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Abstract: In this work, an incompressible viscous Couette flow is derived by
simplifying the Navier-Stokes equations and the resulting one dimensional linear
parabolic partial differential equation is solved numerically employing a second
order finite difference Crank-Nicolson scheme. The numerical solution and the
exact solution are presented graphically.
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1. Introduction

Couette flow [1] is a viscous flow between two parallel plates separated by some vertical
distance. The upper plate is moved with velocity u, and the lower plate is kept stationary i.e. its
velocity u = 0. The flow is two dimensional in xy palne. The flow field between the two plates
is to be driven exclusively by the shear stress exerted on the fluid by the moving upper plate so
that the velocity profile is formed across the flow.
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Fig. 1: Flow between two parallel plates
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The assumptions [1] of the Couette Flow problem are as follows:

Upper plate is moved and the lower plate is kept stationary.
Flow is two dimensional in xy palne.

Flow extends from —oo to +00 in x-direction.

Flow field variables are independent of x.

Vertical component of velocity is absent.

Streamlines for the Couette flow are straight lines.

Swmoe a0 o

Pressure gradients in both x and y directions are zero.

2. Derivation of Governing Equation

The Couette flow equation [3] is the x-momentum equation in 2D given by

d(pw) | d(pu?) | A(puv) _  Op  OTxx  OTxy
at + dx + dy  dx  ox dy +pfx

In the absence of body force, this equation for variable viscosity case becomes

ou du ou  10p _ 0@ ( au) d ( 6u)
6t+uax+vay+pax_6x Vax +6y Vax'

Flow between two parallel plates separated by some vertical distance.

(1)

where ¥ = (u, v) is the velocity field, p is the density and v is the coefficient of viscosity of the
fluid. The model for Couette flow extends from —oo to +oo0 in x-direction. Since there is no

begining or end of this flow, the flow field variables must be independent of x. Moreover, the

equation of continuity for steady-state flow is
d(pu) + 9(pv) _ 0.

dx ay
Since % = 0 for Couette flow, equation (2) reduces to
a(pv) _
oy =0
: v, 0 _
ie. pax+vax—0.
At the lower wall, v = 0 at y = 0. So, the equation (3) reduces to
v
(a)yzo =0

Expanding v in Taylor's series about the point y = 0, we get

_ av AN
v(y) =v(0) + (ay)y:() + (6y2)y:0 > T
At the upper wall, we have

(2)

(3)

(4)

(5)

. v d%v D?
U(D) = 17(0) + (5)3,:0 D + (m)y:07 + - (6)
Since both v(D) = 0 and v(0) = 0 as well as (g—;) = 0, the only result from equation (6)
y=0

that makes sense is
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(ﬂ)yzo = 0 for all n.

ax™
This implies that
v=20. (7)
everywhere. Thus, there is no vertical velocity in Couette flow. Therefore, the streamlines for the
Couette flow are straight lines which runs parallel to each other. Also the y-momentum equation
is
Dv _ a_p 0Txy | OTyy
Dt_6y+ ox + ay +pfe
For the Couette flow with no body forces, it reduces to
_0p | Otyy
3y + o - 0. (8)
But, we have
du  ov v
Tyy —/1(54‘@) +2,u@— 0.
With this equation in hand, eqution (8) becomes,

% _ . 9)

Thus, there are no pressure gradient terms in both x and y directions. Therefore, for two
dimensional steady-state Couette-Flow with no body force, the x-momentum equation (1)
becomes

ou Op | OTxy

ou _ _ a‘tyx
pua+pv5— +—. (10)

ox dx ay

But for the Couette flow, we have
ou v v
Txx :A(a-}'@)ﬁ'zpta: 0.
and
v ou u

Tyxz (a'l‘@):[.la
Substituting these values in (10), we get
a du

If the flow is incompressible with constant temperature, this equation reduces to

%u
P 0. (12)
Similarly, the x-momentum equation for unsteady, incompressible Couette flow is
ou 0%u
Por = Koy (12)

It is our governing equation, the Couette flow for incompressible viscous fluid which is a
parabolic PDE.
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3. Analytic Solution

The governing equation for unsteady incompressible viscous Couette flow is
ou _  0%u
ot H ay?’

The equation in non-dimensional form is

! A
B(Z—e) up? 62<Z_e) Ue
pa< t’ )(T) - ”a<y')2 (ﬁ)'
D/ue D
. ou’ u o%u’
ie., 30~ pud oy (13)
Since
po_ 1
pu.D  Rep’

where Rep, is the Reynolds number based on the height D between the two plates. Thus, equation
(13) becomes

ou’ 1 9%u'

a0 = Rep oy (14)
Equation (14) is the PDE for which we require exact and numerical solutions. First, we write the
equation (14) in the form

ou 1 9%u

ot Repoy?’ (15)
where u, t and y are identical with that of dashes in equation (14). To solve the equation (15)
analytically, let us consider it in the form,

U = Klyy, 0<x <, t>0, (16)

1 . . . . . .
where k = P It is a one dimensional heat equation. Suppose u(x, t) be the solution of equation
D

(16) representing the temperature distribution in a homogeneous rod of length | and let it satisfies
the boundary and initial conditions

u(0,t) =0=u(,,t),t =0
{u(x,O) =f(x), 0<x<L.

