A Note on Some Applications of Boyadzhiev's Formula

Gyan Bahadur Thapa ${ }^{1}$, J. López-Bonilla ${ }^{2}$, R. López-Vázquez ${ }^{2}$
${ }^{1}$ Central Campus, Institute of Engineering, Tribhuvan University, Kathmandu, Nepal, ${ }^{2}$ ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
Corresponding author: jlopezb@ipn.mx

Received: Oct 20, 2017
Revised: Dec 26, 2017
Accepted: Dec 28, 2017

Abstract

In this paper, we employ an expression of Boyadzhiev to give elementary proofs of the identities for harmonic numbers obtained by PauleSchneider via the Mathematica package Sigma.

Keywords: Boyadzhiev's identity, harmonic numbers, Paule-Schneider's relations.

1. Introduction

Boyadzhiev [2, 6] evaluated several binomial transforms by using Euler's transform for power series and obtained various binomial identities involving power sums with harmonic numbers. Boyadzhiev's Formula for harmonic numbers is as follows:
$\sum_{k=1}^{n}\binom{n}{k} H_{k} \lambda^{n-k} \mu^{k}=(\lambda+\mu)^{n} H_{n}-\sum_{j=1}^{n} \frac{\lambda^{j}}{j}(\lambda+\mu)^{n-j}$
Paule-Schneider [8] used the Mathematica package Sigma [11] and the Zeilberger's method [9, 13] to find the following identities [5] for harmonic numbers [1, 3]:

$$
\begin{gather*}
\sum_{j=1}^{n} H_{j}\binom{n}{j}=2^{n}\left[H_{n}-\sum_{j=1}^{n} \frac{1}{j 2^{j}}\right], \quad H_{n} \equiv \sum_{k=1}^{n} \frac{1}{k}, \tag{2}\\
\sum_{j=1}^{n} j H_{j}\binom{n}{j}=-\frac{1}{2}+2^{n-1}\left[1+n H_{n}-n \sum_{j=1}^{n} \frac{1}{j 2^{j}}\right] . \tag{3}
\end{gather*}
$$

Here we employ (1) to exhibit elementary proofs of these interesting identities.

2. Paule-Schneider's relations

In (1) we can use the values $\lambda=\mu=1$ to deduce (2):

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} H_{k}=2^{n}\left(H_{n}-\sum_{j=1}^{n} \frac{1}{j 2^{j}}\right) \stackrel{[5]}{=} \sum_{j=1}^{n}(-1)^{j+1}\binom{n}{j} \frac{2^{n-j}}{j}, \quad n \geq 1 \tag{4}
\end{equation*}
$$

The identity (1) with $\lambda=-\mu=1$ implies the relation [4, 10]:

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k} H_{k}=\frac{1}{n}, \quad n \geq 1 \tag{5}
\end{equation*}
$$

which is a particular case of the following formula [12] $\left(H_{0}=0\right)$:

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k+1}\binom{n}{k} H_{k+m}=\frac{1}{n\binom{c+n}{n}}, \quad n \geq 1, \quad m \geq 0 \tag{6}
\end{equation*}
$$

Besides, we obtain (6) from [7]:

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k+1}\binom{n}{k} H_{k+s}(x)=\frac{(n-1)!}{(x+s+1)_{n}} \tag{7}
\end{equation*}
$$

if $x=0$.
Now we apply $\frac{d}{d \mu}$ to (1), thus:
$\sum_{k=1}^{n} k\binom{n}{k} H_{k} \lambda^{n-k} \mu^{k-1}=n(\lambda+\mu)^{n-1} H_{n}-\sum_{j=1}^{n-1} \frac{n-j}{j} \lambda^{j}(\lambda+\mu)^{n-1-j}$,
which for $\lambda=\mu=1$ gives:
$\sum_{k=1}^{n} k\binom{n}{k} H_{k}=2^{n-1}\left(n H_{n}-\sum_{j=1}^{n} \frac{n-j}{j 2^{j}}\right)=n 2^{n-1}\left(H_{n}-\sum_{j=1}^{n} \frac{1}{j 2^{j}}\right)+2^{n-1} \sum_{j=1}^{n} \frac{1}{2^{j}}$,
but $\sum_{j=1}^{n} \frac{1}{2^{j}}=1-\frac{1}{2^{n}}$, then (9) implies (3), that is [5]:
$\sum_{k=1}^{n} k\binom{n}{k} H_{k}=2^{n-1}-\frac{1}{2}+n \sum_{j=1}^{n}(-1)^{j+1}\binom{n}{j} \frac{2^{n-1-j}}{j}$.
From (9) with $\lambda=-\mu=1$ is immediate the identity:

$$
\sum_{k=1}^{n}(-1)^{k+1} k\binom{n}{k} H_{k}= \begin{cases}1, & n=1 \tag{11}\\ \frac{1}{1-n}, & n \geq 2\end{cases}
$$

3. Conclusion

The approach in this paper shows that the identities (2) and (3) obtained by PauleSchneider [8] can be deduced without the Mathematica package Sigma and the Zeilberger algorithm [9, 13].

References

[1] López-Bonilla J and López-Vázquez R (2017), Harmonic numbers in terms of Stirling numbers of the second kind, Prespacetime Journal, 8(2) : 233-234.
[2] Boyadzhiev KN (2009), Harmonic number identities via Euler's transform, J. Integer Sequences, 12 : Article 09.6.1
[3] Carvajal-Gámez BE, López-Bonilla J and López-Vázquez R (2017), On harmonic numbers, Prespacetime Journal, 8(4) : 484-489.
[4] Gould HW (1972), combinatorial identities, Morgantown, W. Va.
[5] Guerrero-Moreno I, López-Bonilla J and López-Vázquez R (2017), Paule-Schneider’s identities for harmonic numbers, Prespacetime Journal, 8(12): 1373-1376 to appear.
[6] Jin HT and Du DK (2015), Abel's lemma and identities on harmonic numbers, Integers, 15 : 211.
[7] Larcombe PG, Larseen ME and Fennessey EJ (2005), On two classes of identities involving harmonic numbers, Utilitas Math., 67 : 65-80.
[8] Paule P and Schneider C (2003), Computer proofs of a new family of harmonic number identities, Adv. Appl. Math. 31 : 359-378.
[9] Petkovsek M, Wilf HS and Zeilberger D (1996), $A=B$, symbolic summation algorithms, A. K. Peters, Wellesley, MA.
[10] Riordan J (1968), combinatorial identities, John Wiley \& Sons, New York.
[11] Schneider C (2000), An implementation of Karr's summation algorithm in Mathematica, Sém. Lothar. Combin. S43 b: 1-10.
[12] Spiess J (1990), Some identities involving harmonic numbers, Maths. of Comput. 55(192) : 839-863.
[13] Zeilberger D (1990), A fast algorithm for proving terminating hyper-geometric identities, Discrete Mathematics, 80(2) : 207-211.

