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Abstract: Because of increasing number of natural and human created disasters 
worldwide, a research on challenging issues of emergency management are being 
quite emerging for the betterment of today's complex real-life. The diversified 
operational research models and their solutions techniques together with their 
simulation schemes are yet not evident in realizing a generally acceptable 
solution of these challenging issues. We consider the planning problems in 
emergencies which is even unsolved yet in general. In this paper, we briefly give 
the models and algorithms on the existing solution approaches within the 
framework of evacuation planning network flow models, where the objectives 
are either to maximize the flow over time or minimize the time for transshipment 
of the estimated flow. The flow models and solution techniques with their 
insights presented here highlight the state of existing approaches and hint further 
direction of research in the field of evacuation optimization. 
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1.   Introduction  

The research in evacuation planning has been very much motivated due to the rapidly increased 
number of disasters, e.g. earthquakes, tsunamis, landslides, volcanic eruptions, hurricanes, 
typhoons, floods, terrorist attacks, chemical explosions, etc., world-wide. It is the process of 
shifting maximum number of evacuees from the disastrous areas to the safe destinations as 
quickly and efficiently as possible. Various mathematical models for flow maximization and 
time minimization have been studied in quite diversified research domains. The former one 
receives the maximum flow at the safe areas in given time, however, the latter one transships the 
given amount of evacuees in minimum time. Both objectives have been considered  widely to 
solve different evacuation planning problems. However, an existence of integrated solution 
approach that could be accepted in wider range has been lacked. For details, we refer to [1,3,9] 
and the references therein. 
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The evacuation network is defined as a network that corresponds to a region (or a building) to be 
evacuated in which the intersections of streets (or rooms in a building) represent the nodes and 
the connections between these parts (i.e., streets in region, or doors between rooms) denote the 
edges. The initial locations of evacuees are the source nodes and the locations at safety regions 
are the sink nodes. The nodes and edges are bounded by capacities. Each arc has transit time or 
cost function. The group of evacuees that passes through the network over time is modeled as a 
flow. The plan is dependent upon the number of sources, sinks, parameters on the arcs and nodes, 
like constant, time-dependent or flow dependent capacities or transit times as well as additional 
constraints. The time may be discrete or continuous. 

The maximum dynamic single-source single-sink flow model was introduced in [6] that 
maximizes a flow from a source to a sink in a given time horizon. This model can be used in 
evacuation planning by sending as many evacuees as possible from a source (dangerous node) to 
a sink (safe node) in a given time horizon. Author in [8] introduced the earliest arrival flow 
model. Their approach sends the maximum number of evacuees at every time point from the 
beginning. This model is very important for evacuation planning because it does not need the 
predetermined time horizon. If the supplies and demands are fixed on sources and sinks, 
respectively, then the earliest arrival flow model turns into the earliest arrival transshipment flow 
model [1].  

The lex-maximum dynamic flow model was introduced in [10] that send the maximum amount 
of evacuees from sources to sinks in given priority. Priority orderings play quite important roles 
in emergency evacuation because of the level of disastrous situation and the relative weakness of 
the evacuees. Based on the problem of [6], the quickest flow model in which given amount of 
evacuees can be shifted in minimum time has been introduced in [2] and extended in [10]. The 
algorithms they presented are efficient. An optimal solution to the earliest arrival flow model 
follows the optimality of both the maximum flow and the quickest flow models. The natural 
transformation of [5] can transform all the discrete time models into continuous time models and 
vice versa. 

Recently, the dynamic flow models are extended to the dynamic contraflow models in 
[4,11,12,13,14,15,16,17,18]. It is a widely accepted model. It minimizes the congestion. It 
increases the outbound roads capacities by reversing the direction of arcs or paths towards the 
sinks from the sources. Through the network with increased capacity, contraflow problem shifts 
the maximum number of evacuees to the sinks and decreases the evacuation time as well. It seeks 
to remove traffic jams and makes the traffic systematic and smooth. It is a very challenging issue 
of finding a network reconfiguration with ideal lane directions satisfying the given constraints to 
optimize the given objective. However, in this study, we only focus on network flow models and 
its solution procedures for evacuation planning.  

The paper is organized as follows. We state the basic concepts and denotations for this paper in 
Section 2. Section 3 gives a short summery of existing static flow models for evacuation 
planning. Section 4 presents the dynamic flow models developed for evacuation planning. We 
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summarize the solution techniques to solve the static and dynamic flow models in Section 5. This 
work is concluded with Section 6.    

2.  Basic Concepts and Denotations 

The evacuation planning problem is modeled with an evacuation network that consists a directed 
graph 𝐺𝐺  𝑉𝑉 𝐴𝐴 , where 𝑉𝑉  denotes a finite set of nodes and 𝐴𝐴  denotes a finite set of arcs, 
together with set of parameters on the nodes and/or arcs. The nodes are categorized into a set of 
source nodes 𝑆𝑆 ⊆ 𝑉𝑉, a set of intermediate nodes 𝐼𝐼 ⊆ 𝑉𝑉 and a set of sink nodes  𝐷𝐷 ⊆ 𝑉𝑉 . We 
assume that the number of nodes and arcs are  𝑉𝑉 𝑛𝑛  and  𝐴𝐴 𝑚𝑚 , respectively. As we are 
considering the contraflow network, a two way network configuration is allowed. If a network 
has only one source and only one sink, we represent them as 𝑠𝑠 and 𝑑𝑑, respectively. In order to 
simplify the problem within a boundary of efficient model, we make some assumptions. 
Let 𝐴𝐴𝑣𝑣

𝑜𝑜𝑢𝑢𝑡𝑡   𝑣𝑣 𝑤𝑤 ∈ 𝐴𝐴   and 𝐴𝐴𝑣𝑣
𝑖𝑖𝑛𝑛 𝑤𝑤 𝑣𝑣 ∈ 𝐴𝐴    be the sets of outgoing arcs and incoming 

arcs, respectively, for the node 𝑣𝑣 ∈ 𝑉𝑉. Not stated otherwise, we assume that there are no any 
incoming arcs to source node 𝑠𝑠 and outgoing arcs from sink node 𝑑𝑑, i.e., 𝐴𝐴𝑑𝑑

𝑜𝑜𝑢𝑢𝑡𝑡 𝐴𝐴𝑠𝑠
𝑖𝑖𝑛𝑛 ∅. 

