 0.25571, 0.74429 [ 

These results coincide with those obtained using the numerical approach that provided the graphs 
of Fig. 9. So, the basins of attraction of the exponentially stable completely synchronized 
solutions are large enough that a random choice of initial iterations does not mask the complete-
synchronized window. 

3.2. Other Linear Couplings 

We will now extend some of the results obtained in the previous subsection 3.1 to other 
couplings of the type (3.3). 

3.2.1. Fixed-point windows in other couplings 

Considering a coupling (3.3), each point (𝑥𝑥0, 𝑦𝑦0) of its fixed-point line (3.7) corresponds to a 
value of the coupling constant, namely a  

𝑐𝑐 𝑥𝑥 − 𝑓𝑓 𝑥𝑥
𝐹𝐹  𝑥𝑥  𝐹𝐹  𝑦𝑦  

𝑦𝑦 − 𝑔𝑔 𝑦𝑦
𝐺𝐺  𝑥𝑥  𝐺𝐺  𝑦𝑦   

As for Symmetric Linear Coupling, and according to the next proposition, only a few points of 
this fixed-point line or even none at all, correspond to values of 𝑐𝑐 belonging to the fixed-point 
window of (3.3). 

Proposition 6: Considering a point (𝑥𝑥0, 𝑦𝑦0) of the fixed-point line (3.5), if the absolute values of 
both eigenvalues of 

𝐷𝐷𝐽𝐽 𝑥𝑥 𝑦𝑦  𝑓𝑓  𝑥𝑥  𝑐𝑐 𝐹𝐹  𝑥𝑥  𝑐𝑐 𝐹𝐹  𝑦𝑦  
𝑐𝑐 𝐺𝐺  𝑥𝑥  𝑔𝑔  𝑦𝑦  𝑐𝑐 𝐺𝐺  𝑦𝑦    

with 𝑐𝑐 𝑥𝑥 −𝑓𝑓 𝑥𝑥
𝐹𝐹  𝑥𝑥  𝐹𝐹 𝑥𝑥 , are smaller than one, then (𝑥𝑥0, 𝑦𝑦0) is an exponentially stable fixed point, 

i.e. 𝑐𝑐 belongs to the fixed-point window of (3.3). If at least one of the eigenvalues of 𝐷𝐷𝐽𝐽 (𝑥𝑥0, 𝑦𝑦0) 
has absolute value larger than one, then (𝑥𝑥0, 𝑦𝑦0) is an unstable fixed point and 𝑐𝑐 does not belong 
to the fixed-point window of (3.3). 

In couplings such that 𝐹𝐹1 = -𝐺𝐺1 and 𝐹𝐹2 = -𝐺𝐺2 the fixed-point line (3.8) reduces to 𝑥𝑥 𝑦𝑦
𝑓𝑓 𝑥𝑥  𝑔𝑔 𝑦𝑦 . This is, for example, the case in Linear Couplings. In Linear Couplings of non-
identical dynamical systems, the expression of the eigenvalues of DJ, is given by 

𝜆𝜆  − 𝑐𝑐  𝑓𝑓´ 𝑥𝑥  𝑔𝑔´ 𝑦𝑦    − 𝑐𝑐 𝑓𝑓´ 𝑥𝑥  𝑔𝑔´ 𝑦𝑦  −  − 𝑐𝑐 𝑓𝑓´ 𝑥𝑥  𝑔𝑔´ 𝑦𝑦         (3.12) 

Considering the previous proposition, that 𝑓𝑓'(𝑥𝑥0) (or 𝑔𝑔'(𝑦𝑦0)) being zero determines that one of the 
eigenvalues is zero - the other eigenvalue being given by λ= (1 - 𝑐𝑐).𝑔𝑔 '(𝑦𝑦0) - and using a strategy 
similar to the one we used for the Symmetric Linear Coupling, we obtain for the Linear Coupling 
of non-identical dynamical systems a way to determine if the fixed-point window is non-empty 
and to locate it. Using this strategy, we have calculated and located the fixed-point windows for 
Linear Couplings of a dynamical system described by the logistic map with another that is not 
identical to it, namely with another dynamical systems that is described by the tent map, the saw 
map and the cubic map. 

