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Abstract: In this paper, we extend the work of Gaur, A.K. and Mursaleen [6] and also extend the
work of Mursaleen, Gaur, A.K. and Saifi, A.H.[16]. We characterize the matrices that

mapSr(p,A), A)\,m(p), ACO(p), Ac(p)and 7\,00 (Arp) into Q(t)

1. INTRODUCTION
Let A_ , cand ¢, be the sets of all bounded,

convergent and null sequences of x = (x,()

respectively. Let @ denote the set of all
complex sequences and let A, denote the set

of all convergent and absolutely convergent
series.

If p=(p,) is a bounded sequence of

strictly positive real numbers, and if
Ax=(x, —x,_, ) . then we have

pA<oo};

Km(p)={x:(xk )e @: sup)| x,|” <oo} :
k

A (p)={x=(x, ): Axed (p)}:

Mp) = {xz(xk):zm
k

Ac(p)=1x=(x ):Axec(p) };
AC()(P):{XZ ('xk ) : Axeco(p)}

If all the terms of p=(p,) are constant
and p>0 ,then AL_(p)=AA_,

Ac(p) =Ac and Ac, (p) =Ac,. The
classesAA_, Ac, Ac, are normed spaces

under the norm
[ x| =] ax].

where ""m is the usual norm on A_, ¢ or

cy- It is known that if (p, JeX, then
Ac, (p) is a paranormed space paranormed
by g"(x)=g(Ax) ; A.(p) and Ac(p)
are paranormed by g*(x)z g(Ax) if and
only if inf p, >0, where g is the usual
paranormon A_(p), c(p)and ¢,(p) .

Let z be any sequence and Y be any subset of
@ . Then

z’l.Y:{xe w:zx=(z,x,) € Y}

For any subset X of @, the sets

X =1 (x_l.kl ) and X = 1 (x_l.cs)

xeX xeX

are called the @~ and S~ duals of X .
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We define the linear operators
AN :0— o by

Ax:(Axk )w :('xk Xkt )w ,

1 1

and
k-1 ”
A_lx:(A_lxk )T :( X, J )
Jj=1 1
A'x=0.
Let,

Axk| )::1 €q }

Let p=(p,); be an arbitrary sequence of

S (A)z{xe o: (k"

r

positive reals and r >1 , then Gaur, A K.
and Mursaleen [6] have defined a new
sequence space

S, (pA)={re @ (ax, ) € ()]

where

co(p)z{xz(xk )ea):]{i_)quxk " =0 }

If p:e:(l,l,l,KK) , then the set
Sr(p,A) reduces to the set SV(A) . For
r=0, S,(p,A) is the same as Aco(p). In

[16] Mursaleen, Gaur, A.K. and Saif, A.H.
has defined

A (A p)={x=(x):Axen (p). r<i}

where

Ax=(k Ax, ).

1.2 MATRIX TRANSFORMATIONS

For any infinite complex  matrix
A=(a, ):Zk:l , we write. A=(a,, ) for
the sequence in the n™ row of c. Let X and
Y be two subsets of @. By (X,Y) we
denote the class of all matrices of A such that

the series A, (x)= Zamxk converges for
k=1

all xe X and ne N, and the sequence
Ax=(A,(x))", €Y forall xe X.

Fricke and Fridy [8] introduced a new
sequence space Q(t). We shall give the

definition of Q(t) and some results from [8].
For each r = (rk )in the interval (0,1) let

G(r):{x:(xk)e w:x, :O(tk)}'

We define the set of geometrically sequences
as

G=Y G(r)

re(0,1)

The analytic sequences are defined by

1
A:{ xz(xk)e(o:limsup|xn n < oo }

Obviously G C A

In [8] , Fricke and Fridy replaced the
geometric sequence (rk) with a non-

negative number sequence ¢ and defined.
Qr)={x= (xk Je w: X = O(Ik )}.
Here for a given matrix A , the sequence

O- = (O-n ):,0:1

O-n = Z | ank
k=0

Corollary 1.2.1. ( see [8], Corollary 2B) : If
A is an infinite matrix and ¢ is nonnegative

is defined by

number sequence, then A maps A_,c,c,
into Q(¢) if and only if o € Q(r).
Corollary 1.2.2. (see [16], Theorem 2.1. and
Theorem 3.1.): A€ (X,Y(Ar )) if and only
if

A e X ? where,
X/ = DZ(P)

k=1 j=1

m=k+1

(ii)Be (X,Y),
where B = (b,, ) is defined by b,,
=k'(a,, —a,,, Jfor r <landn,k =1,2,K

- L o o
= | {ae a):Zk"aka:IN” converges ,Zk"‘N”“Rk‘<w ,
k=1
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Remark 1.2.1. If one wishes to have a
matrix A that transforms every null sequence
into a sequence that conveges at least as

rapidly as some ¢, l 0, thus A must satisfy
oc Q(l‘). Similarly, if # is a nonzero
constant sequence, then Q( ) A, and in

this case Corollary 1.2.1.reduces to the well
known result that A preserves boundedness if
and only if o is bounded.

