
108

Efficient Solution Approach to Maximum Flow Evacuation 
Planning Problem without Flow Conservation Aspect 

Phanindra Prasad Bhandari,  Shree Ram Khadka 
Central Department of Mathematics, Tribhuvan University, Kathmandu, Nepal 

Corresponding author: phanindra.maths@gmail.com 

Received: April 1, 2017         Revised: May 22, 2017        Accepted: May 27, 2017 

 

Abstract: An attempt of shifting as more people as possible and/or their logistics 
from a dangerous place to a safer place is an evacuation planning problem. Such 
problems modeled on network have been extensively studied and the various 
efficient solution procedures have been established. The solution strategies for 
these problems are based on source-sink path augmentation and the flow function 
satisfies the flow conservation at each intermediate node. Besides this, the 
network flow problem in which flow may not be conserved at node necessarily 
could also be used to model the evacuation planning problem. This paper 
proposes a model for maximum flow evacuation planning problem on a single-
source-single-sink static network with integral arc capacities with holding 
capability of evacuees in the temporary shelter at intermediate nodes and extends 
the model into the dynamic case. 
 
Keywords: Evacuation planning, network flow, maximum flow problem, 
preflow-push algorithm. 

 

1.  Introduction 

Human casualties as well as massive destruction of properties due to natural and human created 
disasters have drawn the attention of researchers to find efficient emergency management 
procedures so that the casualties and the destructions could be reduced. Besides the disasters, 
efficient route planning becomes crucial in mass-meetings management and in mitigation of the 
traffic in a busy traffic hours. An evacuation planning problem asks to find an optimal evacuation 
plan in a realistic flow model where each evacuee is supposed to be evacuated in an efficient 
way. We take the network flow optimization approach to deal the evacuation planning problem. 
An evacuation network consists of the source (dangerous place), the sink (safe place), the 
transshipment nodes (intermediate junctions) and the arcs (path-segments between any two 
nodes) with some given capacities. Moreover, in the proposed modification, the intermediate 
nodes serve with temporary shelters with sufficient capacities. The source contains evacuees and 
the sink waits them with sufficient capacities. The movement of the evacuees in the path-segment 
is the flow in the arc. 
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1.  Introduction 

Human casualties as well as massive destruction of properties due to natural and human created 
disasters have drawn the attention of researchers to find efficient emergency management 
procedures so that the casualties and the destructions could be reduced. Besides the disasters, 
efficient route planning becomes crucial in mass-meetings management and in mitigation of the 
traffic in a busy traffic hours. An evacuation planning problem asks to find an optimal evacuation 
plan in a realistic flow model where each evacuee is supposed to be evacuated in an efficient 
way. We take the network flow optimization approach to deal the evacuation planning problem. 
An evacuation network consists of the source (dangerous place), the sink (safe place), the 
transshipment nodes (intermediate junctions) and the arcs (path-segments between any two 
nodes) with some given capacities. Moreover, in the proposed modification, the intermediate 
nodes serve with temporary shelters with sufficient capacities. The source contains evacuees and 
the sink waits them with sufficient capacities. The movement of the evacuees in the path-segment 
is the flow in the arc. 

The first maximum flow problem that obtains the maximum amount of flow from the source to 
the sink satisfying the flow conservation at every intermediate nodes was due to Ford and 
Fulkerson [6]. Their solution to the problem is based on arbitrary source-sink path augmentation 
on the residual networks and runs only in pseudo polynomial time. Edmonds and Karp [5] 
improved the running time of this algorithm to polynomial time by choosing a (one of the) 
shortest source-sink path in the residual network in each iteration for augmentation. The idea of 
augmenting all the shortest paths at once in each iteration in a layered sub-network of the 
residual network is given by Dinic [4]. This further improves the efficiency of the algorithm in 
[5].  

The dynamic version of the maximum flow problem was first studied by the authors in [7, 8]. 
They showed that the general maximum dynamic flow problem is equivalent to the static flow 
problem in the time-expanded network and solved the problem in two-terminal network by 
temporarily repeating the static solution in the given network itself considering the transit times 
of the arcs as cost coefficients. Burkard et al. [2] studied the two-terminal quickest flow problem 
that asks to minimize the total time to send the given flow from the source to the sink and gave a 
polynomial time solution. Hoppe [11] studied the multi-terminal version of the problem known 
as quickest transshipment problem, minimizing the time taken to satisfy the given supplies and 
demands. Baumann [1] considered the earliest arrival flow problem to deal the evacuation 
planning problem that asks to maximize flow into the sink at each time step within the time 
horizon. The existence of a solution to this problem was proved by Gale [9]. Minieka [15] and 
Wilkinson [22] gave exact algorithms for the problem which needs an exponential time. Hoppe 
[11] reviews these algorithms and represents as chain decomposable flows. A fully polynomial 
time approximation scheme for this problem on a two-terminal network was presented by Hoppe 
and Tardos [12]. Steiner [21] and Ruzika et al. [20] presented a polynomial time algorithm for 
the earliest arrival flow problem on series-parallel networks.  