(i) We detail the calculations in the case of coupling the logistics with the tent, that is, the case 
where f=fL and g = fT: 
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1 -  𝑓𝑓′(𝑥𝑥0) = 0 ⇔ 𝑥𝑥0 = 0.5 
2 -  𝑥𝑥0 + 𝑦𝑦0 = 𝑓𝑓𝐿𝐿 (𝑥𝑥0) + 𝑓𝑓𝑇𝑇 (𝑦𝑦0) ⇔ 𝑦𝑦0 = 5/6 
3 -  𝑐𝑐 = 0.75, to which corresponds |(1 − 𝑐𝑐)・𝑓𝑓′𝑇𝑇(𝑦𝑦0)| = 0.5 < 1. 

 
We conclude that the chaotic behavior of the logistic is destructible if we couple it (with the 
appropriate value of 𝑐𝑐) with the tent, using a Linear Coupling. In Fig. 10, we present the fixed-
point-line of this coupling, marking in blue the points that correspond to exponentially stable 
solutions. We can verify that the fixed point that the proposed strategy provides, namely (𝑥𝑥0, y0) 
= (1/2, 5/6), is an exponentially stable fixed point, corresponding to a value of 𝑐𝑐, namely 𝑐𝑐=0.75, 
which belongs to the fixed-point window. In this figure we present the graph of the iterations 𝑦𝑦 
(𝑡𝑡) as a function of 𝑐𝑐, which is obtained following the numerical approach proposed in sub-
section 3.1.1 and where the fixed-point window is also visible. 

For the other referred couplings we present their graphs. 

(ii) The case of coupling the logistic map with the saw map, that is, the case where f=fL and g=fS: 

The existence of blue-marked points, corresponding to exponentially stable fixed points, means 
that the fixed-point window is not empty. The graph of iterations 𝑦𝑦 (𝑡𝑡) as a function of 𝑐𝑐, which 
we present in Fig. 11, also shows this. Although the application to this coupling of the defined 
strategy fails to determine the existence and location of a non-empty fixed-point window, we 
conclude that the chaotic behavior of the logistic map is also destructible if we couple it (with the 
appropriate value of 𝑐𝑐) with the saw map using a Linear Coupling. 

 

Fig. 10: Graph of the iterations 𝑦𝑦 (𝑡𝑡) as a function of 𝑐𝑐 for the Linear Coupling of the logistic  
map with the tent map (top right) and corresponding fixed-point line (top left),  

3D- fixed point line (bottom left) and its projection onto plane 𝑥𝑥𝑐𝑐 (bottom right).  
The exponentially stable fixed points are marked in blue 
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1 -  𝑓𝑓′(𝑥𝑥0) = 0 ⇔ 𝑥𝑥0 = 0.5 
2 -  𝑥𝑥0 + 𝑦𝑦0 = 𝑓𝑓𝐿𝐿 (𝑥𝑥0) + 𝑓𝑓𝑇𝑇 (𝑦𝑦0) ⇔ 𝑦𝑦0 = 5/6 
3 -  𝑐𝑐 = 0.75, to which corresponds |(1 − 𝑐𝑐)・𝑓𝑓′𝑇𝑇(𝑦𝑦0)| = 0.5 < 1. 

 
We conclude that the chaotic behavior of the logistic is destructible if we couple it (with the 
appropriate value of 𝑐𝑐) with the tent, using a Linear Coupling. In Fig. 10, we present the fixed-
point-line of this coupling, marking in blue the points that correspond to exponentially stable 
solutions. We can verify that the fixed point that the proposed strategy provides, namely (𝑥𝑥0, y0) 
= (1/2, 5/6), is an exponentially stable fixed point, corresponding to a value of 𝑐𝑐, namely 𝑐𝑐=0.75, 
which belongs to the fixed-point window. In this figure we present the graph of the iterations 𝑦𝑦 
(𝑡𝑡) as a function of 𝑐𝑐, which is obtained following the numerical approach proposed in sub-
section 3.1.1 and where the fixed-point window is also visible. 

