

Reverse Holder Condition and Space Ap

Santosh Ghimire

Department of Engineering Science and Humanities, Institute of Engineering Pulchowk Campus, Pulchowk, Tribhuvan University, Nepal Corresponding author: *santoshghimire@ioe.edu.np*

Received: Dec 25, 2017 Revised: Jan 15, 2018 Accepted: Jan 23, 2018

Abstract: In this paper, we begin with Reverse Holder condition and class A_p. We show that a weight function w is in Reverse Holder condition $RH_{n'}(dx)$ if and only if the inverse weight function w^{-1} is in class $A_n(w dx)$. Also we show that the weight function w is in $A_p(dx)$ if and only if the inverse weight function w^{-1} is in Reverse Holder condition $RH_{n'}(dx)$.

Keywords: weight function, measure, Reverse Holder condition.

1. Introduction

We begin with some definitions and result which will be used in the proof of our result.

Definition: A locally integrable function on Rⁿ that takes values in the interval (0,∞) almost everywhere is called a weight. So by definition a weight function can be zero or infinity only on a set whose Lebesgue measure is zero.

We use the notation $w(E) = \int_E w(x) dx$ to denote the w-measure of the set E and we reserve the notation $L^p(R^n, w)$ or $L^p(w)$ for the weighted L^p spaces. We note that $w(E) < \infty$ for all sets E contained in some ball since the weights are locally integrable functions.

Definition: A function w(x)≥0 is called an A_1 weight if there is a constant C₁>0 such that

$$
M(w)(x) \leq C_1 w(x)
$$

where M(w) is uncentered Hardy-Littlewood Maximal function given by

$$
M(w)(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} w(t) dt.
$$

Definition: Let $1 < p < \infty$. A weight w is said to be of class A_p if $[w]_{A_n}$ is finite where $[w]_{A_n}$ is defined as

123 Ghimire

·
·

$$
[w]_{A_p} = \sup_{Q \text{ cubes in } R^n} \left(\frac{1}{|Q|} \int_Q |w(x)| dx \right) \left(\frac{1}{|Q|} \int_Q |w(x)|^{\frac{-1}{p-1}} dx \right)^{p-1}
$$

We note that in the above definition of A_p one can also use set of all balls in R^n instead of all cubes in \mathbb{R}^n . Readers are suggested to read [4] for motivation, properties of A_p weights and much more about the A_p weights. Also refer [2] and [3] for more properties on A_1 and A_p weight function.

2. Reverse Holder Condition

Let $1 \le q \le \infty$ and μ a positive measure on \mathbb{R}^n . We say that a positive function K on \mathbb{R}^n satisfies a reverse Holder condition of order q with respect to measure μ if

$$
[K]_{RH_q(\mu)} = \sup_{Q \text{ cubes in } \mathbb{R}^n} \frac{\left(\frac{1}{\mu(Q)} \int_Q K^q d\mu\right)^{\frac{1}{q}}}{\frac{1}{\mu(Q)} \int_Q K d\mu} < \infty
$$

where the supremum is taken on all cubes Q in \mathbb{R}^n .

Symbolically, we write $K \in RH_q(\mu)$.

We now state and prove our main result.

A weight function w is in Reverse Holder condition RH_p'(dx) if and only if the inverse weight function w^{-1} *is in class* $A_p(w dx)$. Also a weight function w is in $A_p(dx)$ *if and only if the inverse weight function* w^{-1} *is in Reverse Holder condition RH*_p^{*'*} (*dx*). *Moreover, if a positive function k lies in RH_p (dx) for some* $1 < p < \infty$ *, then there exists* $\delta > 0$ *such that k lies in* $RH_{p+\delta}(dx)$.

Here p and p' are conjugate of each other. So we have

$$
p^{'} = 1 - \frac{1}{1-p} , 1 - p^{'} = \frac{1}{1-p}, \qquad \frac{1}{p'} = \frac{p-1}{p}
$$

Let us write $\int_Q u dx = U(Q)$ and $\int_Q v dx = V(Q)$.