Evacuation planning problems based on network contraflow approach that reconfigurates the 
network identifying the ideal direction and reallocating the available capacity for each arc to 
minimize the evacuation time from source to sink have also been extensively studied.  
Rebennack et al. [19] studied the maximum static contraflow  problem for general networks, the 
maximum dynamic contraflow problem and that the quickest contraflow problem for two 
terminal networks and presented the polynomial time algorithms, based on network 
transformation but the quickest transshipment contraflow problem and fixed switching cost 
contraflow problems are shown NP-hard. Dhamala and Pyakurel [3] formulated a mathematical 
model of the earliest arrival contraflow problem and gave strongly polynomial time algorithm to 
solve it on a two-terminal series-parallel network. Pyakurel et al. [18] present a pseudo-
polynomial time algorithm for the generalized maximum dynamic contraflow problem and the 
generalized earliest arrival contraflow problem for a two terminal lossy network. Pyakurel and 
Dhamala [16] considered both static and dynamic lexicographic contraflow problems that 
optimize the feasible flow leaving or entering the terminals in the given order after reversing the 
direction of arcs with polynomial time solutions. For the dynamic problem, they have considered 
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the constant travel time and node capacity but arc reversal capability is assumed at each integer 
time point, unlike in Dhamala and Pyakurel [3]. Khadka and Bhandari [14] have developed the 
model for evacuation planning problem with contraflow approach in continuous time setting by 
allowing the arc reversibility at time zero with strongly polynomial time algorithm. They also 
have generalized the problem that allows arc reversibility at any subinterval of the time horizon 
and presented a pseudo polynomial time algorithm. Pyakurel and Dhamala [17] have discussed 
different dynamic contraflow problems namely; maximum dynamic, earliest arrival, 
lexmaximum dynamic, earliest arrival transshipment and quickest transshipment contraflows on 
particulars networks and presented efficient algorithms to solve the problems in continuous time 
model. 

The concept of preflow, pushing as much flow as possible out of the source and trying to get it to 
the sink without satisfying the flow conservation by the flow function at nodes necessarily, was 
first introduced by Karzanov [13]. Later, Goldberg and Tarjan [10] discussed the preflow concept 
as an efficient tool (at least not harder than any known path based algorithms) to solve the 
maximum flow problem in network and gave the preflow push algorithm (sometimes 'push 
relabel algorithm' in literature) to solve it. Preflow-push algorithm works on a node at a time and 
its neighbors. This repeatedly selects an active node and pushes its flow to neighbors which are 
close to sink.  This approach, however, sends the excess flow (evacuees) that is blocked to send 
into sink back to the source and deletes from entire evacuation network. We propose a relaxation 
on this property to allow holding evacuees in the temporary shelter at intermediate nodes instead 
of sending them back to the source. This relaxation could be more advantageous in many ways. 
A detail is given in Section 4.  

The paper is organized as follows. In section 2, we define a maximum evacuation planning 
problem with holding capability of evacuees in temporary shelter at intermediate nodes based on 
non-conserving flow model. The preflow-push algorithm has been presented in Section 3. A 
simple modification on the procedure to the problem has been proposed in Section 4. Section 5 
concludes the paper. 

2. Problem Formulation 

We model an evacuation planning problem on a network 𝑁𝑁 𝑉𝑉 𝐸𝐸  where  𝑉𝑉 𝑉𝑉 𝑛𝑛  is for 
the set of the nodes, 𝐸𝐸 𝐸𝐸 𝑚𝑚  for the set of the arcs joining any two nodes such that 𝑚𝑚 ≥ 𝑛𝑛 −

. We assign some positive capacity 𝑐𝑐𝑒𝑒  for each arc 𝑒𝑒 𝑣𝑣 𝑤𝑤 ∈ 𝐸𝐸. Unsafe place where 
accident has occurred or going to be occurred soon is taken as the source 𝑠𝑠 and the safe place 
where the people are to be evacuated is assumed as the sink 𝑑𝑑. The source and the sink are 
terminal nodes on 𝑁𝑁. The source node contains evacuees, and the sink node waits them for 
shelter with enough space. We assume the temporary shelter 𝑣𝑣′ at every node 𝑣𝑣 ∈ 𝑉𝑉 − 𝑠𝑠 𝑑𝑑  
with sufficient capacity of 𝑐𝑐𝑣𝑣′ . We compare the movement of evacuees on the road with flow on 
the network 𝑁𝑁. See Example 1 for detail.  
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Fig. 1: An evacuation network. First and second numbers next to the arc represent the initial arc 
capacity and the transit time respectively. 