The network consists of nonnegative functions of arc capacities 𝑏𝑏𝐴𝐴 𝐴𝐴 → ℛ , node capacities 
𝑏𝑏𝑉𝑉 𝑉𝑉 → ℛ  and arc costs 𝑐𝑐𝐴𝐴 𝐴𝐴 → 𝒵𝒵  or arc transit times 𝜏𝜏 𝐴𝐴 → 𝒵𝒵  depending upon the 
problem nature. The arc capacities 𝑏𝑏𝐴𝐴 𝑒𝑒 , 𝑒𝑒 ∈ 𝐴𝐴 represent the maximum units of evacuees that 
may enter the initial node of arc 𝑒𝑒 per time period. Let 𝑥𝑥𝑟𝑟 𝑒𝑒  be the rate of flow that is the 
amount of flow entering the arc 𝑒𝑒 per time unit. The flow rate is bounded by arc capacity of that 
arc, i.e., 𝑥𝑥𝑟𝑟 𝑒𝑒 ≤ 𝑏𝑏𝐴𝐴 𝑒𝑒 . The group of evacuees is modeled as a flow which passes through the 
network over time.  

The node capacities 𝑏𝑏𝑉𝑉 𝑣𝑣 , 𝑣𝑣 ∈ 𝑉𝑉  bound the amount of evacuees allowed to hold at node 𝑣𝑣. The 
time needed to travel one unit of evacuees on the arc 𝑒𝑒 𝑣𝑣,w) from node 𝑣𝑣 to node 𝑤𝑤 is the 
transit time 𝜏𝜏 𝑒𝑒 . That means, if one unit of flow starts to move from node 𝑣𝑣 at time 𝑡𝑡 with flow 
rate one, it will reach the node 𝑤𝑤 at time 𝑡𝑡 𝜏𝜏 𝑒𝑒  with the same flow rate. The cost needed for 
sending one unit of evacuees through the arc 𝑒𝑒 is 𝑐𝑐𝐴𝐴 𝑒𝑒 . Generally, supply and demand at nodes 
are unknown. If the integer supply/demand at each source and sink is known, it is denoted by the 
vector 𝜇𝜇 𝑣𝑣  for all  𝑣𝑣 ∈ 𝑆𝑆 ∪ 𝐷𝐷. 

The collection of date 𝒩𝒩 𝑉𝑉 𝐴𝐴 𝑏𝑏𝐴𝐴 𝑏𝑏𝑉𝑉 𝜏𝜏 𝑆𝑆 𝐷𝐷 𝑇𝑇  with predetermined finite time 𝑇𝑇  is 
represented as a dynamic network. By discarding the time factor from dynamic network, a static 
network is obtained. Time 𝑇𝑇 may be discrete or continuous within which evacuation process 
should be completed. In discrete setting, it is considered as 𝑡𝑡 … 𝑇𝑇 . However, in 
continuous time setting, 𝑡𝑡 can take any value in 𝑇𝑇 . Let 𝒯𝒯  be a domain of time, i.e., 𝒯𝒯

… 𝑇𝑇   in a discrete model and 𝒯𝒯 𝑇𝑇   in a continuous model. This paper considers both 
time settings.  
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Some time, we construct a two terminal network from the multi-terminal network by adding a 
super-terminal node ∗  and introducing arcs ∗ 𝑠𝑠𝑖𝑖  to each 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 with infinite capacity and zero 
transit time, and arcs 𝑑𝑑𝑖𝑖 ∗  to each 𝑑𝑑𝑖𝑖 ∈ 𝐷𝐷 with infinite capacity and transit time − 𝑇𝑇  for 
given time period 𝑇𝑇. This network is called the extended network and is denoted by 𝒩𝒩∗. 

3.  Static Flow Models 

Let 𝒩𝒩 𝑉𝑉 𝐴𝐴 𝑏𝑏𝐴𝐴 𝑐𝑐𝐴𝐴 𝑠𝑠 𝑑𝑑  be a two-terminal static network. Note that its arc capacity limits the 
total amount of flow on an arc. For example, the capacity limits the total number of vehicles on a 
street. Let a non-negative function 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝐴𝐴 → ℛ  represents the static flow. The maximum static 
𝑠𝑠 - 𝑑𝑑 flow maximizes the flow value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  in Objective (1) satisfying the flow conservation 
and capacity Constraints (2) and (3), respectively,  [6, 7]. 

𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑒𝑒𝑒𝑒∈ 𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛
 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑒𝑒𝑒𝑒∈ 𝐴𝐴𝑠𝑠𝑜𝑜𝑢𝑢𝑡𝑡                        (1) 

 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑒𝑒𝑒𝑒∈ 𝐴𝐴𝑣𝑣𝑖𝑖𝑛𝑛 −  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑒𝑒𝑒𝑒∈ 𝐴𝐴𝑣𝑣𝑜𝑜𝑢𝑢𝑡𝑡 ∀𝑣𝑣 ∈ 𝑉𝑉 𝑠𝑠 𝑑𝑑                       (2) 

≤ 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑒𝑒 ≤ 𝑏𝑏𝐴𝐴 𝑒𝑒 ∀𝑒𝑒 ∈ 𝐴𝐴                          (3) 

A circulation for a static flow 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  with value 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  is formed with flow conservation at 
each node of network  𝒩𝒩. It is obtained by adding an extra arc 𝑑𝑑 𝑠𝑠  with the value 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 . 
Thus, we have a static flow with value zero as a zero circulation. If we have fixed flow value 

𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  for a network including cost 𝑐𝑐𝐴𝐴 𝑒𝑒  on each arc 𝑒𝑒 ∈ 𝐴𝐴 , then the problem is the 
minimum cost flow that shifts the given flow from source to sink with minimum cost 
 𝑐𝑐𝐴𝐴 𝑒𝑒 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑒𝑒 𝑒𝑒∈𝐴𝐴 . The minimum cost flow problem with zero circulation is a minimum cost 
circulation flow problem. 

Example 1 Consider an evacuation network with a single source 𝑠𝑠 , a single sink 𝑑𝑑  and 
intermediate nodes 𝑥𝑥 and 𝑦𝑦 as shown in Figure 1(a). As each arc has capacity and cost function, 
the network is static. During evacuation process, we do not allow the flow towards the source, 
along the cycles and outwards from the sink. Thus the arcs towards the source and outwards from 
the sink are empty.  

