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Abstract: The Just-in-Time sequencing of different products is a well-known socio-industrial 

problem which is supposed to minimize the maximum and total deviations between actual and 

ideal productions; and the apportionment problem is a socio-political problem which aims to 

allocate representatives to a state as close as its exact quota. Significant amounts of research have 

been done in these two problems independently. The relation between them has been studied 

from last decade. In this article, both problems are addressed with some just-in-time sequencing 

algorithms and their characterizations via apportionment. 
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1. INTRODUCTION                          

1.1 Just-in-Time Sequencing Problem 

Just-in-time (JIT) manufacturing system is a 

management philosophy based upon the 

planned elimination of all wastages and on 

the continuous improvement of productivity; 

which is done by producing only the 

necessary amount of necessary products at 

the right place and at the right time. The goal 

of JIT system is to minimize the presence of 

non-value-adding operations and non-

moving inventories in the production line, 

which results in shorter throughput times, 

better on-time delivery, higher equipment 

utilization, better quality products, higher 

productivity, reduced cycle times, lesser 

space requirement, lower costs and greater 

profits. The key behind a successful 

implementation of JIT process is the 

reduction of inventory levels at the various 

stations of the production line; so it is known 

as lean or stockless production system. The 

major aim of this system is to satisfy 

customers for various demands of different 

products without holding large inventories 

and incurring large shortage of the products. 

The mixed-model JIT sequencing is the 

problem of determining production sequence 

of different models of the same product  

produced on the line by the JIT system, 

which was developed and perfected by 

Taiichi Ohno (referred as the father of JIT 

system) in the Toyota Production System 

(TPS) around early 1970. This problem is 

well-studied as a Product Rate Variation 

(PRV) problem by Kubiak (1993). Some of 

the basic key elements of JIT production 

system are group technology, production 

smoothing, level scheduling, labour 

balancing, set up time reduction, standard 

working, visual controls etc.  

In JIT sequencing (scheduling) environment, 

products (jobs) that complete early must be 

held in finished goods inventory till their due 

dates, while products that complete after 

their due dates may cause customers to shut 

down operations. Therefore, an ideal 

schedule is one in which all products are 

finished exactly on their assigned due dates. 
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JIT encompasses a much broader set of 

principles than just those relating to due 

dates, but scheduling models with both 

earliness and tardiness penalties do much to 

capture the scheduling dimension of a JIT 

approach. The concept of penalizing both 

earliness and tardiness has spawned a new 

and rapidly developing line of research in 

scheduling theory. TPS used the JIT 

sequencing to distribute production volume 

and mix of models as evenly as possible over 

the production sequence (Monden, 1983; 

Groenevelt, 1993). The JIT sequencing has 

become a universal and robust concept to 

balance the two goals of the manufacturing 

companies: usage goal and loading goal 

(Monden, 1983; Miltenburg, 1989; 

Miltenburg et al., 1989). The former 

maintains a constant rate of usage of all items 

in the production sequence whereas the latter 

one smoothes the workload on the final 

assembly process to reduce the chance of 

production delays and stoppages. Kubiak 

(2005) uses JIT sequencing to balance 

workloads throughout just in time supply 

chains intended for low-volume high-mix 

family of products. The purpose of 

optimal/balanced sequence is to keep the 

actual production level and the desired 

production level as close to each other as 

possible all the time. For more recent 

literature, we refer to the brief survey of 

Dhamala and Kubiak (2005). 

1.2. Apportionment Problem 

The problem of how to make a fair division 

of resources among competing interests 

arises in many areas of applications in the 

real world which plays a significant role in 

decision sciences. A particular problem of 

fair division having wide application in 

governmental decision-making is the 

apportionment problem. The problem of how 

many representatives should be allotted to a 

state came in existence since the beginning 

of the Republican Political system. That is, 

apportionment problem has its origin in the 

proportional election system developed for 

House of Representatives of United States, 

where each state receives seats in the house 

in proportion to its population (Balinski and 

Young, 1982). Moreover, the American 

Constitution (Article I, Section 2) says that 

apportionment of representatives to a state 

should be proportional to its population. 

Literally, this would mean that some 

fractional representatives are also to be 

allotted to the states, which is impossible and 

meaningless. So some rounding methods 

must be used to convert the fractions to 

whole numbers, which are discussed in 

section 4.2. Though various methods have 

been used in apportioning the seats in the 

parliament over the years, often the results 

seem unfair to many people and bitter 

disputes have resulted. In section 3, we give 

a list of surprising paradoxes that happened 

as a result of using one method or another. 

Although there is not a single method 

meeting all the requirements imposed by 

political needs, a (perfect) apportionment 

method is supposed to satisfy the following 

basic properties (see [20]): 

• Quota Condition: each state should have 

seats within one of their quotient; e.g., if 

a state should receive 5.3 representatives, 

then it can receive 5 or 6 seats. This 

property is called “satisfying quota”, 

discussed later as iq    ≤ ia ≤ iq   . 