A preflow is an assignment 𝑓𝑓 𝐸𝐸 → 𝑅𝑅 ∪  satisfying the following constraints.  

The capacity constraints as  

≤ 𝑓𝑓 𝑒𝑒 ≤ 𝑐𝑐𝑒𝑒 ∀ 𝑒𝑒 ∈ 𝐸𝐸  

 the skew symmetry of the flow in arc as 

𝑓𝑓 𝑣𝑣 𝑤𝑤 − 𝑓𝑓 𝑤𝑤 𝑣𝑣 ∀ 𝑣𝑣 𝑤𝑤 ∈ 𝑉𝑉  

and the weakened form of the flow conservation constraints known as the non-negativity 
constraints in the form 

 𝑓𝑓 𝑤𝑤 𝑣𝑣
𝑤𝑤∈𝑉𝑉

−  𝑓𝑓 𝑣𝑣 𝑤𝑤
𝑤𝑤∈𝑉𝑉

≥ ∀ 𝑣𝑣 ∈ 𝑉𝑉 −  𝑠𝑠 𝑑𝑑  

We consider a non-negative excess at node 𝑣𝑣 defined as 

𝑒𝑒𝑣𝑣  𝑓𝑓 𝑤𝑤 𝑣𝑣 
𝑤𝑤∈𝑉𝑉

 

and call the node 𝑣𝑣 an active node if 𝑒𝑒𝑣𝑣 . We define the nonnegative overload at node 𝑣𝑣 as 

𝑜𝑜𝑣𝑣  𝑓𝑓 𝑤𝑤 𝑣𝑣 
𝑤𝑤∈𝑉𝑉

𝑒𝑒𝑣𝑣 −  𝑓𝑓 𝑣𝑣 𝑤𝑤 
𝑤𝑤∈𝑉𝑉

≥ ∀ 𝑣𝑣 ∈ 𝑉𝑉 −  𝑠𝑠 𝑑𝑑    

Satisfying      𝑜𝑜𝑣𝑣 ≤ 𝑐𝑐𝑣𝑣′ ∀ 𝑣𝑣 ∈ 𝑉𝑉 −  𝑠𝑠 𝑑𝑑  

The maximum static 𝑠𝑠 − 𝑑𝑑 flow problem in a network can be defined as 

𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑓𝑓𝑠𝑠  𝑓𝑓 𝑣𝑣 𝑑𝑑 
𝑣𝑣∈𝑉𝑉

 

satisfying the constraints −  and allowing to hold 𝑜𝑜𝑣𝑣 at 𝑣𝑣′ ∀ 𝑣𝑣 ∈ 𝑉𝑉.  
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For a dynamic network 𝑁𝑁 𝑉𝑉 𝐸𝐸 𝑐𝑐𝑒𝑒 𝜏𝜏𝑒𝑒 𝑐𝑐𝑣𝑣′ 𝑠𝑠 𝑑𝑑 𝑇𝑇  with the time horizon 𝑇𝑇 and the travel time 
𝜏𝜏𝑒𝑒  along the arc 𝑒𝑒 𝑒𝑒 ∈ 𝐸𝐸 we define preflow 𝑓𝑓 as 𝑓𝑓 𝐸𝐸  … 𝑇𝑇 → 𝑅𝑅 ∪  which satisfies 
the capacity constraints as 