Pyakurel 



94  

 
 

4.   Dynamic Flow Models 

A two-terminal dynamic network 𝒩𝒩 𝑉𝑉 𝐴𝐴 𝑏𝑏𝐴𝐴 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇  has capacity and transit times on each 
arc. In discrete model, the capacity limits the amount of flow that enters an arc at any point in 
time 𝒯𝒯 … 𝑇𝑇  . In continuous model, the capacity limits the rate of flow that enters an arc 
at any point in time 𝒯𝒯 𝑇𝑇 . For example, the number of lanes on a street limits the number 
of vehicles that can enter it at the same time.  If the cost function on each arc of Figure 1(a) is 
taken as transit time, then the network becomes a dynamic network. An arc between nodes 𝑠𝑠 and 
𝑥𝑥 has capacity 3 and transit time 1. If we assume that a time unit is 4 minutes, it takes 4 minutes 
for evacuees to travel from 𝑠𝑠  to 𝑥𝑥  and a maximum of 3 evacuees can simultaneously travel 
through the arc. 

Let the non-negative functions 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝐴𝐴 𝒯𝒯 → ℛ  and 𝑥𝑥𝑟𝑟 𝐴𝐴 𝒯𝒯 → ℛ  represent the dynamic 
flow in discrete model and the rate of flow on an arc 𝑒𝑒 in continuous time model, respectively. 
Here 𝑥𝑥𝑟𝑟 𝑒𝑒 𝑡𝑡  denotes the rate of flow that enters arc 𝑒𝑒 at continuous time 𝑡𝑡. We refer to [6, 7, 2, 
9] for different studies on dynamic flow models. 

4.1 Maximum Dynamic Flow 

The maximum evacuation flow problem shifts the maximum possible number of evacuees from 
the disastrous areas to the safe destinations within a estimated time horizon 𝑇𝑇. The estimation of 
time horizon 𝑇𝑇 affects the problem directly. If 𝑇𝑇 is very long, the evacuation process may be 
slow and loss may be high. If 𝑇𝑇 is very short, all evacuees may not be shifted within the time. 
However, we consider 𝑇𝑇 as the total time of longest path of the network.  

A maximum dynamic 𝑠𝑠- 𝑑𝑑  flow 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎  for given time 𝑇𝑇 maximizes the flow value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑇𝑇  
in Objective (4) satisfying the flow conservation and capacity Constraints (5-7). The inequality 
flow conservation constraint (6) allows to wait flow at intermediate nodes, however, the equality 
constraint (replace the inequality in (6) by equality) forces that flow entering an intermediate 
node must leave it again immediately.  

𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑇𝑇   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎
𝑒𝑒∈𝐴𝐴𝑠𝑠𝑜𝑜𝑢𝑢𝑡𝑡

𝑇𝑇

𝜎𝜎
 𝑒𝑒 𝜎𝜎   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎

𝑒𝑒∈𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛

𝑇𝑇

𝜎𝜎 𝜏𝜏 𝑒𝑒 
 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒   

  𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎
𝑒𝑒∈𝐴𝐴𝑣𝑣𝑖𝑖𝑛𝑛

𝑇𝑇

𝜎𝜎 𝜏𝜏 𝑒𝑒 
 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  −  𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎

𝑒𝑒∈𝐴𝐴𝑣𝑣𝑜𝑜𝑢𝑢𝑡𝑡

𝑇𝑇

𝜎𝜎
 𝑒𝑒 𝜎𝜎 ∀ 𝑣𝑣 ∉  𝑠𝑠 𝑑𝑑  

  𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎
𝑒𝑒∈𝐴𝐴𝑣𝑣𝑖𝑖𝑛𝑛

𝑡𝑡

𝜎𝜎 𝜏𝜏 𝑒𝑒 
 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  −  𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎

𝑒𝑒∈𝐴𝐴𝑣𝑣𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡

𝜎𝜎
 𝑒𝑒 𝜎𝜎 ≥ ∀ 𝑣𝑣 ∉  𝑠𝑠 𝑑𝑑 𝑡𝑡 ∈ 𝒯𝒯  

≤ 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎  𝑒𝑒 𝑡𝑡 ≤ 𝑏𝑏𝐴𝐴 𝑒𝑒 𝑡𝑡 ∀𝑒𝑒 ∈ 𝐴𝐴 𝑡𝑡 ∈ 𝒯𝒯  
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4.   Dynamic Flow Models 

A two-terminal dynamic network 𝒩𝒩 𝑉𝑉 𝐴𝐴 𝑏𝑏𝐴𝐴 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇  has capacity and transit times on each 
arc. In discrete model, the capacity limits the amount of flow that enters an arc at any point in 
time 𝒯𝒯 … 𝑇𝑇  . In continuous model, the capacity limits the rate of flow that enters an arc 
at any point in time 𝒯𝒯 𝑇𝑇 . For example, the number of lanes on a street limits the number 
of vehicles that can enter it at the same time.  If the cost function on each arc of Figure 1(a) is 
taken as transit time, then the network becomes a dynamic network. An arc between nodes 𝑠𝑠 and 
𝑥𝑥 has capacity 3 and transit time 1. If we assume that a time unit is 4 minutes, it takes 4 minutes 
for evacuees to travel from 𝑠𝑠  to 𝑥𝑥  and a maximum of 3 evacuees can simultaneously travel 
through the arc. 

Let the non-negative functions 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝐴𝐴 𝒯𝒯 → ℛ  and 𝑥𝑥𝑟𝑟 𝐴𝐴 𝒯𝒯 → ℛ  represent the dynamic 
flow in discrete model and the rate of flow on an arc 𝑒𝑒 in continuous time model, respectively. 
Here 𝑥𝑥𝑟𝑟 𝑒𝑒 𝑡𝑡  denotes the rate of flow that enters arc 𝑒𝑒 at continuous time 𝑡𝑡. We refer to [6, 7, 2, 
9] for different studies on dynamic flow models. 