• House Monotonicity: when the total 

number of representatives (i.e., house 

size) increases, then any state’s number 

of representatives should not decrease. 

• Population Monotonicity: the number of 

representatives of any state should not 

decrease as its population increases. 

Furthermore, any method should not 

artificially favor large states at the 

expense of the smaller ones and vice-

versa. 
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• Quota Monotonicity: the actual 

apportionment of any state should not 

decrease as its quota increases 

• Minimum Requirement: every state 

must have at least one representative. 

• Uniformity: all states should receive the 

number of representatives by the same 

formula for representation. 

 

2. MODELS OF JIT SEQUENCING 

PROBLEM 

Consider n  products to be produced within 

the specified time horizon, with demands                            

1 2, ,....., nd d d ; such that 
1

n

i

i

d D
=

=∑ . The 

time needed to produce one unit is assumed 

to be independent on the product and time 

needed to switch from one product to another 

is assumed to be negligible. Without loss of 

generality, it can be supposed that it takes 

one unit of time to produce one unit of 

product and thus the time horizon is equal to 

D  time units. If id

i D
r =  with 

1

1
n

i

i

r
=

=∑ , is 

the ideal production rate for the parts of type 

i , then the scheduling goal for the assembly 

line is to maintain the total cumulative 

production of product i  to the total 

production as close to ir  as possible. This 

means exactly ikr  units of product i  should 

be produced in the first k  time 

periods ( )1, 2,....,k D= . 

Let , 1, 2,...., ; 1, 2,....,ikx i n k D= = , be the 

total cumulative production of product i  in 

the time period 1 through k . For a convex 

symmetric penalty function 

, 1, 2,...,iF i n=  with minimum ( )0 0iF = ; 

the maximum deviation and sum deviation 

just-in-time problems are formulated as 

follows: 

( ) ( )max
,

minmax 1i ik i
i k

Z F x kr= −

 

( ) ( )min

1 1

min 2
n D

i ik i

i k

Z F x kr
= =

= −∑∑  

subject to  

 ( )
1

, 1, 2,....., 3
n

ik

i

x k k D
=

= =∑

 ( ), 1, 2, ......, 4iD ix d i n= =

 ( ) ( )1
, 1, 2,....., ; 1, 2,....., 5iki k

x x i n k D
−

≤ = =  

ikx  is a non-negative integer                      ( )6  

The constraint ( )3 ensures that exactly k  

units are scheduled in periods1 through k , 

and ( )5  represents the monotone condition. 

Various scientists have studied above 

problem via different angles with little-varied 

objective functions. 

Miltenburg (1989) suggested following 

squared and absolute sum deviation just-in-

time sequencing objectives to be minimized: 

( ) ( ) ( )
2

1 1

7
n D

s ik i

i k

f x x kr a
= =

= −∑∑

 

( ) ( )
1 1

7
n D

a ik i

i k

f x x kr b
= =

= −∑∑
 

He proposed three algorithms: the first one to 

find the nearest integer point, the second one 

to test the feasibility of the schedule and the 

third one (a heuristic) to generate a feasible 

schedule for the mixed-model JIT production 

system. Inman and Bulfin (1991) gave an 

algorithm to minimize the following 

objective function                                   

                     

( ) ( ) ( )
2

1 1

8
n D

ik ik

i k

f y y t
= =

= −∑∑
 

where iky  and 

2 1
2 i

k
ik r

t −= ( )1, 2,....., ; 1, 2,.....,i n k D= =  

are the times at which 
th

k unit of product i  is 
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actually produced and ideally needed 

respectively. The problem may be interpreted 

as a single-machine scheduling problem with 

each unit of product treated as a separate job, 

where ikt is the due date of job ( ),i k . Steiner 

and Yeomans (1993) proposed the following 

maximum deviation objective function to 

minimize:  

 ( ) ( )
,

max 9ik i
i k

g x x kr= −  

They reduced the problem into release 

date/due date decision problem representing 

as a matching problem in a bipartite 

graph ( )1 2 ,G V V E= ∪ , where 

{ }1 0, 1,....., 1V D= − denotes starting times 

and 2V  corresponds to the copies of each 

demand. To find a feasible sequence in the 

release date/due date decision problem is 

similar to find a perfect matching in bipartite 

graph G  with the additional property that 

lower numbered copies of a product are 

always matched to earlier starting times than 

higher numbered copies. Kubiak and Sethi 

(1994) minimized the following absolute 

total deviation objective 

( ) ( )
1 1

10
n D

i i

k

i k

h x X kr
= =

= −∑∑  

by reducing it into assignment problem, 

which is efficiently solved, viz. assignment 

problem with 2D  nodes can be solved in 

( )3
O D  time (Papadimitriou and Steiglitz 

1982). Tijdeman (1980) studied Chairman 

Assignment problem providing an algorithm 

that finds a solution x  of the objective 

function 

( ) ( )
,

max 1 11ik i
i k

g x x kr= − <   

with upper bound unity. Later, Jozefowska et 

al. (2006) vigorously characterized this 

algorithm with apportionment problem 

proving that Tijdeman algorithm is quota-

divisor method. 

