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Abstract: This paper puts forward an idealization of stress-strain curve of structural materials 

like bricks, and mortar. In this model, below yield limit, the pattern of the stress-strain 

relationship is assumed to be linear i.e. modulus of elasticity remains unchanged, whereas beyond 

the limit, the relationship is supposed to be curvilinear. A quadratic stress function is assumed to 

formulate the stress-strain curve passing through the points of yield stress σy and ultimate stress 

σu. Experimental investigation on the cube-tests of specimen for brick samples and mortar cubes 

are also presented for the verification of idealized stress-strain relationships. 

 
1. INTRODUCTION 

With the advancement of computational 

technology and ever going increasing trend 

of research activities, the demand for 

inelastic design is increasing day by day. The 

term inelastic is associated to material whose 

stress-strain diagram is nonlinear. But, the 

usual practices follow only the linear stress-

strain relationships. The linear relations are 

acceptable only for the small deformations. 

Whereas, in most of the cases when the 

deformation becomes too large, structural 

members undergo fail before the strains 

become finite. Such a situation can be 

frequently observed in infill frame structures. 

Infill frames are widely constructed using 

brick masonry infill walls. Since the brick 

masonry wall possesses highly 

heterogeneous, non-linear studies are 

inevitable. Thus, for the analysis of infill 

frames, the models which can account for 

nonlinear behavior due to separation of 

bricks, cracking, bond slip in mortar joints 

and dowel actions etc., must be used. For 

this, non-linear characterization of the 

materials is quite essential to formulate. 

These days, engineering practices demand 

more and more new additional materials. 

Whose stress-strain behaviors are still not 

known or they have to be tested in 

laboratories. For the very common materials 

like bricks, concrete and mortars, which have 

a long history, people still are adopting linear 

relations for stress-strain curve. In the early 

days, computational challenges and efforts 

have made people compelled to accept the 

state of linear assumption. Now the 

advancement in computational technology 

stipulates more précised computational 

techniques, which can minimize the gap 

between realistic value and the 

approximation. 

Because the laboratory experiment with a 

higher precision is not always feasible, a 
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simplified mathematical simulation and a 

theory on inelasticity would greatly simplify 

the problem of nonlinear studies. Keeping in 

view of computer application with the use of 

algorithm for easy generation of stress-strain 

characteristics of the engineering material, 

this paper introduces an algorithm for the 

idealization of a non-linear stress-strain 

curve for different structural masonry 

materials. 

 

2. RESEARCH OBJECTIVES 

The current research is carried out to develop 

an algorithm which can be useful for 

assessing the idealization of stress-strain of 

curves of structural materials used in brick 

masonry infill frame. As stated above, in 

general case, stress-strain relationship is 

treated linearly. But, for the nonlinear studies 

of structural system this is not adequate. To 

predict the correct stress-strain diagram is 

easier said than done. Hence, here is a model 

presented, which deals with idealization of 

stress-strain curve from the quadratic family. 

For this, the relation between stress (σ) and 

modulus of elasticity (E) is assumed to be 

parabolic. The method presented here is 

called PLP fit model. 

 
3. PREVIOUS RESEARCH 

From the pioneering work of Pager (1959), 

people have felt the necessity of the study on 

non-linear behavior of engineering materials 

as the strength of a structure depends on the 

strength of the materials from which it is 

made [1]. Actual material strengths cannot be 

known precisely. Structural strengths 

furthermore depend on the workmanship, the 

quality of supervision and inspection. Since 

non-linear solutions are achieved by 

considering lot of assumptions, which in turn 

cause the deviation in the actual behavior of 

the material, the divergence between the 

actual and the idealized curve should be 

minimized as far as possible. In this aspect, 

various attempts have been made to define 

empirical equations that would fit 

experimentally observed stress-strain curves. 

It is obvious that nonlinear nature of the 

stress-strain curve is due to the change in 

modulus of elasticity at every points of strain 

in stress function. The physical measure of a 

material to deform under load is termed as 

modulus of elasticity. It is the ratio of the 

stress to the strain of a material or 

combination of materials. Symbolically it is 

denoted by a letter E. It is made up of 

multiple parameters including the strength of 

materials used in whole assembly of 

structure, basically the unit weight of the 

structure, volume of each component and the 

materials etc. Even if light weight units are 

used versus normal weight units, the 

modulus will be different. Similarly, varying 

the type of materials of the components or 

the varying the sizes can also affect the 

modulus of elasticity.  

