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Abstract: In this paper, we employ an expression of Boyadzhiev to give 
elementary proofs of the identities for harmonic numbers obtained by Paule-
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1. Introduction 

Boyadzhiev [2, 6] evaluated several binomial transforms by using Euler’s transform for power 
series and obtained various binomial identities involving power sums with harmonic numbers. 
Boyadzhiev’s Formula for harmonic numbers is as follows: 

  𝑛𝑛𝑘𝑘 
𝑛𝑛
𝑘𝑘 𝐻𝐻𝑘𝑘 𝜆𝜆𝑛𝑛−𝑘𝑘 𝜇𝜇𝑘𝑘 𝜆𝜆 𝜇𝜇 𝑛𝑛 𝐻𝐻𝑛𝑛 −  

𝜆𝜆𝑗𝑗
𝑗𝑗

𝑛𝑛
𝑗𝑗 𝜆𝜆 𝜇𝜇 𝑛𝑛−𝑗𝑗                                          (1) 

Paule-Schneider [8] used the Mathematica package Sigma [11] and the Zeilberger’s method [9, 
13] to find the following identities [5] for harmonic numbers [1, 3]: 

          𝐻𝐻𝑗𝑗𝑛𝑛
𝑗𝑗  𝑛𝑛𝑗𝑗  

𝑛𝑛 𝐻𝐻𝑛𝑛 −  𝑗𝑗 𝑗𝑗
𝑛𝑛
𝑗𝑗                          𝐻𝐻𝑛𝑛 ≡  𝑘𝑘

𝑛𝑛
𝑘𝑘                                  (2) 

         𝑗𝑗𝑛𝑛
𝑗𝑗 𝐻𝐻𝑗𝑗  

𝑛𝑛
𝑗𝑗 − 𝑛𝑛−  𝑛𝑛 𝐻𝐻𝑛𝑛 − 𝑛𝑛 𝑗𝑗 𝑗𝑗

𝑛𝑛
𝑗𝑗                                               (3) 

Here we employ (1) to exhibit elementary proofs of these interesting identities. 

2. Paule-Schneider’s relations 

In (1) we can use the values  𝜆𝜆 𝜇𝜇  to deduce (2): 
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   𝑛𝑛𝑘𝑘 
𝑛𝑛
𝑘𝑘 𝐻𝐻𝑘𝑘 𝑛𝑛 𝐻𝐻𝑛𝑛 −  𝑗𝑗 𝑗𝑗

𝑛𝑛
𝑗𝑗

  
  −  𝑗𝑗𝑛𝑛
𝑗𝑗  𝑛𝑛𝑗𝑗  

𝑛𝑛−𝑗𝑗

𝑗𝑗 𝑛𝑛 ≥                         (4)  

The identity (1) with  𝜆𝜆 −𝜇𝜇  implies the relation [4, 10]: 

      − 𝑘𝑘𝑛𝑛
𝑘𝑘  𝑛𝑛𝑘𝑘 𝐻𝐻𝑘𝑘 𝑛𝑛 𝑛𝑛 ≥                                                                               (5) 

which is a particular case of the following formula [12] (𝐻𝐻  

             − 𝑘𝑘𝑛𝑛
𝑘𝑘  𝑛𝑛𝑘𝑘 𝐻𝐻𝑘𝑘 𝑚𝑚 𝑛𝑛  𝑚𝑚 𝑛𝑛

𝑛𝑛  
𝑛𝑛 ≥ 𝑚𝑚 ≥                                             (6) 

Besides, we obtain (6) from [7]: 

                    − 𝑘𝑘𝑛𝑛
𝑘𝑘  𝑛𝑛𝑘𝑘 𝐻𝐻𝑘𝑘 𝑠𝑠 𝑥𝑥 

 𝑛𝑛−  
𝑥𝑥 𝑠𝑠 𝑛𝑛

                                                    (7) 

if 𝑥𝑥  

Now we apply  𝑑𝑑𝑑𝑑𝜇𝜇   to (1), thus: 

 𝑘𝑘𝑛𝑛
𝑘𝑘  𝑛𝑛𝑘𝑘 𝐻𝐻𝑘𝑘 𝜆𝜆

𝑛𝑛−𝑘𝑘 𝜇𝜇𝑘𝑘− 𝑛𝑛 𝜆𝜆 𝜇𝜇 𝑛𝑛− 𝐻𝐻𝑛𝑛 −  
𝑛𝑛−𝑗𝑗
𝑗𝑗

𝑛𝑛−
𝑗𝑗 𝜆𝜆𝑗𝑗 𝜆𝜆 𝜇𝜇 𝑛𝑛− −𝑗𝑗                           (8) 

which for  𝜆𝜆 𝜇𝜇  gives: 

 𝑘𝑘𝑛𝑛
𝑘𝑘  𝑛𝑛𝑘𝑘 𝐻𝐻𝑘𝑘

𝑛𝑛−  𝑛𝑛 𝐻𝐻𝑛𝑛 −  
𝑛𝑛−𝑗𝑗
𝑗𝑗 𝑗𝑗

𝑛𝑛
𝑗𝑗  𝑛𝑛 𝑛𝑛−  𝐻𝐻𝑛𝑛 −  𝑗𝑗 𝑗𝑗

𝑛𝑛
𝑗𝑗  𝑛𝑛−  𝑗𝑗

𝑛𝑛
𝑗𝑗         (9) 

but   𝑗𝑗
𝑛𝑛
𝑗𝑗 − 𝑛𝑛  then (9) implies (3), that is [5]: 

 𝑘𝑘𝑛𝑛
𝑘𝑘  𝑛𝑛𝑘𝑘 𝐻𝐻𝑘𝑘

𝑛𝑛− − 𝑛𝑛  − 𝑗𝑗𝑛𝑛
𝑗𝑗  𝑛𝑛𝑗𝑗 

𝑛𝑛− −𝑗𝑗

𝑗𝑗                                                    (10) 

From (9) with  𝜆𝜆 −𝜇𝜇  is immediate the identity: 

     − 𝑘𝑘𝑛𝑛
𝑘𝑘 𝑘𝑘  𝑛𝑛𝑘𝑘 𝐻𝐻𝑘𝑘  

𝑛𝑛

−𝑛𝑛 𝑛𝑛 ≥
                                                                           (11) 

3. Conclusion 

The approach in this paper shows that the identities (2) and (3) obtained by Paule-
Schneider [8] can be deduced without the Mathematica package Sigma and the 
Zeilberger algorithm [9, 13]. 
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