Our main aim is to link up these JIT 

sequencing algorithms with the 

apportionment problem. 

 

3. BASIC CONCEPT OF 

APPORTIONMENT PROBLEM 

The apportionment problem is the problem of 

determining how to divide a given integer 

number of representatives or delegates 

proportionally among the given 

constituencies according to their respective 

sizes. This is described as follows: Assume 

that there are s states (or parties) indexed 

1, 2, ...,i s= , which are to receive seats of 

representatives from the house of size h . 

Suppose every state has a population ip  and 

1

s

i

i

p p
=

=∑  is the total population. The 

fundamental problem is to apportion ia  seats 

to state i , where ia ’s must be integers such 

that 
1

s

i

i

a h
=

=∑ . An ideal apportionment is 

assumed to satisfy the equation  i ip a

p h
=  for 

all states, which gives ip h

i p
a = , called 

“quota”  for 
th

i state denoted by iq , not 

necessarily integer. Since only the integral 

ia  can be assigned to any state, the crucial 

point is how to handle this problem fairly. 

One immediate idea is “rounding”: for each 

state, ideal apportionment should either be 

rounded down to the next lower integer or 

rounded up to the next higher integer; but 

should never exceed these bounds. 

To this point, Balinski and Young (1975) use 

the following concept: The ideal 

apportionment ip h

p  is called “exact quota” 

denoted by iq . The largest integer less than 

or equal to  iq  is called the “lower quota” il ; 

the smallest integer greater than or equal to 

iq  is called the “upper quota” iu . An 

apportionment is said to “satisfy lower 

quota” if it never gives a state less than its 
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lower quota of seats, i.e., if i il a≤  for all i ; 

to “satisfy upper quota” if it never gives a 

state more than its upper quota of seats, i.e., 

if i ia u≤  for all i ; and to “satisfy quota” if 

it does both, i.e., if i i il a u≤ ≤  for all i . 

This is known as Quota Method of 

apportionment. 

Apportionment Paradoxes 

• The Alabama Paradox: An increase in 

the size of the house can cause a state to 

lose a seat. This is known as Alabama 

paradox, appeared while using Hamilton 

Method of apportionment in 1880 in 

Alabama State, which received 8 seats 

from the house size 299, whereas it 

received only 7 seats from the increased 

house size 300. This amazing feature 

(violation of monotonicity) raised some 

surprise and anxiety in the affected states.  

• The Population Paradox: An increase in 

a state’s population can cause it to lose a 

seat. This feature is known as population 

paradox, faced around 1900, while using 

Hamilton’s method. Still (1979) has 

defined population paradox as follows: in 

certain situations, if the population of one 

state is increased, while holding the other 

state populations and house size is fixed, 

then the former state may lose a seat.  

• The New States Paradox: Adding new 

state and increasing house size can cause 

another state to lose seats, which is 

known as New States paradox, 

discovered in 1907 when Oklahoma 

became a new state. As a new state, 

Oklahoma received 5 new seats 

increasing the old house size from 386 to 

391. As a result, Maine’s apportionment 

went up from 3 to 4 and New York’s 

went down from 38 to 37. But the intent 

was to leave the number of seats 

unchanged for the other states.  

• The Quota Paradox: Sometimes it may 

occur that a state receives a number of 

seats which is smaller than its lower 

quota or larger than its upper quota, 

known as Quota paradox and faced while 

applying Jefferson’s method. For 

example, in the apportionment based on 

the 1820 census, New York had a 

population of 1,368,755, the total US 

population was 8,969, 878, and the house 

size was 213. The New York’s quota was 

thus 
1,368,755

213 32.503.
8,969,878

q = × =  

But Jefferson method apportioned New 

York 34 seats.   

 

4. APPORTIONMENT METHODS 

Several apportionment methods are 

suggested in apportionment literature in 

different intervals of time by many 

mathematicians of US and Europe. Some of 

them are briefly explained here. 

4.1 Hamilton’s (Largest Remainder) 

Method 

This is the simplest method of apportionment 

proposed by A. Hamilton, which was used to 

apportion the House of Representatives from 

1850 to 1900, under the name of Vinton 

method of 1850. In this method, each state is 

given its lower quota of seats. Then the states 

are listed in order, beginning with the state 

having the largest fractional remainder 

(i.e., i iq l− ) and continuing on down to the 

state with the smallest such remainder. The 

remaining seats are then assigned one each to 

the states ranking with the highest fractional 

part on the list, until the house is full. This 

method satisfies quota rule, however suffers 

Alabama, population and New States 

paradoxes. To avoid these shortcomings, the 

Divisor methods are developed by E. V. 

Huntington. 

