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Abstract: In this paper, we employ an expression of Boyadzhiev to give
elementary proofs of the identities for harmonic numbers obtained by Paule-
Schneider via the Mathematica package Sigma.
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1. Introduction
Boyadzhiev [2, 6] evaluated several binomial transforms by using Euler’s transform for power

series and obtained various binomial identities involving power sums with harmonic numbers.
Boyadzhiev’s Formula for harmonic numbers is as follows:
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Paule-Schneider [8] used the Mathematica package Sigma [11] and the Zeilberger’s method [9,
13] to find the following identities [5] for harmonic numbers [1, 3]:
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Here we employ (1) to exhibit elementary proofs of these interesting identities.

2. Paule-Schneider’s relations

In (1) we can use the values A = u = 1 to deduce (2):
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The identity (1) with 4 = —u = 1 implies the relation [4, 10]:
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which is a particular case of the following formula [12] (Hy = 0):
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Besides, we obtain (6) from [7]:
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Now we apply di to (1), thus:
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which for 4 = p =1 gives:
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but Z] 1= 1-5 then (9) implies (3), that is [5]:
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From (9) with 4 = —u = 1 is immediate the identity:
1, n=1,
Y=t (D k() Hie = (1)
() L, nx2.

3. Conclusion

The approach in this paper shows that the identities (2) and (3) obtained by Paule-
Schneider [8] can be deduced without the Mathematica package Sigma and the
Zeilberger algorithm [9, 13].
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