4.1 Maximum Dynamic Flow 

The maximum evacuation flow problem shifts the maximum possible number of evacuees from 
the disastrous areas to the safe destinations within a estimated time horizon 𝑇𝑇. The estimation of 
time horizon 𝑇𝑇 affects the problem directly. If 𝑇𝑇 is very long, the evacuation process may be 
slow and loss may be high. If 𝑇𝑇 is very short, all evacuees may not be shifted within the time. 
However, we consider 𝑇𝑇 as the total time of longest path of the network.  

A maximum dynamic 𝑠𝑠- 𝑑𝑑  flow 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎  for given time 𝑇𝑇 maximizes the flow value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑇𝑇  
in Objective (4) satisfying the flow conservation and capacity Constraints (5-7). The inequality 
flow conservation constraint (6) allows to wait flow at intermediate nodes, however, the equality 
constraint (replace the inequality in (6) by equality) forces that flow entering an intermediate 
node must leave it again immediately.  

𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑇𝑇   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎
𝑒𝑒∈𝐴𝐴𝑠𝑠𝑜𝑜𝑢𝑢𝑡𝑡

𝑇𝑇

𝜎𝜎
 𝑒𝑒 𝜎𝜎   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎

𝑒𝑒∈𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛

𝑇𝑇

𝜎𝜎 𝜏𝜏 𝑒𝑒 
 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒   

  𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎
𝑒𝑒∈𝐴𝐴𝑣𝑣𝑖𝑖𝑛𝑛

𝑇𝑇

𝜎𝜎 𝜏𝜏 𝑒𝑒 
 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  −  𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎

𝑒𝑒∈𝐴𝐴𝑣𝑣𝑜𝑜𝑢𝑢𝑡𝑡

𝑇𝑇

𝜎𝜎
 𝑒𝑒 𝜎𝜎 ∀ 𝑣𝑣 ∉  𝑠𝑠 𝑑𝑑  

  𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎
𝑒𝑒∈𝐴𝐴𝑣𝑣𝑖𝑖𝑛𝑛

𝑡𝑡

𝜎𝜎 𝜏𝜏 𝑒𝑒 
 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  −  𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎

𝑒𝑒∈𝐴𝐴𝑣𝑣𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡

𝜎𝜎
 𝑒𝑒 𝜎𝜎 ≥ ∀ 𝑣𝑣 ∉  𝑠𝑠 𝑑𝑑 𝑡𝑡 ∈ 𝒯𝒯  

≤ 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎  𝑒𝑒 𝑡𝑡 ≤ 𝑏𝑏𝐴𝐴 𝑒𝑒 𝑡𝑡 ∀𝑒𝑒 ∈ 𝐴𝐴 𝑡𝑡 ∈ 𝒯𝒯  

     

 
 

Note that a maximum dynamic flow solution maximizes the flow in time 𝑇𝑇 and does not care the 
status at earlier time periods. This problem can be converted into minimum cost flow problem by 
using the transit time on each arc as the cost.  

In continuous time, the maximum dynamic flow problem in given time horizon 𝑇𝑇 maximizes 
𝑥𝑥𝑟𝑟 𝑇𝑇  in Objective (8) satisfying the flow conservation and the flow rate capacity Constraint 

(9-11) which is similar to the discrete dynamic flow, with the sum over time replaced by an 
integral.  

𝑥𝑥𝑟𝑟 𝑇𝑇   𝑥𝑥𝑟𝑟
𝑒𝑒∈𝐴𝐴𝑠𝑠𝑜𝑜𝑢𝑢𝑡𝑡

𝑇𝑇
 𝑒𝑒 𝑡𝑡 𝑑𝑑𝑡𝑡   𝑥𝑥𝑟𝑟

𝑒𝑒∈𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛

𝑇𝑇
 𝑒𝑒 𝑡𝑡 − 𝜏𝜏 𝑒𝑒  𝑑𝑑𝑡𝑡  

  𝑥𝑥𝑟𝑟
𝑒𝑒∈𝐴𝐴𝑣𝑣𝑖𝑖𝑛𝑛

𝑡𝑡
 𝑒𝑒 𝑡𝑡 − 𝜏𝜏 𝑒𝑒  𝑑𝑑𝑡𝑡 −   𝑥𝑥𝑟𝑟

𝑒𝑒∈𝐴𝐴𝑣𝑣𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡
 𝑒𝑒 𝑡𝑡 𝑑𝑑𝑡𝑡 ≥ ∀ 𝑣𝑣 ∉  𝑠𝑠 𝑑𝑑 𝑡𝑡 ∈ 𝒯𝒯  

  𝑥𝑥𝑟𝑟
𝑒𝑒∈𝐴𝐴𝑣𝑣𝑖𝑖𝑛𝑛

𝑇𝑇
 𝑒𝑒 𝑡𝑡 − 𝜏𝜏 𝑒𝑒  𝑑𝑑𝑡𝑡 −   𝑥𝑥𝑟𝑟

𝑒𝑒∈𝐴𝐴𝑣𝑣𝑜𝑜𝑢𝑢𝑡𝑡

𝑇𝑇
 𝑒𝑒 𝑡𝑡 𝑑𝑑𝑡𝑡 ∀ 𝑣𝑣 ∉  𝑠𝑠 𝑑𝑑 𝑡𝑡 ∈ 𝒯𝒯  

≤ 𝑥𝑥𝑟𝑟 𝑒𝑒 𝑡𝑡 ≤ 𝑏𝑏𝐴𝐴 𝑒𝑒 𝑡𝑡 ∀𝑒𝑒 ∈ 𝐴𝐴 𝑡𝑡 ∈ 𝒯𝒯  

4.2 Earliest Arrival Flow 

An earliest arrival flow (also known as universal maximum flow) problem on network 𝒩𝒩
𝑉𝑉 𝐴𝐴 𝑏𝑏𝐴𝐴 𝜏𝜏 𝑆𝑆 𝐷𝐷  demands a solution of maximal flow reaching the sinks for all points in time 

simultaneously. This problem captures the essence of the realistic evacuation planning, sending 
the maximum number of evacuees from the beginning of the evacuation process. It is a useful 
and reasonable property of network flow problems. The earliest arrival flow problem maximizes  
𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑡𝑡   in (12) for all 𝑡𝑡 ∈ 𝒯𝒯 satisfying the constraints (5-7),  [9]. 

𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑡𝑡   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎
𝑒𝑒∈𝐴𝐴𝑠𝑠𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡

𝜎𝜎
 𝑒𝑒 𝜎𝜎   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎

𝑒𝑒∈𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛

𝑡𝑡

𝜎𝜎 𝜏𝜏 𝑒𝑒 
 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒   

The earliest arrival flow satisfies the earliest arrival flow property, i.e., a cumulative amount of 
flows reaching the sinks in every considered time period and all preceding time periods of the 
considered one have to be maximal. Analogously, the flows leaving the sources have to be 
maximal.  

As in discrete time setting, the earliest arrival flow problem in continuous time maximizes 
𝑥𝑥𝑟𝑟 𝑡𝑡   in Objective (13) satisfying the constraints (9) and (11) for all 𝑡𝑡 ∈ 𝑇𝑇 .  

𝑥𝑥𝑟𝑟 𝑡𝑡   𝑥𝑥𝑟𝑟
𝑒𝑒∈𝐴𝐴𝑠𝑠𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡
 𝑒𝑒 𝑡𝑡 𝑑𝑑𝑡𝑡   𝑥𝑥𝑟𝑟

𝑒𝑒∈𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛

𝑡𝑡
 𝑒𝑒 𝑡𝑡 − 𝜏𝜏 𝑒𝑒  𝑑𝑑𝑡𝑡  

Pyakurel 
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4.3 Earliest Arrival Transshipment Flow 

Let 𝒩𝒩 𝑉𝑉 𝐴𝐴 𝑏𝑏𝐴𝐴 𝜏𝜏 𝑆𝑆 𝐷𝐷 𝜇𝜇 𝑠𝑠 𝜗𝜗 𝑑𝑑   be a multi-terminal network with a supply vector 𝜇𝜇 𝑠𝑠  for 
each 𝑠𝑠 ∈ 𝑆𝑆 and a demand vector 𝜗𝜗 𝑑𝑑  for each 𝑑𝑑 ∈ 𝐷𝐷. The multi-terminal earliest arrival flow 
problem sends total supply 𝜇𝜇 𝑆𝑆  𝜇𝜇 𝑠𝑠 𝑠𝑠∈𝑆𝑆  from the source set 𝑆𝑆  to the sink set 𝐷𝐷  with 
maximum value at each point of time 𝑡𝑡 . If all supplies should be shifted within given time 
horizon 𝑇𝑇 , then the problem turns into the transshipment problem. The earliest arrival 
transshipment problem maximizes 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑡𝑡  in Objective (14) satisfying the Constraints (5-7) 
for all ∈ … 𝑇𝑇  .  

𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑡𝑡   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎
𝑒𝑒∈𝐴𝐴𝑠𝑠𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡

𝜎𝜎
 𝑒𝑒 𝜎𝜎   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎

𝑒𝑒∈𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛

𝑡𝑡

𝜎𝜎 𝜏𝜏 𝑒𝑒 
 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  𝜇𝜇 𝑣𝑣 𝑣𝑣 𝑠𝑠 𝑑𝑑  

Similarly, the earliest arrival transshipment problem in continuous time maximizes 𝑥𝑥𝑟𝑟 𝑡𝑡  in 
Objective (15) satisfying the Constraints (9) and (11) for all 𝑡𝑡 ∈ 𝑇𝑇 . 

𝑥𝑥𝑟𝑟 𝑡𝑡   𝑥𝑥𝑟𝑟
𝑒𝑒∈𝐴𝐴𝑠𝑠𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡
 𝑒𝑒 𝑡𝑡 𝑑𝑑𝑡𝑡   𝑥𝑥𝑟𝑟

𝑒𝑒∈𝐴𝐴𝑑𝑑
𝑖𝑖𝑛𝑛

𝑡𝑡
 𝑒𝑒 𝑡𝑡 − 𝜏𝜏 𝑒𝑒  𝑑𝑑𝑡𝑡 𝜇𝜇 𝑣𝑣 𝑣𝑣 ∈  𝑠𝑠 𝑑𝑑  

4.4 Quickest Flow 

If we have given flow value and we have to transship the flow value from sources to sinks in 
minimum time, then the problem will be quickest flow. It looks for a minimal time 𝑇𝑇
𝑇𝑇 𝑄𝑄  such that flow value is at least 𝑄𝑄  satisfying the Constraint (5), equality of the Constraint 
(6) and the capacity Constraint (7). 

The quickest flow problem in continuous time transships the given 𝑄𝑄 flow value in minimum 
time 𝑇𝑇 𝑇𝑇 𝑄𝑄  satisfying the equality of Constraint (9), Constraint (10), and the capacity 
Constraint (11). 

4.5 Lex-maximum Dynamic Flow 

For given time 𝑇𝑇 and an ordered set of multi-terminals with their priority, the maximum dynamic 
flow problem turns in to the lex-maximum dynamic flow problem. It finds a feasible flow that 
lexicographically maximizes the amount leaving each terminal in the given priority. 
Analogously, it maximizes the amount entering each terminal in the given priority. 

If an ordered set of multi-terminals is given, then the maximum dynamic flow problem in given 
continuous time horizon 𝑇𝑇 is the lex-maximum dynamic flow problem. As in discrete time, it 
finds a feasible flow that lexicographically maximizes the amount leaving and entering each 
terminal in the given priority. 

 

 

Network Flow Models for Evacuation Planning



97 

 
 

4.3 Earliest Arrival Transshipment Flow 

Let 𝒩𝒩 𝑉𝑉 𝐴𝐴 𝑏𝑏𝐴𝐴 𝜏𝜏 𝑆𝑆 𝐷𝐷 𝜇𝜇 𝑠𝑠 𝜗𝜗 𝑑𝑑   be a multi-terminal network with a supply vector 𝜇𝜇 𝑠𝑠  for 
each 𝑠𝑠 ∈ 𝑆𝑆 and a demand vector 𝜗𝜗 𝑑𝑑  for each 𝑑𝑑 ∈ 𝐷𝐷. The multi-terminal earliest arrival flow 
problem sends total supply 𝜇𝜇 𝑆𝑆  𝜇𝜇 𝑠𝑠 𝑠𝑠∈𝑆𝑆  from the source set 𝑆𝑆  to the sink set 𝐷𝐷  with 
maximum value at each point of time 𝑡𝑡 . If all supplies should be shifted within given time 
horizon 𝑇𝑇 , then the problem turns into the transshipment problem. The earliest arrival 
transshipment problem maximizes 𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑡𝑡  in Objective (14) satisfying the Constraints (5-7) 
for all ∈ … 𝑇𝑇  .  

𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑡𝑡   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎
𝑒𝑒∈𝐴𝐴𝑠𝑠𝑜𝑜𝑢𝑢𝑡𝑡

𝑡𝑡

𝜎𝜎
 𝑒𝑒 𝜎𝜎   𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎

𝑒𝑒∈𝐴𝐴𝑑𝑑𝑖𝑖𝑛𝑛

𝑡𝑡

𝜎𝜎 𝜏𝜏 𝑒𝑒 
 𝑒𝑒 𝜎𝜎 − 𝜏𝜏 𝑒𝑒  𝜇𝜇 𝑣𝑣 𝑣𝑣 𝑠𝑠 𝑑𝑑  
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𝑒𝑒∈𝐴𝐴𝑑𝑑
𝑖𝑖𝑛𝑛

𝑡𝑡
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4.4 Quickest Flow 

If we have given flow value and we have to transship the flow value from sources to sinks in 
minimum time, then the problem will be quickest flow. It looks for a minimal time 𝑇𝑇
𝑇𝑇 𝑄𝑄  such that flow value is at least 𝑄𝑄  satisfying the Constraint (5), equality of the Constraint 
(6) and the capacity Constraint (7). 

The quickest flow problem in continuous time transships the given 𝑄𝑄 flow value in minimum 
time 𝑇𝑇 𝑇𝑇 𝑄𝑄  satisfying the equality of Constraint (9), Constraint (10), and the capacity 
Constraint (11). 

4.5 Lex-maximum Dynamic Flow 

For given time 𝑇𝑇 and an ordered set of multi-terminals with their priority, the maximum dynamic 
flow problem turns in to the lex-maximum dynamic flow problem. It finds a feasible flow that 
lexicographically maximizes the amount leaving each terminal in the given priority. 
Analogously, it maximizes the amount entering each terminal in the given priority. 

If an ordered set of multi-terminals is given, then the maximum dynamic flow problem in given 
continuous time horizon 𝑇𝑇 is the lex-maximum dynamic flow problem. As in discrete time, it 
finds a feasible flow that lexicographically maximizes the amount leaving and entering each 
terminal in the given priority. 

 

 

     

 
 

5.    Solution Procedures of Network Flow Models 

5.1 Residual Network 

Let 𝒩𝒩𝑅𝑅 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑉𝑉 𝐴𝐴 ∪ 𝐴𝐴   with a static flow 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 be the residual network of 𝒩𝒩 𝑉𝑉 𝐴𝐴
𝑏𝑏𝐴𝐴 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 , where 𝐴𝐴  𝑒𝑒 𝑒𝑒 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑒𝑒 𝑏𝑏𝐴𝐴 𝑒𝑒  be the set of forward arcs having capacity 
𝑏𝑏𝐴𝐴 𝑒𝑒 − 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑒𝑒  and cost (transit time) 𝜏𝜏 𝑒𝑒  and 𝐴𝐴 𝑒𝑒  𝑒𝑒 𝑒𝑒 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑒𝑒  
be the set of backward arcs having capacity 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎 𝑡𝑡 𝑒𝑒  and a cost (transit time)  −𝜏𝜏 𝑒𝑒 .  

Example 2 If network has no residual flow, then obtained flow is a maximum. The maximum 
static flow through the network given in Figure 1 (a) of Example 1 is 8 with paths 𝑠𝑠 − 𝑥𝑥 − 𝑑𝑑  and 
𝑠𝑠 − 𝑦𝑦 − 𝑑𝑑 by negating the cost function. If we include the cost, then the problem is minimum 
cost flow. To transship 8 units flow from 𝑠𝑠 to 𝑑𝑑 through paths 𝑠𝑠 − 𝑥𝑥 − 𝑑𝑑  and 𝑠𝑠 − 𝑦𝑦 − 𝑑𝑑, total 37 
units cost requires that is the minimum cost. By adding an arc from sink 𝑑𝑑 to source 𝑠𝑠 with 
infinite capacity and − 𝑇𝑇   cost, where 𝑇𝑇 is the maximum length (cost) of  path from source 
to sink, the problem turns into minimum cost circulation flow as shown in Figure 1(b).  Here, the 
value of 𝑇𝑇 is 5. When the capacity of the arc 𝑑𝑑 𝑠𝑠  is fixed as the maximum static flow value 8, 
there exists a zero circulation.  

 For the static network with static flow value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  through paths  𝑠𝑠 − 𝑥𝑥 − 𝑑𝑑  and  
𝑠𝑠 − 𝑦𝑦 − 𝑑𝑑  of Figure 2(a), we construct its residual network as in Figure 2(b). There exists a path 
𝑠𝑠 − 𝑥𝑥 − 𝑦𝑦 − 𝑑𝑑 from source to sink through which we can increase flow value 1 in the residual 
network. This path is an augmenting path. Since, there exists no more augmenting paths in 
residual network, the obtained flow 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  is the maximum static flow 
through network in Figure 2(a). Notice that if the cost function on the arcs is reconsidered as 
transit time, then it will be the residual network of dynamic flow problem. 

 

5.2 Time-expanded Network 

In order to solve the maximum dynamic flow problem, [6,7] introduced the time expanded 
network. It is defined as 𝒩𝒩 𝑇𝑇 𝑉𝑉𝑇𝑇 𝐴𝐴𝑀𝑀 ∪ 𝐴𝐴𝐻𝐻 , an expansion of the dynamic network, where 
each node 𝑣𝑣 of the static graph is copied 𝑇𝑇 times to obtain a node 𝑣𝑣 𝑡𝑡  for each 𝑣𝑣 ∈ 𝑉𝑉 and each  

Pyakurel 



98  

 
 

𝑡𝑡 ∈ … 𝑇𝑇 . For each arc 𝑒𝑒 𝑣𝑣 𝑤𝑤 ∈ 𝐴𝐴, the arc from 𝑣𝑣 𝑡𝑡  to 𝑤𝑤 𝑡𝑡 𝜏𝜏 𝑣𝑣 𝑤𝑤  with capacity 
𝑏𝑏𝐴𝐴 𝑣𝑣 𝑤𝑤  is called movement arc and the arc from 𝑣𝑣 𝑡𝑡  to 𝑣𝑣 𝑡𝑡   with capacity 𝑏𝑏𝑉𝑉 𝑣𝑣  is 

called holdover arc which allow storage of flow at the nodes. The capacity of holdover arcs is 
infinite. If the holdover at nodes are not allowed, then holdover arcs will be omitted. Authors in 
[6,7] proved a very important property as Theorem 1 which is the main root of the developed 
network flow models up to today. 