 𝑓𝑓 𝑒𝑒 𝜃𝜃 ≤ 𝑐𝑐𝑒𝑒   ∀  𝜃𝜃 ∈ 𝑇𝑇  

  the skew symmetry of the flow at each time step 𝜃𝜃 ∈ 𝑇𝑇  along the arc as 

𝑓𝑓 𝑣𝑣 𝑤𝑤 − 𝑓𝑓 𝑤𝑤 𝑣𝑣 ∀ 𝑣𝑣 𝑤𝑤 ∈ 𝑉𝑉

and the constraint with no flow conservation as  

  𝑓𝑓 𝑒𝑒 𝜃𝜃
𝑇𝑇

𝜃𝜃𝑒𝑒∈𝛿𝛿 𝑣𝑣
≥   𝑓𝑓 𝑒𝑒 𝜃𝜃

𝑇𝑇

𝜃𝜃𝑒𝑒∈𝛿𝛿− 𝑣𝑣
 

 The objective of the problem in dynamic case is to maximize the dynamic flow 

𝑓𝑓𝑑𝑑   𝑓𝑓 𝑒𝑒 𝜃𝜃
𝑇𝑇

𝜃𝜃𝑒𝑒∈𝛿𝛿 𝑑𝑑
 

The overload flow at every node 𝑣𝑣 ≠ 𝑠𝑠 𝑑𝑑  is allowed to hold at the temporary shelter 𝑣𝑣′ of the 
node 𝑣𝑣 for each time step 𝜃𝜃 ∈  … 𝑇𝑇 . 

Example 1. Consider a two terminal evacuation network as depicted in Fig 1. Each oval (a node) 
represents crossing of two or more routes and each straight line with an arrow (an arc) a path-
segment of the route that joins two nodes. Node 𝑠𝑠 is the dangerous place (source), 𝑑𝑑 is the safe 
place (sink) and the remaining are the intermediate nodes. The source contains evacuees and the 
sink waits them with sufficient capacity. The movement of the evacuees (possibly cars) on the 
path segment is the flow on the arc. The first number next to each arc is the arc capacity and the 
second number is the time needed for a flow unit to travel the arc. For example, an arc between 
nodes 𝑝𝑝 and 𝑟𝑟  has capacity 5 and transit time 2. That is, 5 cars can pass simultaneously through 
arc 𝑝𝑝 𝑟𝑟  within 2 hours. 

3. The Preflow-Push Algorithm 

Unlike the ordinary flow, the preflow does not necessarily maintains the flow conservation at 
every node in the network. Starting with a preflow, the preflow-push algorithm in [10] pushes the 
excess flow closer towards the sink and the overload flow at any node is sent back to the source. 
Eventually, preflow becomes a flow and in fact the maximum 𝑠𝑠 − 𝑑𝑑 flow.  

The preflow-push is an iterative algorithm that updates the preflow in the residual network in 
each iteration. For the network 𝑁𝑁  𝑉𝑉 𝐸𝐸 𝑐𝑐𝑒𝑒 , a residual network   𝑁𝑁𝑓𝑓  𝑉𝑉 𝐸𝐸𝑓𝑓 𝑐𝑐𝑒𝑒   is 
constructed with respect to the preflow 𝑓𝑓. For an arc 𝑒𝑒 𝑣𝑣 𝑤𝑤  with capacity 𝑐𝑐𝑒𝑒  and carrying 
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every node in the network. Starting with a preflow, the preflow-push algorithm in [10] pushes the 
excess flow closer towards the sink and the overload flow at any node is sent back to the source. 
Eventually, preflow becomes a flow and in fact the maximum 𝑠𝑠 − 𝑑𝑑 flow.  

The preflow-push is an iterative algorithm that updates the preflow in the residual network in 
each iteration. For the network 𝑁𝑁  𝑉𝑉 𝐸𝐸 𝑐𝑐𝑒𝑒 , a residual network   𝑁𝑁𝑓𝑓  𝑉𝑉 𝐸𝐸𝑓𝑓 𝑐𝑐𝑒𝑒   is 
constructed with respect to the preflow 𝑓𝑓. For an arc 𝑒𝑒 𝑣𝑣 𝑤𝑤  with capacity 𝑐𝑐𝑒𝑒  and carrying 