Plasticity is defined as a permanent 

deformation of material by the application of 

stresses which are greater than those 

necessary to cause yielding of the material 

[1]. In general it is cumbersome to make 

exact mathematical model of the stress-strain 

curve, but some approximations can be 

made, from which useful conclusions can be 

drawn. Masonry materials like bricks and 

mortar in its reality possess inelastic in 

nature as they can not bear tension. In order 

to solve the nonlinear problems, it is 

necessary to make some assumptions. The 

first is that the material is isotropic, that is, it 

has same properties in all directions and it 

remains isotropic during plastic deformation. 

Second assumption is that the material obeys 

Hook’s law up to the elastic limit, where 

there is a sharp yield followed by plastic 

deformation. It is further assumed that during 

the plastic deformation the rate of straining 

has no effect on the material. But the 

formulations based on these assumptions 

bear only a superficial resemblance to the 
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stress-strain curve. Many past researchers 

have contributed to find the formulation of 

idealized curve to minimize the deviation 

between the actual and the idealized curve. In 

this concern, Ludwig made various attempts 

to define empirical equations that would fit 

experimentally observed stress-strain curves. 

The following is of the Ludwig’s formula. 

(1) 

Where, a, b, and n are constants. If n=1 the 

equation represents a rigid constant strain 

hardening material of yield stress of a. If n < 

1 then the constant a still equal to the yield 

stress, but beyond this, curve posses 

nonlinear. If the constant a = 0 and n < 1 

then this represents a material that is inelastic 

from the beginning of the stress-strain curve 

and exhibit no definite yield point.  

Theory of inelasticity can be simplified if 

simple continuous function can be derived to 

approximate the stress-strain curve over both 

the elastic as well as inelastic range [2]. In 

the case of most of the metals at room 

temperature, the stress-strain diagram has a 

finite length which is linear in elastic range 

followed by the non-linear curve in the 

inelastic range. It is almost not possible to 

find a single equation, which will closely 

approximate the stress-strain curve over the 

complete range. In this model, the stress 

strain diagram is approximated by two 

straight lines describing slope E and slope 

αE, where E is the modulus of elasticity and 

α is the strain-hardening factor for the 

material. The intersection of the two straight 

lines defines the yield stress σy and the yield 

strain εy. The two functions representing the 

stress-strain diagram are: 

ε ≤ εy (elastic stress and strain)    (2) 

 

         (3) 

 

 

      ε ≥ εy  (inelastic stress and strain) (4)

  

        (5)

    

Based on the assumption of a linear 

relationship between ultimate longitudinal 

compressive stress and lateral tensile stress 

of the brick unit, similar formulations were 

made [3]. Using force equilibrium, i.e. the 

total lateral tensile stress of the brick is equal 

to the total compressive force in mortar, and 

equality of lateral strains in brick and mortar, 

the formula to predict brickwork strength is 

obtained. Biaxial tension-compression 

strength envelopes of brick units of various 

strengths were established [4]. Further, 

behavior of mortar was investigated under 

tri-axial compression.  

A single mathematical model for stress-strain 

relation as shown in equation 6 was 

formulated by Popovic [5]. Where, σu is the 

cylindrical strength, εu is the ultimate strain 

and experimental constant n. Poisson’s ratio 

is assumed to be constant, unless the material 

in one of the principle directions has either 

cracked or crushed. In either of those cases, it 

is set to be zero. Ultimate strengths in tension 

and compression are specified and when 

either is attained the material is assumed to 

lose its ability to carry load in that direction. 
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Further, Naraine and Sinha (1989) gave an 

exponential relationship represented by the 

following equation 7 [6]. They found that, 

this expression for envelope curve remains 

same for both the cases of loading i.e. 

loading perpendicular to the bed joint and 

loading parallel to bed joint. 
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        (7)

  

Here, σu and εu are the ultimate values of 

stress and strains.  

