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Abstract: In this paper, we extend the work of Gaur, A.K. and Mursaleen [6] and also extend the 

work of Mursaleen, Gaur, A.K. and Saifi, A.H.[16]. We characterize the matrices that 

map ( )∆,pS r , ( )p∞∆λ , ( )pc0∆ , ( )pc∆ and ( )pr∆∞λ  into ( )tΩ . 

 

1. INTRODUCTION 

Let ∞λ , c and 0c  be the sets of all bounded, 

convergent and null sequences of ( )kxx =  

respectively. Let ω  denote the set of all 

complex sequences and let 1λ denote the set 

of all convergent and absolutely convergent 
series. 

If )( kpp =  is a bounded sequence of 

strictly positive real numbers, and if 

( )1−−=∆ kk xxx  , then we have  

)( pλ = 








∞<= ∑
k

p

kk

k

xxx :)(  ; 

( ) ( )






 ∞<∈==∞

kp

k
k

k xxxp sup:ωλ  ; 

( ) ( ) ( ){ }pxxxp k ∞∞ ∈∆==∆ λλ :  ; 

 

( ) ( ) ( ){ }pcxxxpc k ∈∆==∆ : ; 

( ) ( ) ( ){ }pcxxxpc k 00 : ∈∆==∆  

If all the terms of  )( kpp =  are constant 

and 0>p  , then  ( ) ∞∞ ∆=∆ λλ p ,  

 

( ) cpc ∆=∆  and ( ) 00 cpc ∆=∆ . The 

classes ∞∆λ , c∆ , 0c∆  are normed spaces 

under the norm  

∞
∆= xx  

where 
∞

.  is the usual norm on ∞λ , c  or 

0c . It is known that if ( ) ∞∈λkp  then 

( )pc0∆  is a paranormed space paranormed 

by ( ) ( )xgxg ∆=*  ; ( )p∞∆λ  and ( )pc∆  

are paranormed by ( ) ( )xgxg ∆=*  if and 

only if 0inf >kp , where g  is the usual 

paranorm on  ( )p∞λ , ( )pc and ( )pc0  . 

Let z be any sequence and Y  be any subset of 
ω . Then  

( ){ }YxzzxxYz kk ∈=∈= ∞−
1

1 :. ω  

For any subset X of ω , the sets  

( )1
1.λΙ −

∈
= xX

Xx

α  and ( )csxX
Xx

.1−

∈
= Ιβ  

are called the −α   and −β  duals of X . 
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We define the linear operators 

ωω →∆∆ − :, 1  by  

( ) ( )∞
+

∞ −=∆=∆
111 kkk xxxx  , 

and  

( )
∞

−

=

∞−−











=∆=∆ ∑

1

1

1
1

11
k

j

jk xxx  , 

01 =∆−
x . 

Let, 

( ) ( ){ }01
: cxkxS

kk

r

r ∈∆∈=∆
∞

=
ω  

Let ∞= 1)( kpp  be an arbitrary sequence of 

positive reals and 1≥r  , then  Gaur, A.K. 
and Mursaleen [6]  have defined a new 
sequence space 

( ) ( ) ( ){ }pcxkxpS
kk

r

r 01
:, ∈∆∈=∆

∞

=ω  

where 

( ) ( ){ }0lim:0 =∈==
∞→

kp

k
k

k xxxpc ω  

If  ( )ΚΚ,1,1,1== ep  , then the set 

( )∆,pSr  reduces to the set ( )∆rS  . For 

0=r , ( )∆,pSr  is the same as ( )pc0∆ . In 

[16] Mursaleen, Gaur, A.K.  and Saif, A.H.  
has defined  

( ) ( ) ( ){ }1,: <∈∆==∆ ∞∞ rpxxxp rkr λλ

 

where  

( )∞
∆=∆

1k

r

r xkx . 