4.2 Divisor (Huntington) Methods 

All divisor methods, discussed below involve 

a notion of rounding after finding a suitable 

divisor d . To use this method, we first look 

at the exact quota ip h

i p
q = . The quantity p

h
is 

equal to the average number of population 

represented by each seat in the house. Let 
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od = p

h
. The problem is whether it is 

possible to solve the apportionment problem 

by using a workable value of divisor d , 

which may not equal to od , but very near to 

it. The respective new quotas will be 
' .ip

i d
q =  The solution for d is not unique; 

however the numbers ip

d
 will be very close 

to quotas .i

o

p

i d
q =  Interestingly, rounding  

ip

d
 might give a different whole number than 

rounding .i

o

p

d
 The various divisor methods 

differ in how they define rounding, which 

involves the choice of a dividing function 

( )D a in each interval of 

quotients[ ], 1 ,a a + for each non-negative 

integer a. Then the result of rounding a 

number q  is  q     if q    q≤ < D ( q   )  

and  q     if D ( q   )< q ≤  q   . 

Here, we describe the most important divisor 

methods. 

( )i  Jefferson’s (or Greatest Divisor) 

Method: This method rounds down the 

fractional remainder (i.e., q = q   ), 

proposed by T. Jefferson and used from 1790 

to 1840. After assigning lower quotas, this 

method seeks a modified divisor d  smaller 

than the standard divisor od , and calculates 

the modified quotas. Then it rounds the 

modified quotas down to get a new set of 

minimum quotas. If there are still remaining 

seats, choose a new modified divisor smaller 

than the previous one and so on. The 

dividing function D  is ( ) 1JD a a= + . It 

does not satisfy quota rule (upper quota 

violation) and hence favors larger states at 

the expense of smaller states. 

( )ii Adam’s (or Smallest Divisor) Method: 

This method rounds up the fractional 

remainder (i.e., q = q   ), which was 

proposed by J. Q. Adam and also advocated 

by Montana, but was never practical. The 

dividing function D  of this method 

is ( )AD a a= . It does not satisfy quota rule 

(lower quota violation) and hence favors 

small states. 

( )iii Webster’s (or Major Fractions) 

Method: D. Webster corrected Jefferson’s 

method by rounding the fractional remainder 

in the usual way (i.e., rounding at the 

arithmetic mean A  between the next lower 

and next higher whole numbers of the exact 

quota q ). They simply suggested to round 

every modified quota down according to the 

standard rounding rules (i.e., if the fractional 

part is more than or equal to 0.5 , then round 

up, otherwise round down). This result of 

rounding q is defined by  q =  q   , if  

q   ≤  q < A  

and q =  q   ,  if   A q≤ < q   ;     where 

A = ( q   + q   )/2. 

The dividing function D  is 1
2

( )WD a a
+ = +  

if a h<  (if there are more seats to be 

awarded) and 1
2

( )WD a a
− = − , if a h>  (if 

some seats to be taken away). The state with 

the largest modified divisor is given 

additional seat and with the smallest divisor 

has a seat to be taken away. This process is 

continued till a h= . It does not satisfy quota 

rule and does not favor large or small states. 

It was used in the intervals 1840-1850 and 

1900-1941.  

( )iv Hill-Huntington’s (or Equal 

Proportions) Method: This is the most used 

method (1941 to present) of apportionment 

proposed by J. A. Hill and E. V. Huntington 

around 1911. They argued that states vary so 

much in size and population. When ratio of 

their representatives to populations is 

compared, some of the states are 

shortchanged compared to other ones. To 

avoid this defect, instead of rounding the 

fractional part, this method rounds according 
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to the geometric mean G  between the next 

lower and next higher whole numbers of the 

exact quota q . If the modified quota is less 

thanG , then it rounds down, otherwise 

rounds up. This result of rounding q is 

defined by q = q   , if  q   ≤  q < G  

q = q   , if G q≤ < q   ; where 

G = q q×        

The dividing function D  is 

( ) ( 1)HD a a a+ = +  if a h<  (if there are 

more seats to award) 

and ( ) ( 1)HD a a a− = − , if a h>  (if some 

seats to be taken away). This method does 

not satisfy quota rule and favors small states; 

however it does not allow Alabama paradox.   

( )v Dean’s (or Harmonic Mean) Method: 

This method, proposed by J. Dean and 

advocated by Montana, rounds at a different 

point,  Harmonic mean H , between two 

consecutive whole numbers. The result of 

rounding q is defined by 

q =  q   , if  q   ≤  q < H  

and q =   q   , if  H q≤ < q   ;     

where
2 q q

H
q q

×      =
+      

. 

Divisor function D  is ( ) ( )2 1

2 1

a a

D a
D a

+

+
= , viz. 

rounding between 1 and 2  is 1.33  rather 

than1.5 . 

To sum up the divisor methods, we define 

rank-index by ( , )r p a  where p is 

population vector and a apportionment 

vector, and fairness measure by 
ji

i j

aa

p p
>  

where the fraction i

i

a

p
 represents the number 

of representatives per person in state i . 