Yun Ling (1996) has worked on weighted-

average method for determining uni-axial, 

true tensile stress vs. strain relation after 

necking is presented for strip shaped samples 

[7]. The method demands the identification 

of a lower and an upper bound for the true 

stress-strain function after necking and 

expresses the true stress-strain relation as the 

weighted average of these two bounds. The 

weight factor is determined iteratively by a 

finite element model until best agreement 

between calculated and experimental load 

extension curves is achieved. Ling’s method 

use the power law, σ = Kε
n where K and n 

are empirical constants determined from 

known true stress-strain data before necking. 

This may be useful for extrapolation of the 

true stress-strain curve beyond necking. But, 

he has defined the method of weighted 

average for predicting true stress-strain 

functions from engineering stress-strain data. 

The following expression as shown in 

equation 8 is suitable for reproducing 

experimental tensile load-extension curves. 

However this method is not recommended 

for prediction of fracture strain.  

 

        (8) 

 

 

Ashok Saxena (1997) has mentioned that 

often, it is not possible to precisely define the 

critical stress at which plastic deformation 

commences, therefore, the operational 

beyond the yield strength, the material 

continues to deform plastically until 

instability is reached [8]. The stress, at which 

instability occur σu is the ultimate tensile 

strength and the corresponding strain εu is 

called the ultimate strain. Beyond the 

ultimate strain, it is concentrated in the 

region where the neck develops and 

eventually fracture occurs.  

In the same way, Dinesh Panneerselvam et. 

Al. (2002) have presented a new nonlinear 

visco-elastic model for the behavior of 

concrete, which enables to describe 

concrete’s creep and also creep failure and 

thus its failure envelope [9]. Yuji Kishino 

(2002) has demonstrated the incremental 

nonlinearity observed in numerical tests 

conducted by a discrete element method 

proposed [10]. Through a series of true tri-

axial stress-probe tests, he found that the 

direction of plastic strain increment changes 

with the component of stress increment that 

is orthogonal to the current stress and the 

yield surface normal. The result suggests that 

the plastic deformation is accompanied by 

multiple shear mechanisms. In the same way, 

Wang Tiecheng, Lu Mingi et. Al. (2003) 

have used tri-axial loading for finding stress-

strain relation of concrete material [11]. The 

method was based on an orthotropic model.  

Hualiang Zhong (2006) used a least-squares 

method to calibrate an exponential model of 

pig liver based on the assumption of 

incompressible material under a uni-axial 

testing mode [12]. With the obtained 

parameters, the stress-strain curves generated 

are compared to those from the 

corresponding model built in ABAQUS and 

to experimental data, resulting in mean 

deviations of 1.9% and 4.8%, respectively. 

 

4. IDEALIZATION FOR PLP FIT 

MODEL OF STRESS-STRAIN 

CURVE 

In the model presented here, it is assumed 

that modulus of elasticity E0 remains 

constant up to yield limit (Figure 1). As it 

crosses the yield limit, stress-strain behaves 
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nonlinear. The curvilinear path of the curve 

is idealized in the form of second order 

polynomial as shown in the equation 9 

shown below. 

εεσ ba +=
2

      (9) 

Where a, b are the constants, which can be 

determined by the relations shown in 

equations 10, 11 respectively.  
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Unlike the model of Popovic, Sinha, and 

Ling [5, 6, 8] this model does not require any 

kind of experimental constants. Also, this 

model does not behave exponential nature of 

the curve. The simplicity behind this model 

is that above yield limit, it is assumed that 

the curve possesses perfectly second order 

polynomial. And, below the yield point, 

material behaves perfectly linear up to elastic 

limit. As the masonry materials like bricks 

and mortar fails in tension and shear very 

quickly even before the strain becomes finite, 

to identify the nonlinear range above yield is 

too difficult. In this regard, the quadratic 

model presented (equation 12) in this paper 

is assumed to be sufficient enough for 

materials used in masonry structures. In this 

model, yield stress (σy), yield strain (εy), 

ultimate stress (σu), and ultimate strain (εu), 

are considered to be known for concerned 

materials. 
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Since, above the yield point, the stress-strain 