 
1.2 MATRIX TRANSFORMATIONS 

For any infinite complex matrix 

( )∞

==
1,knnkaA  , we write  ( )nkaA =  for 

the sequence in the th
n  row of c. Let X  and 

Y be two subsets of ω . By ( )YX ,  we 

denote the class of all matrices of A such that 

the series ( ) ∑
∞

=

=
1k

knxn xaxA  converges for 

all Xx ∈  and Nn ∈ , and the sequence 

( )( ) YxAAx
nn ∈= ∞

=1
 for all Xx ∈ . 

Fricke and Fridy [8] introduced a new 

sequence space ( )tΩ . We shall give the 

definition of ( )tΩ  and some results from [8].  

For each ( )k
rr = in the interval ( )1,0  let  

( ) ( ) ( ){ }kkk tOxxxrG =∈== :ω . 

We define the set of geometrically sequences 
as  

( )
( )rGG

r 1,0∈
= Υ  

 The analytic sequences are defined by  

A = ( )








∞<∈= n
n

n
k xxx

1

suplim:ω  

 Obviously ⊆G A 

In [8] , Fricke and Fridy replaced the 

geometric sequence ( )k
r  with a non- 

negative number sequence t and defined. 

( ) ( ) ( ){ }kkk tOxxxt =∈==Ω :ω . 

Here for a given matrix A , the sequence 

( )∞

==
1nnσσ  is defined by  

∑
∞

=

=
0k

nkn aσ  

Corollary 1.2.1. ( see [8], Corollary 2B) : If 
A  is an infinite matrix and t is nonnegative 

number sequence, then  A maps 0,, cc∞λ  

into ( )tΩ  if and only if ( )tΩ∈σ . 

Corollary 1.2.2. (see [16], Theorem 2.1. and 

Theorem 3.1.): ( )( )rYXA ∆∈ ,  if and only 

if  

(i) β
XA ∈1 where,     
( )

∑

∑∑ ∑

∞

+=

∞

=

−
∞

=

−

=

−

≥

=













∞<∈=

=

1

1

1

1

1

1

1

2

2

,,converges:

km

mk

k

k

pr

k

k

j

p

k

r

N

aR

RNkNaka

pDX

kω

β

I

 ( )
( )

( ) K,2,1,and1for

bydefinediswhere

,,(ii)

,1 =<−=

=

∈

+ knraak

bbB

YXB

knnk

r

nknk
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Remark 1.2.1.  If one wishes to have a 
matrix A that transforms every null sequence 
into a sequence that conveges at least as 

rapidly as some 0↓nt , thus A must satisfy 

( )tΩ∈σ . Similarly, if t  is a nonzero 

constant sequence, then ( ) ∞=Ω λt , and in 

this case Corollary 1.2.1.reduces to the well 
known result that A preserves boundedness if 
and only if σ  is bounded.  

Remark 1.2.2.  This remark is about 
obtaining a “given rate of convergence” by 

mapping 0c  into ( )tΩ . The work [4,9] has 

shown that regular matrices can not 
accelerate the rate of convergence of every 
null sequences. Therefore we emphasize that 

having A map 0c  into ( )tΩ  does not say that 

every sequence in 0c  is accelerated, even if  

0↓nt  vary rapidly ; some sequences that 

are already in ( )tΩ  may map into other 

members of  ( )tΩ  that converge at same rate 

or slower. 

 Now we characterize the matrices that 

map ( )∆,pS r , ( )p∞∆λ , ( )pc0∆ ,  

( )pc∆ and ( )pr∆∞λ  into ( )tΩ . 

Theorem 1.2.1.  ( ) ( )( )tpSA r Ω∆∈ ,,  if 

and only if 

( i )        ( )t
k

N
a

k
r

p

nk

k

Ω∈
















∑
∞

=

−

1

1

 for some 

integer 1>N .  

( ii )       ( ) ( )( )tpSR r Ω∆∈ ,,  

where, ( ) 







== ∑

∞

=k

nnk arR
ν

ν . 