Theorem 1 The maximum dynamic 𝑠𝑠- 𝑑𝑑 flow in a given network 𝒩𝒩  is equivalent to the maximal 
static 𝑠𝑠 - 𝑑𝑑𝑇𝑇  flow in the time expanded network 𝒩𝒩 𝑇𝑇 . 

If we compute the maximum dynamic flow of Figure 2(a) assuming cost as transit time and using 
time expanded network, same flow value can be computed as in Figure 3. 

 

The network 𝒩𝒩 𝑇𝑇  is static and depends directly upon the time 𝑇𝑇. Network 𝒩𝒩 𝑇𝑇   is linear in 𝑇𝑇 
having at most 𝑂𝑂 𝑛𝑛𝑇𝑇  nodes and 𝑂𝑂 𝑛𝑛 𝑚𝑚 𝑇𝑇 arcs. The concept of 𝒩𝒩 𝑇𝑇  has been updated in 
most of the literatures, see for example, [9]. For large time horizon, the size of 𝒩𝒩 𝑇𝑇  will be very 
large. This is a great disadvantage of the method though well-known classical static methods 
could be applied. All the algorithms based on 𝒩𝒩 𝑇𝑇   are polynomial in 𝑇𝑇 and thus have pseudo-
polynomial running time.  

5.3 Flow Decomposition 

Let 𝑃𝑃 be a path, i.e., a sequence of nodes and arcs and let 𝒫𝒫  𝑃𝑃 … 𝑃𝑃𝑘𝑘   with 𝑘𝑘 ≤ 𝑚𝑚 be a 
finite set of paths from the source to the sink on a dynamic network 𝒩𝒩 𝑉𝑉 𝐴𝐴 𝑏𝑏𝐴𝐴 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 . A 
path becomes a cycle if its end nodes are the same. Let 𝐶𝐶 be a cycle and 𝒞𝒞  𝐶𝐶 … 𝐶𝐶𝑘𝑘   with 
𝑘𝑘 ≤ 𝑚𝑚 be a finite set of cycles. Let 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘   be the flow  with value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘   along path 
𝑃𝑃𝑘𝑘 ∈ 𝒫𝒫 in the dynamic network. It holds 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘𝑝𝑝

𝑘𝑘 , where all paths in 𝒫𝒫 start and 
end at the terminal nodes and use the arcs in the same direction as 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  does. This is called the 

Network Flow Models for Evacuation Planning



99 

 
 

𝑡𝑡 ∈ … 𝑇𝑇 . For each arc 𝑒𝑒 𝑣𝑣 𝑤𝑤 ∈ 𝐴𝐴, the arc from 𝑣𝑣 𝑡𝑡  to 𝑤𝑤 𝑡𝑡 𝜏𝜏 𝑣𝑣 𝑤𝑤  with capacity 
𝑏𝑏𝐴𝐴 𝑣𝑣 𝑤𝑤  is called movement arc and the arc from 𝑣𝑣 𝑡𝑡  to 𝑣𝑣 𝑡𝑡   with capacity 𝑏𝑏𝑉𝑉 𝑣𝑣  is 

called holdover arc which allow storage of flow at the nodes. The capacity of holdover arcs is 
infinite. If the holdover at nodes are not allowed, then holdover arcs will be omitted. Authors in 
[6,7] proved a very important property as Theorem 1 which is the main root of the developed 
network flow models up to today. 

Theorem 1 The maximum dynamic 𝑠𝑠- 𝑑𝑑 flow in a given network 𝒩𝒩  is equivalent to the maximal 
static 𝑠𝑠 - 𝑑𝑑𝑇𝑇  flow in the time expanded network 𝒩𝒩 𝑇𝑇 . 

If we compute the maximum dynamic flow of Figure 2(a) assuming cost as transit time and using 
time expanded network, same flow value can be computed as in Figure 3. 

 

The network 𝒩𝒩 𝑇𝑇  is static and depends directly upon the time 𝑇𝑇. Network 𝒩𝒩 𝑇𝑇   is linear in 𝑇𝑇 
having at most 𝑂𝑂 𝑛𝑛𝑇𝑇  nodes and 𝑂𝑂 𝑛𝑛 𝑚𝑚 𝑇𝑇 arcs. The concept of 𝒩𝒩 𝑇𝑇  has been updated in 
most of the literatures, see for example, [9]. For large time horizon, the size of 𝒩𝒩 𝑇𝑇  will be very 
large. This is a great disadvantage of the method though well-known classical static methods 
could be applied. All the algorithms based on 𝒩𝒩 𝑇𝑇   are polynomial in 𝑇𝑇 and thus have pseudo-
polynomial running time.  

5.3 Flow Decomposition 

Let 𝑃𝑃 be a path, i.e., a sequence of nodes and arcs and let 𝒫𝒫  𝑃𝑃 … 𝑃𝑃𝑘𝑘   with 𝑘𝑘 ≤ 𝑚𝑚 be a 
finite set of paths from the source to the sink on a dynamic network 𝒩𝒩 𝑉𝑉 𝐴𝐴 𝑏𝑏𝐴𝐴 𝜏𝜏 𝑠𝑠 𝑑𝑑 𝑇𝑇 . A 
path becomes a cycle if its end nodes are the same. Let 𝐶𝐶 be a cycle and 𝒞𝒞  𝐶𝐶 … 𝐶𝐶𝑘𝑘   with 
𝑘𝑘 ≤ 𝑚𝑚 be a finite set of cycles. Let 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘   be the flow  with value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘   along path 
𝑃𝑃𝑘𝑘 ∈ 𝒫𝒫 in the dynamic network. It holds 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘𝑝𝑝

𝑘𝑘 , where all paths in 𝒫𝒫 start and 
end at the terminal nodes and use the arcs in the same direction as 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  does. This is called the 

     

 
 

standard chain decomposition [6,7]. If static flow 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 is decomposable into set of paths𝒫𝒫, the 
MSF problem can be formulated as  

  

𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡
𝑃𝑃𝑘𝑘∈𝒫𝒫

 

 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘 ≤ 𝑏𝑏𝐴𝐴 𝑒𝑒 ∀𝑒𝑒 ∈ 𝐴𝐴
𝑃𝑃𝑘𝑘∈𝒫𝒫 𝑒𝑒∈𝑃𝑃𝑘𝑘

 

A flow decomposition with zero flows on all cycles, known as a path decomposition, is also 
denoted by 𝒫𝒫. One may assume that there is no flow along any cycle as the positive flow along 
all cycles could be canceled.  