Let us assume the seperable solution of the equation (16) in the form
ulx, t) =X(x) T(t) # 0. (18)
Then the equation (16) takes the form

(17)

1d%x 14T

Xax? = wrar (19)
Since the left hand side depends only on x and right side is the function of ¢t only, equation (19)
is considered true only when we have

14K _ 1dr_

Xdx2  kTdt

This generates two ODE's namely
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2
LX _ax,
dx?
dr
and e AkT. (20)

It is easy to find the final form of the solution [6] of the equations in (20) which is given by

w (2l , n?m?kt . (nnx
5= B0 €05 () e () tn ()
Physically, the temperature distribution decays exponentially with time t. This shows a striking
contrast to the wave equation whose solution oscillates in time t. The time scale of decay for the

=3

which is directly proportional to [? and inversly proportional to the thermal conductivity k.

nt" mode is given by

4. Numerical Solution

Here we make use of second order finite difference Crank-Nicolson Scheme [7] for the
numerical approximation of the equation, because it is an implicit scheme which is
unconditionally stable and hence is convergent. So the approximation of the solutions by this
scheme is better than any other explicit schemes. If v,, denotes a smooth function approximating
the function u(x, t) in the Couette flow equation

ou 1 d%*u
dt  Repdy?
then the Crank-Nicolson scheme for this equation is
i W G ) i D 4 g Y |
At  Rep (ay)? '
: _ At n+l ( ) n+1 (_ At ) n+l _
€., ( Z(Ay)ZReD)vJ_ 1+(Ay)2ReD J + 2(Ay)?Rep Vier T

_ At n At
(1 (Ay)ZReD) vt Z(Ay)zReD( 1t

vty).
This is in the form
AviH + Byt + Avl = K. (21)
where,
At
" 2(0y)2Rep’ (22)
At
B=1+ m, (23)

= (1 -8 \pny_ At (n n
and 1(1-_(1 (Ay)zReD)vj + saire W + Ua): (24)
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Now, we solve equation (21) on a grid such that the vertical distance D between the plates is
divided into N equal parts by administrating (N+1) grid points over the vertical height D,
D

ie., Ay = - (25)
We impose the boundary conditions non-dimensional velocity v as
vy =0. (26)
and vy = 1. (27)
As equation (21) represents a system of (N-1) equations in (N-1) unknowns namely,
Uy, U3, eee enn , Un—_1, the first equation of the system is

AvP* 4+ Buitt + Avitt = K,
But v; = 0, we have

Bv}tl + Avitl = K,. (28)
The last equation of the system (21) is

AVt + Bt + Avitl = K.
Butv,,; = 1, we have

AvRTl + BuRt! = Ky — Av,. (29)

With the equations (28) and (29), the system of equations (21) can be expressed in matrix form

as
/ n+1\ Kz
o il / P \
| .

n+1
vN 1 KN 1
n+1 —Ave

oo :cocoocoxW@
oo :ocoox
co ioxw™C
cCo ixWhroo
o o0 CC o
D icococo o
W I ©OCoc0 O

It is a tridiagonal matrix and can be solved by using Thomas algorithm. By the algorithm, we

find the solution for v3*1, vI+1, ..., vR*l the velocities at the (n + 1)‘" time level. Then,

the whole process is repeated for a number of time step until the velocity profile converges to a
steady state.

5. The Setup

For the specific solution, We choose N+1 grid points along vertical, so that the space size is

We choose the initial conditions as
v; =0fori=1,2,..... ,Natt=
and the time step size At so as to satisfy the CFL condition,

At < ~Rep(Ay)?.
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But we have the Crank Nicolson scheme in the present context which is unconditionally stable,
we are free to choose time step size At.

Example: Consider a PDE u; = au,, with boundary and initial conditions
u(0,t) = u(1,t) =0,
and u(x,0) = f(x).

The exact solution [5] of the PDE is u(x,t) = Yn-q Ane“mznztsin (nmx).

Taking f(x) = 2sin (2mx). For Rep = 10 ie. a = 1—10, the graphical solution of the equation is

obtained from the Matlab implementation which is a 3D surface as shown in the following
graph. It is clear from the graph that the solutions behave as a sinusoidal function at the lower
time level and as the time level increases, it becomes more and more consistent and finally all the
solutions appear to be coplanar so that the solution set appear a plane.

Fig. 2: Velocity profile (numerical solutions)

The graph of the initial condition with Matlab implementation appears as below which is exactly
similar to the velocity profile. This shows that the initial conditions also satisfy the velocity
profile.
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Fig. 3: Graph of Initial Conditions.

We also can observe the various graphs of the solutions by changing time step size At, space step
size Ax and the Reynolds numbers Rep. While changing the values, we should note that the CFL
condition should be satisfied. Otherwise, the scheme will be unstable and so the graphical output
will not be appropriate.

The exact solution is presented below graphically with the help of Matlab implementation.

Fig. 4: Graphical representation of exact solution
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6. Result and Conclusion

Mathematics is an elegant and precise subject. However, when numerical answers are required
we sometimes need to rely on approximate methods to predict answers. There are many problems
which simply do not have analytical solutions or may be beyond our current state of knowledge.
There are also many problems which are too long (or tedious) to solve by hand. When such
problems arise, we can use numerical analysis to reduce the problem to one involving a finite
number of unknowns and use a computer to solve the resulting equations.

From this study, we observed that it is easy to find the exact solution of the Couette Flow
problem. Since the numerical method gives only the numerical solutions, it mayn't be appropriate
in the case when the exact solutions are available. The use of the finite difference method in this
paper (Couette flow problem) is to verify its use in complex problems where the existing
knowledge of mathematics is not sufficient for their solutions and it is proved from this work that
the numerical scheme (Crank Nicolson) is the best approximation to the solutions of Couette
flow problem. Therefore, one can say on the basis of this experiment that all convergent
numerical schemes can approximate the exact solutions with desired degree of accuracy. Because
of such successes of the numerical method, it is proved to be a good and applicable mathematical
tool to deal with any sort of real life problems.
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