Proof.  If  ( ) ( )( )tpSA r Ω∆∈ ,,  then the 

series ∑
∞

=1k

knk xa  is convergent and  

( )( ) ( )txA
nn Ω∈∞

=1  for each Nn ∈  and 

( )( )∆∈ ,pSx r . 

In order to see that the condition ( i ) is 
necessary, we assume that for some 1>N ,  

( )t
k

N
a

k
r

p

nk

k

Ω∉
















∑
∞

=

−

1

1

 

 Let the matrix C be defined by  

( )
































==

−

r

p

nknk
k

N
aCC

k

1

 

 Then from corollary 1.2.1 , it follows 

that ( )( )tcC Ω∉ ,0 . But as, 

( ) ( ) ( ){ }pcxkxpS k

r

r 01
:, ∈∆∈=∆

∞
ω , 

( ) ( )( )tpSC r Ω∆∉ ,, . Hence there is a 

sequence 0cx ∈  such that 

( )∑
∞

=

≠
1

1
k

knk OxC . 

We now define a sequence ( )kvv =  by  

kr

p

k x
k

N
v

k

1−

=  ; 

so that k

pr

k xNkv k =












 1

. Then 

( )∆∈ ,pSv r  and  

( )∑∑
∞

=

∞

=

≠=
11

1
k

knk

k

knk OxCva  

This contradicts that  

( ) ( )( )tpSA r Ω∆∈ ,, . 

Thus the condition ( i )  is necessary.  

In order to prove that the condition ( ii ) is 
necessary we assume that ( ii ) is false. Then 

there is a sequence ( ) ( )∆∈= ,pSxx rν  with 

1=∆ k

r
xk  such that  

( )∑
∞

=

≠
1

1
ν

νν Oxrn  
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We now define a sequence ( )kyy =  by 

∑
=

=
ν

ν
1i

ixy  

 Then ( )∆∈ ,pSy r   and  

( )∑ ∑
∞

=

∞

=

≠=
1 1

1
ν ν

νννν Oxrya nn  

This contradicts the fact that 

( ) ( )( )tpSA r Ω∆∈ ,, . Thus the condition ( 

ii )  is necessary.  

 We now prove the sufficiency part of 
the theorem. Suppose that the given 
condition of the theorem is satisfied. Then 
there exists a 0>µ  such that  

n

k
r

p

nk t
k

N
a

k

µ≤
















∑
∞

=

−

1

1

, for each Nn ∈ . 

Let ( )∆∈ ,pSx r . Then 

( )
kpk

r

N
xk

1
<∆ , for sufficiently large 

value of k.. Now we write,  

( ) ∑ ∑∑
= =

+

∞

=

∈∆−∆==
m

k

m

k

kmnknk

k

knkn NmxrxrxaxmA
1 1

,1
1

,,

, 

Since, 

∑∑
∞

=

∞

=

≤∆
1

1
1

1

k
pr

nk

k

knk

kNk

rxr  , where 

( )t

Nk

r
k

pr

nk

k

Ω∈∑
∞

=1
1

1
      

n
tµ≤ , for each Nn ∈ . 

Therefore the convergence of  

∑
∞

=1
1

1

k
pr

nk

kNk

a  

implies that  

( )1
1

1
1,1 o

Nk

r
m

k
pr

mn

k

=∑
=

+  

Hence, 

( ) ∑∑
∞

=

∞

=

∆==
11 k

knk

k

knkn xrxaxA  

Since  ( )∆∈ ,pSx r  if and only if 

( )pcxr 0∈∆ , where ( )k

r

r xkx ∆=∆ . 

Therefore by condition ( ii ) it follows that 

( )xAn  exists for each ( )∆∈ ,pSx r  and 

( )tAx Ω∈ . Thus ( ) ( )( )tpSA r Ω∆∈ ,, . 