For the other referred couplings we present their graphs. 

(ii) The case of coupling the logistic map with the saw map, that is, the case where f=fL and g=fS: 

The existence of blue-marked points, corresponding to exponentially stable fixed points, means 
that the fixed-point window is not empty. The graph of iterations 𝑦𝑦 (𝑡𝑡) as a function of 𝑐𝑐, which 
we present in Fig. 11, also shows this. Although the application to this coupling of the defined 
strategy fails to determine the existence and location of a non-empty fixed-point window, we 
conclude that the chaotic behavior of the logistic map is also destructible if we couple it (with the 
appropriate value of 𝑐𝑐) with the saw map using a Linear Coupling. 

 

Fig. 10: Graph of the iterations 𝑦𝑦 (𝑡𝑡) as a function of 𝑐𝑐 for the Linear Coupling of the logistic  
map with the tent map (top right) and corresponding fixed-point line (top left),  

3D- fixed point line (bottom left) and its projection onto plane 𝑥𝑥𝑐𝑐 (bottom right).  
The exponentially stable fixed points are marked in blue 

 

 

Fig. 11: Graph of iterations 𝑦𝑦 (𝑡𝑡) as a function of 𝑐𝑐 for the Linear coupling of the logistic map with 
saw map (top right) and corresponding fixed-point line (top left), 3D-fixed-point line (bottom left) & 
its projection onto plane 𝑥𝑥𝑐𝑐 (bottom right). The exponentially stable fixed points are marked in blue 

(iii) The case of coupling the logistic map with cubic map, i.e., the case where f = fL and g = fc. 

We conclude that the chaotic behavior of the logistic is destructible if we couple it (with the 
appropriate value of 𝑐𝑐) to the cubic, using a Linear Coupling. In Fig. 12, we present the fixed-
point line of this coupling, marking in blue those that are exponentially stable. We can verify that 
the fixed points proposed by the proposed strategy, namely (𝑥𝑥0,y0)=(0.5, 0.647) and (𝑥𝑥0,𝑦𝑦0)=(0.5, 
0.910), are exponentially stable fixed points, corresponding to values of 𝑐𝑐, namely 𝑐𝑐 ≃ 0.586 and 
𝑐𝑐 ≃ 0.847, which belong to the fixed-point window. We present the graph of the iterations 𝑦𝑦 (𝑡𝑡) 
as a function of 𝑐𝑐 (Fig. 12), which is obtained following numerical approach proposed in sub-
section 3.1.1, where fixed-point window is also visible. 

 

Fig. 12: Graph of the iterations 𝑦𝑦 (𝑡𝑡) as a function of 𝑐𝑐 for the Linear Coupling of the logistic map 
with the cubic map (top right) and the corresponding fixed-point-line (top left), 3D- fixed  

point line (bottom left) and its projection onto the plane 𝑥𝑥𝑐𝑐 (bottom right).  
The exponentially stable fixed points are marked in blue 
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3.2.2. Period 2-synchronized Window 

The generalization for a coupling (3.3) of Definition 13 of a period-2 synchronized line 
corresponds to the points (α, β) that verify 

 𝛽𝛽 𝑓𝑓 𝛼𝛼 𝑐𝑐  𝐹𝐹  𝛼𝛼 𝐹𝐹  𝛽𝛽  
𝛼𝛼 𝑔𝑔 𝛽𝛽 𝑐𝑐  𝐺𝐺  𝛼𝛼 𝐺𝐺  𝛽𝛽  

  

 𝛼𝛼 𝑓𝑓 𝛽𝛽 𝑐𝑐  𝐹𝐹  𝛽𝛽 𝐹𝐹  𝛼𝛼  
𝛽𝛽 𝑔𝑔 𝛼𝛼 𝑐𝑐  𝐺𝐺  𝛽𝛽 𝐺𝐺  𝛼𝛼  

  

                                                                       
(3.13) 

These are the equations that have to be satisfied so that a 2-synchronized period trajectory  
{(α, β), (β, α)} is solution of (3.3). Contrary to what happens for Symmetric Linear Coupling, the 
system of the four equations may have no solution, the period-2-synchronized line may be the 
empty set. However, if 𝑓𝑓, 𝑔𝑔, 𝐹𝐹1, 𝐹𝐹2, 𝐺𝐺1 and 𝐺𝐺2 meet certain conditions, a non-empty period-2-
synchronized line can be guaranteed.  