preflow 𝑓𝑓 𝑒𝑒 , 𝑁𝑁𝑓𝑓  includes arcs in forward direction of arc 𝑒𝑒 with residual capacity 𝑟𝑟𝑒𝑒 𝑐𝑐𝑒𝑒 −
𝑓𝑓 𝑒𝑒  and arcs in reverse direction of arc 𝑒𝑒 with residual capacity 𝑟𝑟𝑒𝑒 𝑓𝑓 𝑒𝑒 . Arcs with zero 
capacity are omitted from 𝑁𝑁𝑓𝑓 . The algorithm starts with the initialization of the given network 𝑁𝑁. 
At the beginning, the preflow 𝑓𝑓 on each arc leaving the source is equal to the arc capacity of the 
respective arcs and zero on the remaining arcs. And all the intermediate nodes will be assigned 
an initial label  that can then be increased through the relabel operation. A function 𝑙𝑙 𝑉𝑉 → 𝑁𝑁 is 
a label function satisfying 𝑙𝑙 𝑠𝑠 𝑛𝑛   𝑉𝑉  𝑙𝑙 𝑑𝑑  and 𝑙𝑙 𝑣𝑣 ≤ 𝑙𝑙 𝑤𝑤  for every residual 
arc 𝑒𝑒  𝑣𝑣 𝑤𝑤 ∈ 𝐸𝐸𝑓𝑓 . The labels of the source and the sink will remain unaltered throughout the 
algorithm and the labels for remaining nodes increases up to 𝑛𝑛 − . Whenever the algorithm 
finds an active node 𝑣𝑣 (i.e 𝑒𝑒𝑣𝑣 ) and if there is an arc in 𝑁𝑁𝑓𝑓  from node 𝑣𝑣 to node 𝑤𝑤 such that 
𝑙𝑙 𝑣𝑣 𝑙𝑙 𝑤𝑤  then 𝑣𝑣 pushes some excess less or equal to 𝑐𝑐𝑒𝑒  𝑣𝑣 𝑤𝑤  from 𝑣𝑣 to 𝑤𝑤. If 𝑙𝑙 𝑤𝑤 ≥
𝑙𝑙 𝑣𝑣 ∀ 𝑤𝑤 ∈ 𝑉𝑉, label of 𝑣𝑣 is to be increased. We increase the label of an active node 𝑣𝑣 as 𝑙𝑙 𝑣𝑣 

𝑚𝑚𝑖𝑖𝑛𝑛 𝑙𝑙 𝑤𝑤  𝑣𝑣 𝑤𝑤 ∈ 𝑁𝑁𝑓𝑓 . If node 𝑣𝑣 satisfies ≤ 𝑙𝑙 𝑣𝑣 𝑛𝑛 then there is possibility of 
getting paths from 𝑣𝑣 to 𝑑𝑑. If 𝑙𝑙 𝑣𝑣 ≥ 𝑙𝑙 𝑠𝑠 , the sink is not reachable from 𝑣𝑣 in 𝑁𝑁𝑓𝑓  and starts to 
send the flow back towards the source. The algorithm repeatedly performs these operations 
whenever applicable. At the termination, the algorithm gives a preflow with 𝑒𝑒𝑣𝑣 ∀ 𝑣𝑣 ∈ 𝑉𝑉 −
𝑠𝑠 𝑑𝑑 . That is, a valid ordinary flow in the network. This flow is the maximum flow in the 

original network 𝑁𝑁.  

Now we present the preflow-push algorithm of Goldberg and Tarjan [10]. 

Algorithm 1. Preflow-Push Algorithm 
Input:  Network  𝑁𝑁  𝑉𝑉 𝐸𝐸 𝑐𝑐𝑒𝑒 𝑠𝑠 𝑑𝑑  
Initialize: 𝑙𝑙 𝑠𝑠 𝑛𝑛  𝑉𝑉 𝑙𝑙 𝑣𝑣 ∀ 𝑣𝑣 ∈ 𝑉𝑉 −  𝑠𝑠 . 
For each  𝑠𝑠 𝑣𝑣 ∈ 𝐸𝐸 𝑓𝑓 𝑠𝑠 𝑣𝑣 𝑐𝑐 𝑠𝑠 𝑣𝑣  and 𝑓𝑓 𝑒𝑒 for all other arcs 𝑒𝑒 ∈ 𝐸𝐸. 
Push Operation:  For arc  𝑣𝑣 𝑤𝑤 ∈ 𝐸𝐸𝑓𝑓  of active node 𝑣𝑣 ≠ 𝑠𝑠 𝑑𝑑 with 𝑙𝑙 𝑣𝑣 𝑙𝑙 𝑤𝑤 , 

push 𝛿𝛿 𝑚𝑚𝑖𝑖𝑛𝑛 𝑒𝑒𝑣𝑣 𝑐𝑐 𝑣𝑣 𝑤𝑤   units of flow along 𝑣𝑣 𝑤𝑤 . Otherwise, 

Relabel Operation: For an active node 𝑣𝑣, set 𝑙𝑙 𝑣𝑣 𝑚𝑚𝑖𝑖𝑛𝑛 𝑙𝑙 𝑤𝑤  𝑣𝑣 𝑤𝑤 ∈ 𝑁𝑁𝑓𝑓}. 
Output: Maximum 𝑠𝑠 − 𝑑𝑑 flow. 
 