Theorem 1.2.2.  ( ) ( )( )tpA Ω∆∈ ∞ ,λ  if 

and only if  

( i )     1,

1
1

1

>∈



























∞

=
=
∑ NcNA

n

k

m

p

n
m  ; 

( ii )      ( ) ( )( )tpR Ω∈ ∞ ,λ     , where 

( ) 







== ∑

∞

=kv

nvnk arR . 

Proof.  If  ( ) ( )( )tpA Ω∆∈ ∞ ,λ  then the 

series ∑
∞

=1k

knk xa  is convergent and  

( ) ( )txAn Ω∈  for some Nn ∈  and  

( )px ∞∆∈ λ . Since, 

( )pNx

k

k

m

pm

∞

∞

=
=

∆∈













= ∑ λ

1
1

1

 

Then it follows that   

∑ ∑
∞

= =














1 1

1

k

k

m

p

nk
mNa   

converges for each Nn ∈ . Therefore ( i )  is 
necessary. 

In order to see that the condition ( ii ) is 
necessary, we assume that ( ii ) is false. Then 
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there is a sequence ( ) ( )pxx v ∞∈= λ  with 

1sup =kp

k

xν  such that  

( )∑
∞

=

≠
1

1
v

vnv Oxr . 

 We now define a sequence ( )vyy =  by  

∑
=

=
v

i

ixy
1

ν . 

Then ( )py ∞∆∈ λ  and 

( )∑ ∑
∞

=

∞

=

≠=
1 1

1
v v

vnvvnv Oxrya . This 

contradicts that ( ) ( )( )tpA Ω∆∈ ∞ ,λ . Thus 

the condition ( ii ) is also necessary. 

 We now prove the sufficiency part of 
the theorem. Suppose that the given 
conditions of the theorem are satisfied. Let 

( )px ∞∆∈ λ . Then there is an integer 








 ∆> kp

k
k

xN sup,1max . 

 Now we write , 

( ) ∑ ∑∑
= =

+

∞

=

∈∆−∆==
m

k

m

k

kmnknk

k

knkn NmxrxrxaxmA
1 1

,1
1

,,

 

Since, 

∑∑
∞

=

∞

=

≤∆
1

1

1 k

p

nk

k

knk
kNrxr  

and 

( )tNr

n
k

p

nk
k Ω∈













∞

=

∞

=
∑

1
1

1

 

Therefore the convergence of  

∑ ∑
∞

= =














1 1

1

k

k

i

p

nk
iNa  

implies that  

( )1
1

1

,1 oNr
m

k

p

mn
k =∑

=
+  

Hence, 

( ) ∑∑
∞

=

∞

=

∆==
11 k

knk

k

knkn xrxaxA  

Since, ( )px ∞∆∈ λ  if and only if 

( )px ∞∈∆ λ . Therefore by condition ( ii ) it 

follows that ( )xAn  exists for each 

( )px ∞∆∈ λ  and  ( )tAx Ω∈ . 

Thus, ( ) ( )( )tpA Ω∆∈ ∞ ,λ .  

Theorem 1.2.3.  Let ( ) ∞∈λkp . Then  

( ) ( )( )tpcA Ω∆∈ ,0   if and only if  

( i )      ;1,

1
1

1

>∈



























∞

=
=

−

∑ NcNA

n

k

m

p

n
m  

( ii )     ( ) ( )( )tpcR Ω∈ ,0  with R as above. 

This follows from the arguments given in 
Theorem ( 1.2.2 ) and [pp.80, 13]. 

Theorem 1.2.4.    Let ( ) ∞∈λkp . Then  

( ) ( )( )tpcA Ω∆∈ ,   if and only if  

( i )      ( ) ( )( )tpcA Ω∆∈ ,0  ; 

( ii )     ( )tka
nk

nk Ω∈







∞

=

∞

=
∑

11

 

 This follows from Theorem  ( 1.2.3 ) 
and [pp.80, 15]. 

Theorem 1.2.5.   ( ) ( )( )tpA r Ω∆∈ ∞ ,λ  if 

and only if  

( i )      ( )tNka kpr

k

nk Ω∈













−

∞

=
∑

1

1

 for 

every integer 1>N . 