With this notations we have,

$$
I(Q) := \frac{\left(\frac{1}{U(Q)}\int_Q (vu^{-1})^{p'} u \, dx\right)^{\frac{1}{p'}}}{\frac{1}{U(Q)}\int_Q (vu^{-1})u \, dx}
$$

124 Reverse Holder Condition and Space A_p

$$
= \frac{\left(\frac{V(Q)}{U(Q)}\right)^{\frac{1}{p}} \left(\frac{1}{V(Q)} \int_{Q} v^{p'} u^{1-p'} dx\right)^{\frac{1}{p}}}{\frac{1}{U(Q)} \int_{Q} v dx}
$$

$$
= \frac{\left(\frac{V(Q)}{U(Q)}\right)^{\frac{p-1}{p}} \left(\frac{1}{V(Q)} \int_{Q} v^{1-\frac{1}{1-p}} u^{\frac{1}{1-p}} dx\right)^{\frac{p-1}{p}}}{\frac{V(Q)}{U(Q)}}
$$

$$
= \left(\frac{V(Q)}{U(Q)}\right)^{\frac{p-1}{p}-1} \left(\frac{1}{V(Q)} \int_{Q} (uv^{-1})^{\frac{1}{1-p}} v dx\right)^{\frac{p-1}{p}}
$$

$$
= \left[\left(\frac{1}{V(Q)} \int_{Q} (uv^{-1}v) dx\right) \left(\frac{1}{V(Q)} \int_{Q} (uv^{-1})^{\frac{1}{1-p}} v dx\right)^{p-1}\right]^{\frac{1}{p}} := J(Q)^{\frac{1}{p}}
$$

Note that in the above derivation the following identity was used:

$$
\left(\frac{V(Q)}{U(Q)}\right)^{\frac{p-1}{p}-1} = \left(\frac{V(Q)}{U(Q)}\right)^{\frac{1}{p}} = \left(\frac{1}{V(Q)}\int_{Q} (uv^{-1}) v dx\right)^{\frac{1}{p}}
$$

Thus we have $I(Q) = J(Q)^{\frac{1}{p}}$. Now

$$
[vu^{-1}]_{RH_{p'}(u\ dx)} = \sup \frac{\left(\frac{1}{U(Q)} \int_Q (vu^{-1})^{p'} u \ dx\right)^{\frac{1}{p'}}}{\frac{1}{U(Q)} \int_Q (vu^{-1}) u \ dx} = \sup I(Q) = \sup J(Q)^{\frac{1}{p}} = [u\ v^{-1}]_{A_p(vdx)}^{\frac{1}{p}}
$$

where supremum is taken over all cubes Q in \mathbb{R}^n . Let us set $u = 1$, $v = w$, and $v = 1$, $v = w$, we have

$$
[w]_{RH_{p'}(u\,dx)} = [w^{-1}]_{A_p(wdx)}^{\frac{1}{p}}
$$

$$
[w^{-1}]_{RH_{p'}(u\,dx)} = [w]_{A_p(dx)}^{\frac{1}{p}}
$$

This shows that a weight w is in Reverse Holder condition $RH_{p'}(dx)$ if and only if the inverse weight function w^{-1} is in class $A_p(w dx)$. Moreover, a weight function w is in $A_p(dx)$ if and only if the inverse weight function w^{-1} is in Reverse Holder condition $RH_{p'}(dx)$.

3. Conclusion

We established relation between reverse Holder condition and A_p class.

References

- [1] Ba~nelos R and Moore CN (1991), *Probabilistic Behavior of Harmonic Functions*, Birkhauser Verlag.
- [2] Ghimire S (2014), Weighted Inequality, *Journal of Institute of Engineering*, **10(1) :** 121-124.
- [3] Ghimire S (2014*),* Two Different Ways to Show a Function is an A1 Weight Function, *The Nepali Mathematical Sciences Report*, **33(1&2) :** 15-19.
- [4] Grafakos L (2009), *Modern Fourier Analysis*, Second Edition, Springer.