Remark 1.2.2. This remark is about
obtaining a “given rate of convergence” by
mapping ¢, into Q(t). The work [4,9] has

shown that regular matrices can not
accelerate the rate of convergence of every
null sequences. Therefore we emphasize that
having A map ¢, into Q.(t) does not say that

every sequence in ¢, is accelerated, even if
t, 1o vary rapidly ; some sequences that
are already in Q(t) may map into other
members of Q(t) that converge at same rate

or slower.

Now we characterize the matrices that

map S, (p.A),  AL(p),  Ac(p),
Ac(p)and A_(A, p) into Q(r).

Theorem 1.2.1. Ac (S, (p.A).Q(r)) if
and only if

-1

(i) Slay, |
k=1

€ Q(¢) for some

integer N > 1.
(i)  Re(s,(p.a).Q))

)= S |

Proof. If Ae (Sr(p,A),Q(t)) then the

where, R =

series Zankxk is convergent and

(An(x))::leﬁ(t) for each ne N and
xe(s,(p.4)).

In order to see that the condition ( i ) is
necessary, we assume that for some N >1,

il

S, Nk— ¢ Q1)

k=1

Let the matrix C be defined by
fntl
N Pr
k r

C:(an ): ank

Then from corollary 1.2.1 , it follows
that Ce (CO,Q(I) ). But as,

5,(p.8)=1xe 0: (kA | o) |
CeE(S,(p,A),Q(t)). Hence there is a

sequence XE ¢, such that
> Cux, 20(1).

k=1

We now define a sequence v = (vk ) by

il

NPA
v, = v X
<
so  that v,|k"N" |=x,.  Then

ve S,(p,A) and

Z Ay Vi :Z Cux, #0 (1)
=1 k=1

This contradicts that
Ae(S,(p.A)Q(r)).
Thus the condition (i) is necessary.

In order to prove that the condition ( ii ) is
necessary we assume that ( ii ) is false. Then
there is a sequence x = (xv )E S, (p, A) with

‘ krAxk‘ =1 such that

z r,, X, # 0
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We now define a sequence y = (y i ) b

v
yv =Z'xi
i=1

Then ye Sr(p,A) and

Zanvyv Zrnvxvio

This contradicts the fact that
Ae (Sr (p,A),Q(¢)). Thus the condition (
ii ) is necessary.

We now prove the sufficiency part of
the theorem. Suppose that the given

condition of the theorem is satisfied. Then
there exists a &£ >0 such that

-1

<ut",foreach ne N.

Z| Ak
k=1

Let xe S, (p,A). Then

(k

value of k.. Now we write,

1
)<—, for sufficiently large
Npk

m

X)=iankxk ZrnkAx »H—]mZAxk’mEN
=t

>

Since,

Z Tk |Ax |<Z|r,,k| , Wwhere
= k NI’A

> | — e )

k= k N PA

Sut", foreach ne N.

Therefore the convergence of

Zla

k NPA

implies that

m
n+1 m : :

k=1

k NI’k

Hence,

x)= Zank'xk = Zrnk Ax,
k=1 =1

Since xe Sr(p,A) if and only if
A x=(k"Ax,).
Therefore by condition ( ii ) it follows that
A (x) exists for each xe Sr(p,A) and

n

Axe Q(t). Thus Ae (S, (p,A).Q(r)).

e (AL (p)(r)) if

A,xec,(p), where

Theorem 1.2.2.
and only if

k 1
(i) [ZN””J cc, N>1;

m=1

n=1
(i) Re( Q(r)) . where

A
R=(m)={2a
(

)

oo
i

V=

AA.,

(p).
Proof. If Ae (AA_(p),Q(7)) then the

series Zankxk is convergent and

A, (x)e Q(r) for some neN and
xe Ak, (p) Since,

& 1
X = zNﬁm
m=1

Then it follows that

S [ZN””J

m=1

oo

e AL_(p)

k=1

converges for each ne N . Therefore (i) is
necessary.