( ii )     ( ) ( )( )tpR r Ω∆∈ ∞ ,λ   

where ( ) 







== ∑

∞

=kv

nvnk arR  
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Proof.  Let us assume that 

( ) ( )( )tpA r Ω∆∈ ∞ ,λ  but 

( )tNka

n

pr

k

nk
k Ω∉













∞

=

−
∞

=
∑

1

1

1

 for every 

integer 1>N . Then from corollary 1.2.1 and 
[8], it follows that the matrix  

( ) ( ) ( )( )tNkabB r

pr

nknk
k Ω∆∉













== ∞

− ,

1

λ

. 

 Therefore there exists an ( )rx ∆∈ ∞λ  

with 1sup =k
k

x  such that  

( )1
1

1

OxNka
k

k

pr

nk
k ≠∑

∞

=

− . 

 Now define a sequence ( )kuu =  by 

∑
=

−=
k

i

i

pr

k xNku i

1

1

. 

 It is clear that ( )pu r∆∈ ∞λ  and   

( )1
1

1

1

OxNkaua
k

k

pr

nkk

k

nk
k ≠=∑∑

∞

=

−
∞

=

. 

 This contradicts the fact that  

( ) ( )( )tpA r Ω∆∈ ∞ ,λ . 

 Hence, we must have , 

( )tNka

n

pr

k

nk
k Ω∈













∞

=

−
∞

=
∑

1

1

1

. 

 In order to see that the condition ( ii ) is 
necessary let us assume that (ii ) is false. 
Then there exists a sequence  

( ) ( )pxx rv ∆∈= ∞λ  with 

1sup =vp

v

xν i.e. 1sup =∆
kp

k

r

k

xk  

such that  

( )∑
∞

=

≠
1

1
v

vnv Oxr . 

 We now define a sequence ( )vyy =  by  

∑
=

=
v

i

ixy
1

ν . 

 Then ( )py r∆∈ ∞λ   and  

( )∑ ∑
∞

=

∞

=

≠=
1 1

1
ν ν

νννν Oxrya nn  

 This contradicts the fact that 

( ) ( )( )tpA r Ω∆∈ ∞ ,λ . Thus the condition 

( ii )  is necessary. 

 Next, suppose that the given conditions 
are satisfied. Then there exists a constant 

0>M such that  

n

pr

k

nk tMNka k ≤−
∞

=
∑

1

1

, for each Nn∈ . 

 Let  ( )px r∆∈ ∞λ . Then there is a 

positive number 






> kp

k
k

xN sup,1max  

 

 Now we write,  

( ) ∑ ∑∑
= =

+

∞

=

∈∆−∆==
m

k

m

k

kmnknk

k

knkn NmxrxrxaxmA
1 1

,1
1

,,

, 

Since, 

kpr

k

nk

k

knk Nkrxr

1

11

−
∞

=

∞

=
∑∑ ≤∆  , where 

( )tNkr
k

pr

nk
k Ω∈∑

∞

=

−

1

1

      

                                          n
tµ≤ , for each 

Nn ∈ . 

 Therefore the convergence of  

∑
∞

=

−

1

1

k

pr

nk
kNka  

implies that  
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( )1
1

1

,1 oNkr
m

k

pr

mn
k =∑

=

−
+  

 Hence, 

( ) ∑∑
∞

=

∞

=

∆==
11 k

knk

k

knkn xrxaxA  

 Since  ( )px r∆∈ ∞λ  if and only 

if ( )pxr ∞∈∆ λ . Therefore by condition ( ii ) 

it follows that ( )xAn  exists for each 

( )px r∆∈ ∞λ  and ( ) ( )nn tOxA = . Then 

( )tAx Ω∈  for arbitrary ( )px r∆∈ ∞λ . 

Thus ( ) ( )( )tpA r Ω∆∈ ∞ ,λ . 
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