Example 2. Consider the evacuation network of Fig 1 without the transit times on it. Start the 
procedure by initializing as 𝑙𝑙 𝑠𝑠 𝑙𝑙 𝑣𝑣 ∀ 𝑣𝑣 ∈  𝑝𝑝 𝑞𝑞 𝑟𝑟 𝑑𝑑 𝑓𝑓 𝑠𝑠 𝑝𝑝 𝑓𝑓 𝑠𝑠 𝑞𝑞  and 
𝑓𝑓 𝑒𝑒  for remaining arcs 𝑒𝑒. This makes 𝑝𝑝 and 𝑞𝑞 active with 𝑒𝑒𝑝𝑝  and 𝑒𝑒𝑞𝑞 . For active 
node 𝑝𝑝, relabel it to be  𝑙𝑙 𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝑙𝑙 𝑞𝑞 𝑙𝑙 𝑟𝑟   since 𝑙𝑙 𝑝𝑝 ≠ 𝑙𝑙 𝑞𝑞  and 𝑙𝑙 𝑝𝑝 ≠
𝑙𝑙 𝑟𝑟 .  Now, push 𝛿𝛿 𝑚𝑚𝑖𝑖𝑛𝑛 𝑒𝑒𝑝𝑝 𝑐𝑐 𝑝𝑝 𝑟𝑟  units of flow along 𝑝𝑝 𝑟𝑟 , since 𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑟𝑟  
holds. This makes 𝑒𝑒𝑟𝑟  active with 𝑒𝑒𝑟𝑟 . Relabel 𝑟𝑟 to be 𝑙𝑙 𝑟𝑟 . Now, push 𝛿𝛿
𝑚𝑚𝑖𝑖𝑛𝑛 𝑒𝑒𝑟𝑟 𝑐𝑐 𝑟𝑟 𝑑𝑑   unit of flow along 𝑟𝑟 𝑑𝑑  since 𝑙𝑙 𝑟𝑟 𝑙𝑙 𝑑𝑑  holds. Also, we push 
𝛿𝛿 𝑚𝑚𝑖𝑖𝑛𝑛 𝑒𝑒𝑟𝑟 𝑐𝑐 𝑟𝑟 𝑞𝑞  unit along  𝑟𝑟 𝑞𝑞 since 𝑙𝑙 𝑟𝑟 𝑙𝑙 𝑞𝑞  holds. This makes 𝑒𝑒𝑞𝑞

𝑒𝑒𝑝𝑝 𝑒𝑒𝑟𝑟 𝑒𝑒𝑑𝑑 . Relabel the active node 𝑞𝑞 to be 𝑙𝑙 𝑞𝑞  since 𝑙𝑙 𝑞𝑞 ≠ 𝑙𝑙 𝑑𝑑 . Now, 
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push 𝛿𝛿  units of flow along 𝑞𝑞 𝑑𝑑  since 𝑙𝑙 𝑞𝑞 𝑙𝑙 𝑑𝑑  holds. The only active node now is 
𝑟𝑟 with 𝑒𝑒𝑟𝑟  and relabel it to be 𝑙𝑙 𝑟𝑟  since  𝑙𝑙 𝑟𝑟 ≠ 𝑙𝑙 𝑝𝑝 . Now, push 𝛿𝛿  units of 
flow along 𝑟𝑟 𝑝𝑝 . This makes 𝑝𝑝 an active with 𝑒𝑒𝑝𝑝 .  Relabel 𝑝𝑝  𝑎𝑎𝑠𝑠 𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑞𝑞 . 
Now, 𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑞𝑞  holds. Push 𝛿𝛿  unit of flow along 𝑝𝑝 𝑞𝑞  and then 𝛿𝛿  unit of flow 
along 𝑞𝑞 𝑑𝑑 . Now,  𝑝𝑝 only is an active node. Relabel 𝑝𝑝 as 𝑙𝑙 𝑝𝑝 . Now, 𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑟𝑟  
holds. Push 𝛿𝛿  unit of flow along 𝑝𝑝 𝑟𝑟 . Now, only node 𝑟𝑟 is an active. Relabel 𝑟𝑟 as 𝑙𝑙 𝑟𝑟

𝑙𝑙 𝑝𝑝 . Push 𝛿𝛿  unit along 𝑟𝑟 𝑝𝑝 . Now, only 𝑝𝑝 is active node. Relabel 𝑝𝑝 as 𝑙𝑙 𝑝𝑝 . 
Now, 𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑟𝑟  holds. Push 𝛿𝛿  unit of flow along 𝑝𝑝 𝑟𝑟 . Again, only 𝑟𝑟 is an active 
node. Relabel 𝑟𝑟 to be 𝑙𝑙 𝑟𝑟 , and push flow to 𝑝𝑝. Relabel 𝑝𝑝 to be 𝑙𝑙 𝑝𝑝 , so that 
𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑠𝑠  holds and flow is pushed to source 𝑠𝑠. This makes all intermediate nodes empty 
and 𝑒𝑒𝑑𝑑 . The procedure terminates with maximal 𝑠𝑠 − 𝑑𝑑 flow of value 6. 