If 𝑓𝑓 = 𝑔𝑔, 𝐹𝐹1 = 𝐺𝐺2 and 𝐹𝐹2 = 𝐺𝐺1, that is, for couplings of following the type 

 𝑥𝑥
 𝑡𝑡  𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑐𝑐  𝐹𝐹  𝑥𝑥 𝑡𝑡  𝐹𝐹  𝑦𝑦 𝑡𝑡   

𝑦𝑦 𝑡𝑡  𝑓𝑓 𝑦𝑦 𝑡𝑡  𝑐𝑐  𝐹𝐹  𝑥𝑥 𝑡𝑡  𝐹𝐹  𝑦𝑦 𝑡𝑡   
  

                                                        (3.14) 

only two out of the four equations of (3.13) are linearly independent. 

Definition 14: We call period-2-synchronized line of the coupling (3.14), the line of the plane 𝑥𝑥𝑦𝑦 
which is described by the points (𝑥𝑥, 𝑦𝑦) = (α, β) such that: 

 𝛽𝛽 𝑓𝑓 𝛼𝛼 𝑐𝑐  𝐹𝐹  𝛼𝛼 𝐹𝐹  𝛽𝛽  
𝛼𝛼 𝑓𝑓 𝛽𝛽 𝑐𝑐  𝐹𝐹  𝛼𝛼 𝐹𝐹  𝛽𝛽  

                                                                (3.15) 

We call 3D-period-2-synchronized-line of the coupling (3.13), the line of space 𝑥𝑥𝑦𝑦𝑐𝑐 described by 
(3.14). 

Contrary to what happens for a Symmetric Linear Coupling, the period-2-synchronized line of 
(3.14) is not equal to its fixed-point line, but all the same only some, or even none, of the period-
2-synchronized solutions correspond to exponentially stable solutions, that is, only some of them 
correspond to values of 𝑐𝑐 belonging to the period-2-synchronized window. 

Proposition 7: Considering a point (α, β) of the period-2-synchronized line of the coupling 
(3.12), if the absolute of the eigenvalues of 

𝐷𝐷𝐽𝐽  𝛼𝛼 𝛽𝛽  𝑓𝑓  𝛽𝛽 𝑐𝑐 𝐹𝐹  𝛽𝛽 𝑐𝑐 𝐹𝐹  𝛼𝛼 
𝑐𝑐 𝐹𝐹  𝛽𝛽 𝑓𝑓  𝛼𝛼 𝑐𝑐 𝐹𝐹  𝛼𝛼   𝑓𝑓  𝛼𝛼 𝑐𝑐 𝐹𝐹  𝛼𝛼 𝑐𝑐 𝐹𝐹  𝛽𝛽 

𝑐𝑐 𝐹𝐹  𝛼𝛼 𝑓𝑓  𝛽𝛽 𝑐𝑐 𝐹𝐹  𝛽𝛽   

with 𝑐𝑐 𝛽𝛽−𝑓𝑓 𝛼𝛼
𝐹𝐹 𝛼𝛼 −𝐹𝐹 𝛽𝛽 , are less than one, then {(α, β), (α, β)} is a trajectory exponentially stable of 

(3.14), that is, 𝑐𝑐 belongs to the period-2-synchronized window of (3.14). If at least one of the 
eigenvalues of 𝐷𝐷𝐽𝐽2 (α, β) has an absolute value greater than one, then {(α, β), (α, β)} is an 
unstable trajectory of (3.14) & 𝑐𝑐 does not belong to the period-2-synchronized window of (3.14). 
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3.2.2. Period 2-synchronized Window 