In order to see that the condition ( ii ) is
necessary, we assume that ( ii ) is false. Then
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there is a sequence x= ( X, )E A (p) with

P*'=1  such that

sup | x,
k

Zrmx‘ = 0(1

We now define a sequence y = (yv ) by

pa
Then ye AA, ( ) and

Zanvyv Zrmxv # O This

contradicts that A€ (A?\.m( ).9(#)). Thus
the condition ( ii ) is also necessary.

We now prove the sufficiency part of
the theorem. Suppose that the given
conditions of the theorem are satisfied. Let
xe A\, (p) Then there is an integer

(m, x) Za X —Zr Ax, rmvmﬁ:Axk,meN
k=1

N>max( ,

Now we write ,

Since,

" o 1
Z Tk | Ax, | <

k=1 k=1

and

o 1N
rnk € Q(t)
k=1 n=1

Therefore the convergence of
o [

Z ank Z N Pi

k=1 i=1

implies that

m -z
rn+l,m ZN "= 0(1)
k=1

Hence,

x) = Zankxk = Zrnk Ax,
=1 k=1

Since, xe Ah_(p) if and only if
Axe A_(p). Therefore by condition ( ii ) it
follows that A (x) exists for each

xe AL_(p) and Axe Q(t).

Thus, Ae (AL_(p).Q(¢)).

Theorem 1.2.3. Let (p,)eA_. Then
Ae (Ac0 (p),(r)) if and only if

=R
(i) [An[ZN””’JJ ec, N>1;
m=1
n=l1

(ii) Re (co(p),Q(t)) with R as above.

This follows from the arguments given in
Theorem ( 1.2.2 ) and [pp.80, 13].

Theorem 1.2.4. Let (p,)eA.. Then
Ae (Ac(p),Q(¢)) if and only if

(i)  Ae(Ac,(p).Q(1)) ;

(ii) (ikankJ e Q(r)
k=1 n=1

This follows from Theorem ( 1.2.3)
and [pp.80, 15].

Theorem 1.2.5.
and only if

( i ) (Z|ank
=1

every integer N >1.

(i) Re(n.(a,p)a(r))

{5

Ae (M. (A, p)alr)) if

1

ker‘JE Q(t) for

where R =
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Proof. Let us assume that
Ae(A_(A.p).Q()) but
o0 LI
{ a, |k~ J g Q(t) for every
k=1

n=l1

integer N >1. Then from corollary 1.2.1 and
[8], it follows that the matrix

B:(bnk):[ank k_erlA}E (xm(Ar)’Q(t))

Therefore there exists an x€ A (Ar)

with Sup| X, | =1 such that
k

1

iankk_'ijxk #0(1).
k=1

Now define a sequence u = (u B ) by

k 1
=Zk”N""xl
i=1

It is clear that ue A_(A, p) and

1

iankuk = iankk_'N;xk #* 0(1).
k=1 k=1

This contradicts the fact that

Hence, we must have ,

[Z| ank
k=1

In order to see that the condition (ii ) is
necessary let us assume that (ii ) is false.

e
k’N"‘J e Q).
n=1

Then there exists a sequence
=(x,)er (A, p) with

sup | X, |p" =

such that

z r,Xx, # 0

We now define a sequence y = (yv ) by

v
yv =Z'xi °
i=1

Then ye A_(A, p) and

zanvyv zrnvxv¢0

This  contradicts the fact that
Ae (X (A, p).Q(r)). Thus the condition

(ii) is necessary.
Next, suppose that the given conditions

are satisfied. Then there exists a constant
M > 0 such that

- 1
Z| A
k=1

kN <Mt,, foreach ne N.
Let xel_(A

rp). Then there is a

:

positive number N > max (1, sup | X,
k

Now we write,

x) = Z A Xy
k=1

m
:Zrnk Axk n+lmZAxk’m€N
k=1

Since,

G

RS

nk |Axk|§i r.| kTN, where

k=1 k=1
1

KN e Q)

oo

>

k=1

<ut", for each
ne N.

Therefore the convergence of

Z | A
k=1

implies that

1

kTN P
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1
m —

rn+1,m Z k_erA :0(1)

A,(

k=1

Hence,

x): zank'xk = Z P Axy
=1 k=1

Since. xeA_(A,p) if and only

if A xe A_(p). Therefore by condition (ii )
it follows that A, (x) exists for each

xeh (A, p) and A (x)=0(,).
Axe Q(r)  for

Then
arbitrary xe A_ (A p).

Thusde (A (A, p),Q ().
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