4. Modification of the Preflow-Push Algorithm 

It is not wise always (at the time of evacuation for example) to force sending the overload flow 
(evacuees) to the source but better to hold in temporary shelter at intermediate node. This could 
be advantageous in many ways; for instance, to provide immediate medication to highly injured 
evacuees by keeping in temporary shelter, sending evacuees with high priority to sink and 
leaving the evacuees with less priority. More importantly, those evacuees which cannot be 
brought into sink due to some arc capacity limitation can be kept in temporary shelters at 
intermediate nodes which could be safer as compared to source in many evacuation scenarios. 
During evacuation people may loss their lives on the way. This circumstance can also be 
addressed by this model which is clearly designed for non-conservation of the flow at 
intermediate nodes. 

We propose a modification on the algorithm of Goldberg and Tarjan [10] that solves the 
maximum evacuation planning problem with holding capability of flow at temporary shelter in 
intermediate nodes. We consider the temporary shelter 𝑣𝑣′  for each intermediate node 𝑣𝑣 ∈ 𝑉𝑉 with 
sufficient capacity to make our model simpler. However, it does not exceed the sum of the 
capacities of outgoing arcs of the source minus the maximum flow. The modified procedure does 
not send the evacuees reaching once at intermediate nodes back again to the source, a dangerous 
place but pushes back to any intermediate nodes. For an active node 𝑣𝑣, we hold the overload flow 
𝑜𝑜𝑣𝑣 in the temporary shelter 𝑣𝑣′  at node 𝑣𝑣 if the push operation and the relabel operation are not 
applicable and even if 𝑙𝑙 𝑣𝑣 ≤ 𝑙𝑙 𝑠𝑠  does not satisfy after relabeling it. The modified preflow-
push algorithm gives the maximum flow at its termination since the flow which we send back to 
the source in the preflow-push algorithm of Goldberg and Tarjan [10] is kept at temporary shelter 
and can be treated as if this is deleted from entire network. At the meantime, the max-flow-min-
cut theorem of Ford and Fulkerson [6] guarantees that the final flow is the maximal flow. 
Moreover, Maximum flow obtained from the modified algorithm exactly meets the maximum 
flow obtained by the algorithm of Ford and Fulkerson [6]. 
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push 𝛿𝛿  units of flow along 𝑞𝑞 𝑑𝑑  since 𝑙𝑙 𝑞𝑞 𝑙𝑙 𝑑𝑑  holds. The only active node now is 
𝑟𝑟 with 𝑒𝑒𝑟𝑟  and relabel it to be 𝑙𝑙 𝑟𝑟  since  𝑙𝑙 𝑟𝑟 ≠ 𝑙𝑙 𝑝𝑝 . Now, push 𝛿𝛿  units of 
flow along 𝑟𝑟 𝑝𝑝 . This makes 𝑝𝑝 an active with 𝑒𝑒𝑝𝑝 .  Relabel 𝑝𝑝  𝑎𝑎𝑠𝑠 𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑞𝑞 . 
Now, 𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑞𝑞  holds. Push 𝛿𝛿  unit of flow along 𝑝𝑝 𝑞𝑞  and then 𝛿𝛿  unit of flow 
along 𝑞𝑞 𝑑𝑑 . Now,  𝑝𝑝 only is an active node. Relabel 𝑝𝑝 as 𝑙𝑙 𝑝𝑝 . Now, 𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑟𝑟  
holds. Push 𝛿𝛿  unit of flow along 𝑝𝑝 𝑟𝑟 . Now, only node 𝑟𝑟 is an active. Relabel 𝑟𝑟 as 𝑙𝑙 𝑟𝑟

𝑙𝑙 𝑝𝑝 . Push 𝛿𝛿  unit along 𝑟𝑟 𝑝𝑝 . Now, only 𝑝𝑝 is active node. Relabel 𝑝𝑝 as 𝑙𝑙 𝑝𝑝 . 
Now, 𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑟𝑟  holds. Push 𝛿𝛿  unit of flow along 𝑝𝑝 𝑟𝑟 . Again, only 𝑟𝑟 is an active 
node. Relabel 𝑟𝑟 to be 𝑙𝑙 𝑟𝑟 , and push flow to 𝑝𝑝. Relabel 𝑝𝑝 to be 𝑙𝑙 𝑝𝑝 , so that 
𝑙𝑙 𝑝𝑝 𝑙𝑙 𝑠𝑠  holds and flow is pushed to source 𝑠𝑠. This makes all intermediate nodes empty 
and 𝑒𝑒𝑑𝑑 . The procedure terminates with maximal 𝑠𝑠 − 𝑑𝑑 flow of value 6. 