Ideally the persons of state i  have the same 

number of representatives per person as those 

of state j ; i.e.,
ji

i j

aa

p p
= , but of course this 

generally won’t happen because the numbers 

ia  must be whole numbers. Huntington 

(1928) made the systematic study of 

apportionment methods based upon fairness 

measure, minimizing pair wise measure of 

inequity (Balinski and Young 1977).  

Table 1. Ranking functions and fairness measure of five Huntington methods. 

  Methods      Rank-Index       Fairness measure 

(
ji

i j

aa

p a
> ) 

  Jefferson (J) 

 

 Webster (W) 

 

  Hill (H) 

 

 Dean (D) 

 

Adams (A) 

 

     
1

p

a +
 

1
2

p

a +
  

   
( )1

p

a a+
  

 

2 ( 1)

2 1

a a

a

p
+

+

      

p

a
 

        ( )j

i

p

i jp
a a−  

         
ji

i j

aa

p p
−  

        1i j

j i

a p

a p
−  

        
j i

j i

p p

a a
−  

 

( )i

j

p

i j p
a a−  

          

Thus all divisor methods share the same idea 

of rounding, but differ in the divisor 

functions, which are better discussed in table  

2 by the apportionments obtained for 36 seats 

for the 6 states. 
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Table 2 Apportionment of 36 seats among 6 states 

   State       Population       Exact Quota            Apportionment Methods 

 J            W            H           D             A 

     A 

     B 

     C 

     D 

     E 

     F 

         27,744 

         25,178 

         19,947 

         14,614 

            9,225 

            3,292 

        9.988 

        9.064 

        7.181 

        5.261 

        3.321 

        1.185 

  11           10           10          10            10 

    9             9             9            9              9 

    7             8             7            7              7 

    5             5             6            5              5 

    3             3             3            4              3                         

    1             1             1            1              2 

        1,00,000        36.000    36           36           36          36            36  

Two Basic Properties of Huntington 

Methods: By his test of inequity measure, he 

described five particular methods, but did not 

convincingly point out any method as “best”; 

however his goal was to show that method of 

Equal Proportions is the best of the five 

methods, because it is based on the most 

natural measure of difference, namely the 

relative difference given by 
min{ , }

aa ji
p pi j

aa ji
p pi j

−

. The 

two basic properties of Huntington methods 

are “house monotonicity” and “consistency”. 

If ( ),p a  and ( )', 'p a  are tied (i.e., two 

states having identical populations), then any 

method M should be “independent” between 

such states. That is, whenever for some 

p and h , ( ) ( ), , ' 'i jf p h a f p h a= =  , if 

f gives the ( )1
th

h +  seat to state i , then 

there should be an alternative solution 

g Mε , identical with f up to h (i.e., 

h hg f= ) that gives the ( )1
th

h +  seat to state 

j . Any method having this property is called 

consistent. Moreover, consistency means 

if ( ) ( ), ~ ', 'p a p a , then any two states with 

populations p and 'p , and apportionments 

a  and 'a  are equally deserving in terms of 

the operation of method M . 

Theorem 4.2.1 (Balinski and Young, 1977): 

An apportionment method M  is a house  

monotone and consistent if and only if it is a 

Huntington method. 

4.3 Parametric Methods  

A parametric method, denoted by 
δφ , is a 

divisor method 
dφ  based on ( )d a a δ= + , 

where 0 1δ≤ ≤ . Various specific parametric 

methods have been proposed: J. Q. Adams 

suggested 0δ = , Condorcet 0.4δ = , 

Webster and Sainte-Lague 0.5δ =  and 

Jefferson and d’Hondt 1δ = . The parametric 

methods are cyclic. That is, for two instances 

of the just-in-time sequencing 

1 1 2, ,....., nD d d d=  

and 2 1 1 2, ,....., nD kD kd kd kd= = , the 

sequence for 2D  is obtained by k  repetitions 

of the sequence for problem 1D . Note that, as  

δ  increases from 0  to 1, seats being 

“given-up” by the smaller states in favor of 

the larger states. This is characterized by the 

following lemma (Balinski and Ramirez, 

1999): 

Lemma: A parametric method 
αφ  gives-up 

to another parametric method 
βφ  iff α β< .  

Thus parametric method 
δφ  is most 

favorable to smaller states with 0δ =  and 

most favorable to larger states with 1δ = . 

The fundamental properties of this method 

are: Scale-invariancy: 
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( ) ( ), , ,p h p hφ φ λ= for all 0λ > ; 

Exactness: if p is integer valued 

and i

i

p h=∑ , then p is the unique 

solution ( ),p h pφ = ; Anonymity: solutions 

depend only on the values of the data, not on 

the order in which the data is presented. A 

method φ  is balanced if ( ),a p hεφ  and 

i jp p=  implies 1
i j

a a− ≤ . 

Lemma: A consistent, exact and anonymous 

method is balanced 

A method φ  is said to be cyclic if 

( ),a p hεφ  and p integer 

implies ( ), sa p p h pεφ+ + , for an example, 

Hamilton method is cyclic.  