For example, in Figure 2, the maximum static flow value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  is decomposed into 
three paths 𝑃𝑃 𝑠𝑠 − 𝑥𝑥 − 𝑑𝑑  with flow value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃 , 𝑃𝑃 𝑠𝑠 − 𝑦𝑦 − 𝑑𝑑  with flow 
value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃 and 𝑃𝑃 𝑠𝑠 − 𝑥𝑥 − 𝑦𝑦 − 𝑑𝑑  with flow value 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃  
satisfying the capacity constraint, i.e., 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘 ≤ 𝑏𝑏𝐴𝐴 𝑒𝑒 . Thus paths 𝑃𝑃 𝑃𝑃 𝑃𝑃 ∈ 𝒫𝒫  start 
and end at the same terminal nodes 𝑠𝑠  and 𝑑𝑑 , and use arcs in same direction as 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  uses. 
Moreover, we have the final value calculated as 𝑣𝑣𝑎𝑎𝑙𝑙 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘𝑝𝑝

𝑘𝑘 .  

5.4 Temporally Repeated Dynamic Flow 

A maximum dynamic flow can be obtained in temporally repeated flows, [7]. In process, the 
optimal static flow is decomposable into paths that are temporally repeated over given time 
horizon 𝑇𝑇, yielding the maximum dynamic flow. For a feasible static flow 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  and its path 
decomposition 𝒫𝒫 with flow 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑘𝑘along the path 𝑃𝑃𝑘𝑘 ∈ 𝒫𝒫, the associated temporally repeated flow 
sends 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘  flow units along the path 𝑃𝑃𝑘𝑘  for  𝑇𝑇 − 𝜏𝜏 𝑃𝑃𝑘𝑘   times at periods … 𝑇𝑇 −
𝜏𝜏 𝑃𝑃𝑘𝑘 , where 𝜏𝜏 𝑃𝑃𝑘𝑘  𝜏𝜏 𝑒𝑒 𝑒𝑒∈𝑃𝑃𝑘𝑘  The flow value of the temporally repeated flow is 
𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑇𝑇   𝑇𝑇 − 𝜏𝜏 𝑃𝑃𝑘𝑘  𝑃𝑃𝑘𝑘∈𝒫𝒫 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘  from which we can derive the following 

important result.  

𝑥𝑥𝑑𝑑𝑦𝑦𝑛𝑛𝑎𝑎 𝑇𝑇   𝑇𝑇 − 𝜏𝜏 𝑃𝑃𝑘𝑘  
𝑃𝑃𝑘𝑘∈𝒫𝒫

𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘  

 𝑇𝑇  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 −   𝜏𝜏 𝑒𝑒
𝑒𝑒∈𝑃𝑃𝑘𝑘

𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘
𝑃𝑃𝑘𝑘∈𝒫𝒫

 

 𝑇𝑇  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 − 𝜏𝜏 𝑒𝑒  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑃𝑃𝑘𝑘
𝑃𝑃𝑘𝑘 𝑒𝑒∈𝑃𝑃𝑘𝑘𝑒𝑒∈𝐴𝐴

 

 𝑇𝑇  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 − 𝜏𝜏 𝑒𝑒 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 𝑒𝑒
𝑒𝑒∈𝐴𝐴

 

Pyakurel 



100  

 
 

Recall that, the maximum dynamic flow problem is equivalent to solving a minimum cost static 
flow problem with the arc costs as the arc transit time in both discrete and continuous time 
periods. Thus,  the maximum temporally repeated flow can be obtained by finding a minimum 
cost circulation in the static network with an additional edge 𝑑𝑑 𝑠𝑠  with infinite capacity and 
− 𝑇𝑇  cost, see also [12,18].  

For example, if we consider Figure 2(a) as a dynamic network where each arc has flow value, 
capacity and transit time, then the dynamic flow can be computed with temporally repeated paths 
in time 𝑇𝑇   as follows. First path 𝑃𝑃 𝑠𝑠 − 𝑥𝑥 − 𝑦𝑦 − 𝑑𝑑  reaches to sink at time 3 with flow 
value 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑃𝑃   and it repeats at times 4 and 5 with same amount of flow. Second path 
𝑃𝑃 𝑠𝑠 − 𝑥𝑥 − 𝑑𝑑  reaches to sink at time 4 with flow value 𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑃𝑃   and it repeats again and 
reaches to sink at time 5 with same flow value. Similarly, third path 𝑃𝑃 𝑠𝑠 − 𝑦𝑦 − 𝑑𝑑  reaches to 
sink at time 5 with flow units  𝑥𝑥𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  𝑃𝑃  . Thus in time 5, total 14 units flow can be reached 
to the sink which is a maximum dynamic flow. 

6.  Concluding Remarks 

The evacuation planning problems are the most important issues for saving the people and 
property, and supporting relief distribution within the emergency management strategy. These 
large scale real-life problems are computationally difficult to solve even approximately. 
Although few limited cases are solvable in polynomial time, their implementations do not reflect 
the desired general solutions. Most of the existing literature that deal with the heuristic and 
simulation approaches as exact solutions with real time settings are quite far from the reality of 
implementations. Researchers in diversified fields of science and technology, engineering, 
management and social sciences have contributed a bunch of models and algorithms, but an 
universally acceptable solution approach covering the practicability is still lacking.  

In this paper, we consider the evacuation problems with dynamic flows over time. The dynamic 
network problems with an objective of maximizing the flows at every point of time and 
minimizing the total evacuation time are studied. The classical models and analytical solution 
techniques are summarized and the recent results with extended solutions are also stated 
compactly. These results with illustrated examples give insights into the current issues of 
network flows over time and open new directions of further research in evacuation planning.  
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