4. Modification of the Preflow-Push Algorithm 

It is not wise always (at the time of evacuation for example) to force sending the overload flow 
(evacuees) to the source but better to hold in temporary shelter at intermediate node. This could 
be advantageous in many ways; for instance, to provide immediate medication to highly injured 
evacuees by keeping in temporary shelter, sending evacuees with high priority to sink and 
leaving the evacuees with less priority. More importantly, those evacuees which cannot be 
brought into sink due to some arc capacity limitation can be kept in temporary shelters at 
intermediate nodes which could be safer as compared to source in many evacuation scenarios. 
During evacuation people may loss their lives on the way. This circumstance can also be 
addressed by this model which is clearly designed for non-conservation of the flow at 
intermediate nodes. 

We propose a modification on the algorithm of Goldberg and Tarjan [10] that solves the 
maximum evacuation planning problem with holding capability of flow at temporary shelter in 
intermediate nodes. We consider the temporary shelter 𝑣𝑣′  for each intermediate node 𝑣𝑣 ∈ 𝑉𝑉 with 
sufficient capacity to make our model simpler. However, it does not exceed the sum of the 
capacities of outgoing arcs of the source minus the maximum flow. The modified procedure does 
not send the evacuees reaching once at intermediate nodes back again to the source, a dangerous 
place but pushes back to any intermediate nodes. For an active node 𝑣𝑣, we hold the overload flow 
𝑜𝑜𝑣𝑣 in the temporary shelter 𝑣𝑣′  at node 𝑣𝑣 if the push operation and the relabel operation are not 
applicable and even if 𝑙𝑙 𝑣𝑣 ≤ 𝑙𝑙 𝑠𝑠  does not satisfy after relabeling it. The modified preflow-
push algorithm gives the maximum flow at its termination since the flow which we send back to 
the source in the preflow-push algorithm of Goldberg and Tarjan [10] is kept at temporary shelter 
and can be treated as if this is deleted from entire network. At the meantime, the max-flow-min-
cut theorem of Ford and Fulkerson [6] guarantees that the final flow is the maximal flow. 
Moreover, Maximum flow obtained from the modified algorithm exactly meets the maximum 
flow obtained by the algorithm of Ford and Fulkerson [6]. 

Time plays an important role in evacuation planning problem. The method we proposed for static 
case can be used to solve a dynamic version of the problem with necessary modifications on the 
procedure. The investigation of Ford and Fulkerson [7], which states that a feasible flow on  is 
equivalent feasible flow of the problem on the corresponding time expanded network, assures 
that the problem can be solved by converting the dynamic network  into the time expanded 
network over the time horizon . The time expanded network  is defined as 
 ′ τ  , where 

 θ ∈ θ ∈  …   
and 

  θ  θ τ   ≠ ∈ θ ∈  … − τ  . 

We connect each 𝑠𝑠 𝜃𝜃  and 𝑑𝑑 𝜃𝜃 ; θ ∈  …   by a super source 𝑆𝑆 and a super sink 𝐷𝐷, 
respectively with capacities𝑐𝑐 𝑆𝑆 𝑠𝑠 𝜃𝜃 ≔  𝑐𝑐𝑒𝑒𝑒𝑒 𝑠𝑠 𝑣𝑣 ∈𝐸𝐸 and 𝑐𝑐 𝑑𝑑 𝜃𝜃 𝐷𝐷 ≔  𝑐𝑐𝑒𝑒𝑒𝑒 𝑣𝑣 𝑑𝑑 ∈𝐸𝐸 ∀ θ ∈
 …   so that the dynamic evacuation planning problem can be solved on the underlying 
time expanded (static) network using the procedure we proposed. 

5. Concluding Remark 

This paper highlights the maximum flow problem with non-conserving flow model introduced by 
Goldberg and Tarjan [10] and shows the importance of holding the flow that arrives at 
intermediate node and is blocked for being sent into the sink instead of sending them back to the 
source. We gave the mathematical model for the problem and discussed its importance in 
evacuation planning. The current paper models the evacuation planning problem with holding 
capability of evacuees at intermediate nodes and proposes the solution procedure in static case as 
well as in dynamic case with the aid of time expanded network. Exact solution procedure for the 
problem in static case and more efficient solution procedure for dynamic version of the problem 
would be the future research works related to the topic. 
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