curve follows single curve, the modulus of 

elasticity E for the stress-strain curve can be 

considered as: 
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The general expression for the modulus of 

elasticity E shown above in equation 13 

shows that, initial tangent modulus of 

elasticity E0 is two times the secant modulus 

of elasticity at the yield point. Similarly, 

when the yield stress (σy), ultimate stress 

(σu), initial tangent modulus of elasticity 

(E0), and yield strain (εy), are known, 

ultimate strain (εu) can be estimated as 

(equation 14):  
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Supplementary works have been carried out 

for the idealization of infill material samples 

for brick, and mortar as shown in Figure 5 

and 6 and verified with the experimental 

data. 

 

5. EXPERIMENTAL WORKS 

In the current research work, the stress-strain 

curves obtained from experimental tests are 

presented of the materials used in brick 

masonry infill frames. Some samples 

(minimum of 10) of bricks and mortars are 

tested for compressive strength test. With the 

results thus obtained, idealized stress-strain 

curves (PLP fit model) are further verified. 

Tests are conducted for different types of 

brick specimen, which were collected from 

different manufacturers and categorized as 

machine made brick, Harisiddhi bricks, two 

locally available bricks Local-1 and Local-2; 

and two traditional old bricks Old-1 and Old-
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2. The size of the locally available bricks, 

Harisiddhi and machine made bricks were in 

an average of 230 mm length, 110 mm width 

and 55 mm thickness. Whereas the size of 

traditional old bricks were 210 mm length, 

105 mm width and 55 mm thickness. 

Traditional old bricks were cut into cube of 

50x50x50 mm3, such that size factor could be 

considered in the evaluation of stress-strain 

results. Old traditional bricks were collected 

from the old houses which were constructed 

since at least 2 decades. Ten samples from 

each category of bricks are tested 

experimentally for axial compression. 

During the testing, in most of the samples, 

the initial portion of the load-deflection curve 

shows nonlinearity, which is attributed to 

slackness in the test frame. Hence, load-

deflection curve is modified updated by 

shifting origin of the load-deflection curve as 

shown in Figure. 2. Based on this load 

deflection data, stress and strain values have 

been evaluated and fitted into second order 

polynomial curve to obtain fitted stress-strain 

curve. On this curve, the value of initial 

modulus of elasticity E0, ultimate strength fu 

and the ratio 
uf

E0  are computed. Further, 

average values are calculated for the initial 

modulus of elasticity (E0)average, ultimate 

strength (fu)average and the ratio 

averageuf

E








0  

for each material. Another equivalent 

average value of initial modulus of elasticity 

E0 is computed by, 

   

( ) ..)( 0
.0 averageu

averageu

averageeq f
f

E
E 








=  (15) 

 

This average E0 values is further considered 

as an initial tangent modulus of elasticity of 

the concerned material (Table 1). Similar 

evaluations are adopted for other mortar 

specimens too. Mortar cubes are tested with 

the cube size of 50x50x50 mm3 with the 

water cement ratio of 0.7 and the mix 

proportions of 1:3, 1:4 and 1:6 ratios.  

 

6. COMPRESSIVE STRENGTH TEST 

For the compressive strength test of brick 

units, tests are performed conforming to the 

requirements of IS 3495 (Part I) - 1976. The 

specimens are immersed in water for 24 

hours, and then removed from water and air 

dried. The frogs are filled and flushed with 

the face of the brick with 1:1 cement and 

sand mortar. This sample is cured for four 

days. Then the specimen is placed in a 

compression-testing machine with flat faces 

horizontal and the mortar filled face 

upwards. The load is applied at the rate of 14 

MPa/min until the brick specimen fails. To 

obtain the stress-strain curve, average 

modulus of elasticity, and ultimate strengths, 

intermediate values of load and deflection are 

recorded and above mentioned procedures 

are followed. The fitted stress-strain diagram 

for different brick samples are shown in 

Figure 3. 