Theorem 4.3.1 (Balinski and Ramirez 1999): 

A divisor method φ  is parametric iff it is 

cyclic. 

4.4 Quota Methods 

Balinski and Young proved that there is no 

Huntington method that satisfies quota; only 

the method of smallest divisor satisfies upper 

(ceiling of exact representation) and only 

Jefferson’s method satisfies lower quota 

(floor of exact representation). They devised 

a method, called Quota method, which 

avoids both the Alabama paradox and Quota 

paradox (Balinski and Young, 1975). This is 

the refinement of the Huntington method. 

Instead of comparing all the states in the 

minimization of shortchangedness, only 

states that are eligible to receive a seat or to 

lose a seat are considered. Eligibility means 

that they won’t exceed upper quota or won’t 

go below lower quota upon receiving or 

loosing a seat. However, this method is 

biased favoring large states, since Jefferson’s 

method is used to compare the states. To 

avoid this flaw, in the uniqueness proof for 

their method, Balinski and Young proved 

that Quota method is the only method which 

satisfies three requirements: satisfying quota, 

house monotonicity and mathematical 

consistency.  

Still (1979) defined a class of new 

apportionment methods (including Quota 

method) that are also house monotone and 

satisfy quota. The first characteristic of 

Still’s method is that all of them are defined 

recursively as follows: in the trivial case of a 

house of size 0 , all states are 

assigned 0 seats. At all larger house sizes, the 

apportionment is the same as at the next 

lower house size, but with the additional seat 

assigned to one of the states according to 

specified rules. This sequential procedure 

assures house monotonicity. The second 

characteristic is the use of eligibility set: a set 

of those states which are eligible to receive 

the additional seat, denoted by ( )E h , where 

h  is house size. The eligibility set ( )E h at 

any house size 0h > consists of all states i  

that satisfy the following tests: 

The upper quota test: the state i  satisfies 

the upper quota test if ( ) ( )1i ia h u h− < , 

where iu is the upper quota. 

The lower quota test: let ih  be the house 

size at which state i  first becomes entitled to 

obtain the next seat, i.e., ih  is the smallest 

house size 'h h≥  at which the lower quota 

of state i  is greater or equal to ( )1i h
a

−
 or 

ih = ( )1 1

1

i h

i

n
a

ip

i

p
− +

=

 
 
 

∑ . 

 For each house size g in the 

interval ih g h≤ ≤ , define 

( ) ( )1
, 1i i h

s g i a
−

= +  (the number of seats that 

state i  has in a house of size h  before an 

additional seat is assigned +1); for j i≠ , 

( ) ( ) ( ), max{ 1 , }.i i gs g i a h l h= −  If there 

is no house size g , ih g h≤ ≤ , for which  
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( ),j

j

s g i g>∑ , then state i  satisfies the 

lower quota test. 

The eligibility set ( )E h consists of all states 

which may receive the available seat without 

causing a violation of quota either at h or 

any larger house size.   

That is, ( ) { thE h i= state: 
th

i  state passes 

the upper and the lower quota tests}. 

Still (1979) proved that the eligibility set 

( )E h contains at least one state, for 0h > ; 

and all apportionment methods in the class 

are house monotone and satisfy quota. The 

states from ( )E h can be chosen in various 

ways, for example ( )i by using ranking 

functions (population, land area, alphabetical 

order, percent of minorities or women in 

population etc). ( )ii by using random 

selection. ( )iii by using quota-divisor 

methods, which are based on divisor 

methods. The only difference is that the 

states in quota divisor methods must be 

from ( )E h . This algorithm is defined as 

follows: 

 ( ) ( ),0 0i M p =  

 ( )ii if ( ),a M p hε  and ( ),k i E hε  

satisfies 
( )

k

k

p

d a
=

( )
max i

i

p

d ai
, then 

( ), 1b M p hε +  

         with 1k kb a= +  for i k=  and 

i ib a=  for i k≠ . 

It is difficult to find a perfect apportionment 

method. Even the quota methods for 

congressional apportionment are non-unique 

(Mayberry, 1978). In this regard, Balinski 

and Young (1982) give the following 

Impossibility Theorem: 

Theorem 4.4.1: There are no perfect 

apportionment methods. Moreover, it is 

impossible for an apportionment method to 

be population monotone and stay within the 

quota at the same time for any reasonable 

instance of the problem 

( )4 3 .s and h s≥ ≥ +    

4.5 Balanced Method 

Roman Shapiro [20] discovered balanced 

method, which minimizes the advantages of 

large states over small states in the 

Jefferson’s method. For each state i , this 

method uses the following formula to find 

the apportionment: 

 
( )1

i
i

p h
a

p
=

+ ∆
,    where  

1 ip

pC

ε
∆ =

+
 

Here h =  house size, ip = population of 

state i , p =  total population, 

C = coefficients to balance out the effect of 

large state. The exact quota ip h

p
 of state i  is 

multiplied by a proportion that is somewhat 

bigger than one. The epsilon ( )0 1ε≤ ≤  is 

balancing out the effect of truncation, but 

favoring large states. To reduce this effect of 

ε  for large states and to satisfy upper quota, 

there is another number C , balancing that 

effect and making sure that the results satisfy 

quota. This method satisfies quota and uses 

the same formula for representation of all 

states. However, it favors small states and 

admits the Alabama paradox. Compared to 

other methods, this method provides a better 

alternative if someone would wish to give an 

advantage to smaller states and stay within 

quota. This is the reason for the results of the 

balanced method to be similar to the results 

of the method of Smallest Divisor (Adam’s 

method). 