The generalization for a coupling (3.3) of Definition 13 of a period-2 synchronized line 
corresponds to the points (α, β) that verify 

 𝛽𝛽 𝑓𝑓 𝛼𝛼 𝑐𝑐  𝐹𝐹  𝛼𝛼 𝐹𝐹  𝛽𝛽  
𝛼𝛼 𝑔𝑔 𝛽𝛽 𝑐𝑐  𝐺𝐺  𝛼𝛼 𝐺𝐺  𝛽𝛽  

  

 𝛼𝛼 𝑓𝑓 𝛽𝛽 𝑐𝑐  𝐹𝐹  𝛽𝛽 𝐹𝐹  𝛼𝛼  
𝛽𝛽 𝑔𝑔 𝛼𝛼 𝑐𝑐  𝐺𝐺  𝛽𝛽 𝐺𝐺  𝛼𝛼  

  

                                                                       
(3.13) 

These are the equations that have to be satisfied so that a 2-synchronized period trajectory  
{(α, β), (β, α)} is solution of (3.3). Contrary to what happens for Symmetric Linear Coupling, the 
system of the four equations may have no solution, the period-2-synchronized line may be the 
empty set. However, if 𝑓𝑓, 𝑔𝑔, 𝐹𝐹1, 𝐹𝐹2, 𝐺𝐺1 and 𝐺𝐺2 meet certain conditions, a non-empty period-2-
synchronized line can be guaranteed.  

If 𝑓𝑓 = 𝑔𝑔, 𝐹𝐹1 = 𝐺𝐺2 and 𝐹𝐹2 = 𝐺𝐺1, that is, for couplings of following the type 

 𝑥𝑥
 𝑡𝑡  𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑐𝑐  𝐹𝐹  𝑥𝑥 𝑡𝑡  𝐹𝐹  𝑦𝑦 𝑡𝑡   

𝑦𝑦 𝑡𝑡  𝑓𝑓 𝑦𝑦 𝑡𝑡  𝑐𝑐  𝐹𝐹  𝑥𝑥 𝑡𝑡  𝐹𝐹  𝑦𝑦 𝑡𝑡   
  

                                                        (3.14) 

only two out of the four equations of (3.13) are linearly independent. 

Definition 14: We call period-2-synchronized line of the coupling (3.14), the line of the plane 𝑥𝑥𝑦𝑦 
which is described by the points (𝑥𝑥, 𝑦𝑦) = (α, β) such that: 

 𝛽𝛽 𝑓𝑓 𝛼𝛼 𝑐𝑐  𝐹𝐹  𝛼𝛼 𝐹𝐹  𝛽𝛽  
𝛼𝛼 𝑓𝑓 𝛽𝛽 𝑐𝑐  𝐹𝐹  𝛼𝛼 𝐹𝐹  𝛽𝛽  

                                                                (3.15) 

We call 3D-period-2-synchronized-line of the coupling (3.13), the line of space 𝑥𝑥𝑦𝑦𝑐𝑐 described by 
(3.14). 

Contrary to what happens for a Symmetric Linear Coupling, the period-2-synchronized line of 
(3.14) is not equal to its fixed-point line, but all the same only some, or even none, of the period-
2-synchronized solutions correspond to exponentially stable solutions, that is, only some of them 
correspond to values of 𝑐𝑐 belonging to the period-2-synchronized window. 