In the case of mortar, ten different samples of 

mortar in each mortar mixes of 1:3, 1:4 and 

1:6 conforming to the requirements of IS: 

2250-1981 are tested. Since the bond 

between mortar and masonry units is largely 

influenced by initial rate of water absorption 

of masonry units, 0.7 water cement ratio was 

adopted in the present study. To prepare the 

mortar specimens, the cement and sand was 

mixed in the required proportion properly, 

then water was added and the mixture was 

mixed thoroughly until it is of uniform color. 

The mortar was then placed in the prepared 

and well-greased mould of the above-

mentioned size and numbers. The mortar was 

compacted on the vibrating table. The 

compacted cube was then kept in room 

temperature of 27˚C ± 2˚C for 24 hours. The 
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cubes were then removed from the mould 

and then immersed in clean fresh water for 

28 days. After the compressive strength tests, 

as in the case of bricks, the fitted stress-strain 

curves of mortar specimens are plotted as 

shown in Figure 4. 

 

7. RESULTS 

Experimentally obtained compressive stress-

strain diagrams for bricks and mortar are 

shown in figures 2 and 3. Results show that 

machine made and Harisiddhi bricks have 

better performance than the locally available 

bricks. Scaling down the mortar grade 

quickly reduces its ultimate compressive 

strength. Results for average modulus of 

elasticity, ultimate strength, Poisson’s ratio, 

and yield strengths for both brick and mortar 

samples are shown in Table 1. Similarly, 

compressive stress-strain diagrams obtained 

from both experimental and idealized PLP fit 

model are plotted in figures 5 and 6. Looking 

at the results, it can be observed that the 

proposed idealized PLP fit model has 

remarkably high correlation with the curves 

obtained from experimental investigation. 

For the verification purpose, stress-strain 

diagrams are obtained for locally available 

Local-1 bricks using Popovic model 

(equation 6), Exponential (equation 7), 

Bilinear model (equation 2 – 5), PLP Fit 

model (equation 12); and these models are 

verified with the experimentally obtained 

stress-strain diagram (Figure 7). Result 

showed that Popovic and PLP Fit models 

have high correlation with experimental 

results in comparison to Bilinear and 

Exponential models. 

 

8. CONCLUSIONS 

It is obvious that the current trend of 

computational technology demand more 

reliable data, which further necessitates 

detailed study on that or the use of reliable 

simulation tool. In the case of nonlinear 

studies, either the sufficient experimental 

data or the efficient idealized models are of 

very importance. Since the experimental 

investigations are not cost effective, the 

models like this might be one of the good 

alternative tools for generating idealized 

stress-strain curves of structural materials. In 

this context, the current model can be a good 

tool for idealizing stress-strain curves of 

engineering materials. The current research 

has simply shown the possibility behind the 

technique for simulation. 
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Figure 1: Idealization of stress-strain curve 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Consideration of strain hardening effect in load deflection curve 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Stress-strain diagram in compression of different types of brick units 
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Figure 4: Compressive stress-strain diagram of different mortar mixes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: PLP Fit model of stress-strain curve compared with experimental stress-strain curve for brick samples: (a) 

Machine made, (b) Harisiddhi, (c) Local -1, (d) Local – 2, (e) Traditional Old – 1, and (f) Traditional Old – 2 
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Figure 6: PLP Fit model of stress-strain curve compound with experimental stress-strain curve for mortar samples: (a) 

Mortar 1:3, (b) Mortar 1:4, and (c) Mortar 1:6 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Comparative stress-strain diagram of locally available brick Local-1 
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Table 1 Experimental results of specimen test 

Specimen 

type 

Modulus 

of 

Elasticity 

(MPa) 

Poisson’s 

Ratio 

Yield 

Strength 

(MPa) 

Ultimate 

Strength 

(MPa) 

Old-1 107 0.10 3.05 7.50 

Old-2 594 0.13 4.75 11.85 

Local-1 2317 0.12 1.32 8.80 

Local-2 4576 0.14 1.25 9.11 

Machine made 2938 0.11 2.55 16.97 

Harisiddhi 5365 0.09 6.44 16.01 

     

Mortar 1:3 5026 0.16 1.7 11.28 

Mortar 1:4 3651 0.18 0.81 5.39 

Mortar 1:6 2616 0.14 0.61 4.06 

 

 

 