 

5. LINK BETWEEN JIT SEQUENCING 

AND APPORTIONMENT 

PROBLEMS 

Many authors have stirred up on the 

connection of JIT sequencing (PRV) problem 
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with apportionment problem. Bautista et al. 

(1996) have established the relation between 

JIT sequencing and apportionment problems, 

stating that the former problem can be seen 

as a constrained sequential apportionment 

problem. The monotone condition of PRV 

problem is equivalent to house monotonicity 

in apportionment. They first indicated that 

the algorithm of Inman and Bulfin (1991) is 

the Webster divisor method of 

apportionment, which is the fundamental 

socio-political question. Subsequently, 

Balinski and Shahidi (1998) proposed a 

strong approach to JIT sequencing via 

axiomatics, originally developed for the 

apportionment problem. The axiomatic 

method of apportionment depends on some 

socially desirable and crucial characteristics, 

such as satisfying quota, house and 

population monotonicity etc, which must be 

satisfied for the solution of apportionment 

problem. However, the famous Impossibility 

Theorem of Balinski and Young puts a 

limitation that there are no perfect 

apportionment methods satisfying all 

properties. Balinski and Ramirez (1999) 

vigorously characterized PRV problem in 

terms of parametric methods of 

apportionment and rounding as well. 

Recently, Józefowska et al. (2006) lucidly 

characterized some of the algorithms of JIT 

sequencing via apportionment theory. They 

classified various apportionment methods in 

a very clear way and linked JIT sequencing 

algorithms with apportionment via suitable 

pictorial representation too. Their 

transformation of two problems is 

remarkable: product (model) i corresponds to 

state i , the demand id  for model i  

corresponds to population ip  of state i , the 

cumulative production ikx of 
th

i product in 

period k  corresponds to the number ia  of 

seats apportioned to state i  in a house of size 

h . More precisely, this transformation is as 

follows: 

number of products n ⇔   number of states  

product i  ⇔  state i  

demand id for product i  ⇔   population ip  

of state i  

position in sequence k  ⇔   size of house h  

for a house of size h , ikx ⇔   apportionment 

ia to state i total demand 
1

n

i

i

D d
=

=∑ ⇔   

total population 
1

s

i

i

p p
=

=∑  

 

6. SEQUENCING ALGORITHMS AND 

APPORTIONMENT METHODS 

Inman-Bulfin (IB) algorithm: Bautista et 

al. (1996) observed that IB algorithm (1991) 

to minimize the sum deviation objective 

function (8) is equivalent to Webster divisor 

method. The optimal value is obtained by 

applying earliest due date (EDD) algorithm 

taking ikt as due dates. In IB algorithm, the 

units are sequenced according to the 

increasing order of the values 
2 1

2
i

i

k

r

−
 and in 

Webster’s method the rank-index for 

apportionment is 
2

2 1
i

i

p

a −
, thus both procedures 

are equivalent, and hence Webster optimizes 

( )8  with due dates 
2 1

2
.i

i i

k

ik r
t

−
=  

Steiner-Yeomans (SY) algorithm: Steiner 

and Yeomans (1993, 1994) proposed a graph 

theoretic polynomial time algorithm to 

minimize the maximum deviation objective 

function (9) based on the following theorem 

with target value T. 

Theorem 6.1: A just-in-time sequence with  

min max ik i
i k

x kr T− <  exists iff there exists 

a sequence that associates the 
thj copy of 

product i  in the interval ( ) ( ), , ,E i j L i j   , 

where 
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( ) ( )1,
ir

E i j j T = −    and

 ( ) ( )1, 1 1
ir

L i j j T = − + +    

are the earliest and latest starting times 

respectively of 
thj  copy of 

th
i  product in the 

final production sequence. 

The SY algorithm tests the values of T from 

the following list in ascending order 

max 1max 1
, , .....,

D dD d D

D D D
T +−− −= . 

Brauner and Crama (2004) proved that at 

least one of these values is feasible. So we 

have 

1min max 1ik i D
i k

x kr− < −  

If T ′ is feasible, then all 1, 1
D

T T T′ ≤ ≤ −  

are feasible as well. The smallest feasible 

T is denoted by 
*T  and referred to as 

optimum. Józefowska et al. (2006) proved 

that SY algorithm is a quota-divisor method 

of apportionment providing the following 

theorem. 