Proposition 7: Considering a point (α, β) of the period-2-synchronized line of the coupling 
(3.12), if the absolute of the eigenvalues of 

𝐷𝐷𝐽𝐽  𝛼𝛼 𝛽𝛽  𝑓𝑓  𝛽𝛽 𝑐𝑐 𝐹𝐹  𝛽𝛽 𝑐𝑐 𝐹𝐹  𝛼𝛼 
𝑐𝑐 𝐹𝐹  𝛽𝛽 𝑓𝑓  𝛼𝛼 𝑐𝑐 𝐹𝐹  𝛼𝛼   𝑓𝑓  𝛼𝛼 𝑐𝑐 𝐹𝐹  𝛼𝛼 𝑐𝑐 𝐹𝐹  𝛽𝛽 

𝑐𝑐 𝐹𝐹  𝛼𝛼 𝑓𝑓  𝛽𝛽 𝑐𝑐 𝐹𝐹  𝛽𝛽   

with 𝑐𝑐 𝛽𝛽−𝑓𝑓 𝛼𝛼
𝐹𝐹 𝛼𝛼 −𝐹𝐹 𝛽𝛽 , are less than one, then {(α, β), (α, β)} is a trajectory exponentially stable of 

(3.14), that is, 𝑐𝑐 belongs to the period-2-synchronized window of (3.14). If at least one of the 
eigenvalues of 𝐷𝐷𝐽𝐽2 (α, β) has an absolute value greater than one, then {(α, β), (α, β)} is an 
unstable trajectory of (3.14) & 𝑐𝑐 does not belong to the period-2-synchronized window of (3.14). 

The Symmetrical Linear Coupling is the only Linear Coupling of type (3.14) (corresponds to the 
choice 𝐹𝐹2 = -𝐹𝐹1 = 𝑓𝑓). We introduce another coupling of type (3.14), one that we call Past 
Symmetric Coupling corresponding to choose 𝐹𝐹1=-𝑓𝑓 and 𝐹𝐹2 = 𝑖𝑖𝑑𝑑. 

 𝑥𝑥 𝑡𝑡  − 𝑐𝑐 𝑓𝑓 𝑥𝑥 𝑡𝑡  𝑐𝑐 𝑦𝑦 𝑡𝑡
𝑦𝑦 𝑡𝑡  𝑐𝑐 𝑥𝑥 𝑡𝑡 − 𝑐𝑐 𝑓𝑓 𝑦𝑦 𝑡𝑡 

  
                                                             (3.16) 

The period-2-synchronized line of a Past Symmetric Coupling is just {(γ1, γ2), (γ2, γ1)}, where γ1 
and γ2 are the values corresponding to the period-2 trajectory {γ1, γ2} of the free dynamical 
systems 𝑥𝑥 𝑡𝑡  𝑓𝑓 𝑥𝑥 𝑡𝑡  . 

(i) Past Symmetric coupling for the logistic map: 

The values γ1 and γ2 of the period 2 trajectory {γ1, γ2} of the logistic map are γ1≃0.345 and γ2 

≃0.904, corresponding to   𝐷𝐷𝐽𝐽2 γ γ ≃  − 𝑐𝑐 𝑐𝑐 − − 𝑐𝑐 − 𝑐𝑐
𝑐𝑐 − 𝑐𝑐 − 𝑐𝑐 𝑐𝑐 −   

whose absolute values  of the eigenvalues are less than one for values of coupling constant 𝑐𝑐 
greater than 𝑐𝑐≃0.600, that is, the period 2-synchronized window ] 0.600,1[. 

(ii) Past Symmetric Coupling Past for the tent map 

The period 2 trajectory of the tent map is {2/5, 4/5}, corresponding to 

𝐷𝐷𝐽𝐽2 ≃  − 𝑐𝑐 𝑐𝑐 − 𝑐𝑐 − 𝑐𝑐
− 𝑐𝑐 − 𝑐𝑐 − 𝑐𝑐 𝑐𝑐 −   

whose absolute values of the eigenvalues are less than one for values of coupling constant 𝑐𝑐 
greater than 𝑐𝑐≃0.600, that is, the period 2-synchronized window ] 0.600,1[. 
The results of the numerical approach are shown in figure 13, where we present the graphs of the 
𝑥𝑥 (𝑡𝑡) iterations as a function of 𝑐𝑐 exhibiting the period-2-synchronized windows that we just 
obtained analytically. 

 

Fig. 13: Graphs of iterations 𝑥𝑥 (𝑡𝑡) as a function of c for the Past Symmetric  
Coupling of the logistic map (left) and tent map (right) 
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