Theorem 6.2: The SY algorithm with 
*, 1T T T≤ <  and a tie ( ) ( ), ,L i j L k l=  

between i  and k  broken by choosing the 

one with ( ) ( ){ }1 1min 1 , 1
i kr r

j T l T− + − +  

is a quota-divisor method 

with ( )d a a T= + .  

Moreover, SY algorithm is a quota-

parametric method with Tδ = . 

Kubiak-Sethi (KS) algorithm: Kubiak and 

Sethi (1991, 1994) and Kubiak (1993) nicely 

reduced the objective function (10) under the 

constraints ( )3  to ( )6  into equivalent 

assignment problem. The key idea is as 

follows: For each product i , the ideal 

position is calculated by the formula 
* 2 1

2
, 1, 2,.....,

i

ji

j r
Z n n

− = =   and 

1,2,......, .ij d=  Let 
i

jkC  be the cost of 

assigning 
thj copy of product i  to the 

th
k period. If 

*i

jk Z< (
thj copy is produced 

too early), then the excess inventory cost 
i

jlψ  

are incurred in periods from l k=  to 
*

1i

jl Z= − . If 
*i

jk Z= , then 
thj copy of 

product i  is produced in its ideal position 

and 0.i

jkC =  If 
*i

jk Z> (
thj copy is 

produced too late), then the excess shortage 

cost 
i

jlψ  are incurred in periods from 
*i

jl Z=  

to 1l k= − . Thus the sequencing cost of 
thj copy of the product i  in period k  is 

calculated by the following formula. 

   
i

jkC =   

*

*
1

,

i
jZ

i i

jl j

l k

if k Zψ
−

=

<∑  

              
i

jkC =     0 ,           
*i

jif k Z=  

   
i

jkC =   
*

*

1

, ,
i
j

k
i i

jl j

l Z

if k Zψ
−

=

>∑    

where      1i

jl i i
j lr j lrψ = − − − − , 

                                

( ) ( ){ }, , : 1,....., ; 1,....., , 1,.....,
i

i j I i j i n j d i Dε = = = =  

 The authors proved that an optimal 

solution to minimize ( )10 subject to ( )3  

to ( )6 , can easily be obtained from any 

optimal solution of the following assignment 

problem: 

minimize  
( )1 ,

D
i i

jk jk

k i j I

C x
ε=

∑ ∑   

subject to 

      

( )

( )

( )

,

1

1, 1, 2, .....,

1, ,

0 1, 1,2, ....., , , ,

i

jk

i j I

D
i

jk

k

i

jk

x k D

x i j I

x or k D i j I

ε

ε

ε

=

= =

=

= =

∑

∑  
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where      
( ){1, ,

0, .

if i j is assigned to period ki

jk otherwisex =   

Józefowska et al. (2006) characterized KS 

algorithm based on the following three 

lemmas. 

Lemma 1. The KS algorithm does not stay 

within the quota.  

Proof: Corominas and Moreno (2003) 

observed that no solution minimizing the 

Kubiak-Sethi PRV problem ( )10 subject to 

constraints ( )3  to ( )6 stays within the quota, 

for instance of 6n =  products with their 

demands being 1 2 23d d= =  and 

3 4 5 6 1.d d d d= = = =  Since KS algorithm 

minimizes ( )10 , this proves the lemma. 

Lemma 2. The KS algorithm is house 

monotone. It is obvious due to constraint ( )5 . 

Lemma 3. The KS algorithm is not uniform, 

and hence is not population monotone. 

To sum up, the authors have classified 

various apportionment methods and 

characterize the JIT sequencing algorithms in 

the following quaternion Venn-diagram, 

where notational conventions are as follows: 

HM = house monotone methods,    

NHM = not house monotone methods,      

Q = quota methods,  

NQ = not quota methods,               

Un = uniform methods,                             

Dv = divisor methods,              

QD = quota divisor methods,          

P = parametric methods,                        

Still = Still’s methods,     

J = Jefferson, W = Webster, A = Adams,               

H = Hill, D = Dean,  Ht = Hamilton method,              

T = Tijdeman algorithm, SY = Steiner-

Yeomans algorithm, KS = Kubiak-Sethi 

algorithm,   IB = Inman-Bulfin algorithm. 

 

Figure 1. Characterization of JIT sequencing 

algorithms and apportionment methods. 

 

7. CLOSING REMARKS 

Though universally accepted independent 

solution of JIT sequencing problem is not 

available till the date, there are various 

approaches to handle this problem, some of 

them, for example, are single machine 

scheduling, assignment, Chairman 

assignment, dynamic programming, 

apportionment etc. We have tried to link up 

the JIT sequencing problem with 

apportionment problem. Assigning exact 

quota as integer number of seats from a fixed 

house size h  to a state satisfying 
1

n

i

i

a h
=

=∑ , 

itself is really a difficult real life problem. 

Among all divisor methods, Hill-Huntington 

method is near to ideal apportionment, which 

is suitable approach to JIT sequencing 

problem. While studying the existing 

literatures, we can say that both problems 

have similar nature and hence they can be 

investigated jointly. 
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