A Newton Type Iterative Method with Fourth-order Convergence

Jivandhar Jnawali
Department of Mathematics, Ratna Rajyalaxmi Campus, Tribhuvan University, Kathmandu, Nepal
Corresponding author: jnawalij@gmail.com

Received: May 22, 2016
Revised: June 12, 2016 Accepted: June 25, 2016

Abstract

The aim of this paper is to propose a fourth-order Newton type iterative method for solving nonlinear equations in a single variable. We obtained this method by combining the iterations of contra harmonic Newton's method with secant method. The proposed method is free from second order derivative. Some numerical examples are given to illustrate the performance and to show this method's advantage over other compared methods.

2010 AMS Subject Classification: 65H05

Keywords: Newton method, Nonlinear equations, Iterative method, Order of convergence, Secant method.

1. Introduction

Solving single variable nonlinear equations efficiently is one of the most important problems in numerical analysis and has many applications in all fields of science and engineering. In most of the cases, it is not possible to solve these equations analytically. In those situations where an analytic solution cannot be obtained or it is difficult to obtain, numerical iterative methods are employed to get approximate solution of nonlinear equations. To find a single root α of nonlinear equation $f(x)=0$, where $f: D \subset \boldsymbol{R} \rightarrow \boldsymbol{R}$ is a scalar function on an open interval D, two best known and the most widely used iterative methods for solving nonlinear equations are Newton method

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f r\left(x_{n}\right)} \tag{1}
\end{equation*}
$$

and the secant method

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} f\left(x_{n}\right) \tag{2}
\end{equation*}
$$

The order of convergence of Newton method is 2 and secant method is $1.62[2,3]$.
In the last two decades, large number of researchers have been working in the area of root finding problems of single variable nonlinear equations and they have proposed numerous effective iterative methods (see [1,4,5,6,7,8,9]). Weerakoon and Fernando [9] used Newton's theorem

$$
\begin{equation*}
f(x)=f\left(x_{n}\right)+\int_{x_{n}}^{x} f^{\prime}(t) d t \tag{3}
\end{equation*}
$$

and approximated the integral by trapezoidal rule that is

$$
\int_{x_{n}}^{x} f^{\prime}(t) d t=\frac{\left(x-x_{n}\right)}{2}\left[f^{\prime}\left(x_{n}\right)+f^{\prime}(x)\right]
$$

and then obtained following iterative method as a variant of Newton method:

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right)}{\left[f^{\prime}\left(x_{n}\right)+f^{\prime}\left(x_{n}^{*}\right)\right]} \tag{4}
\end{equation*}
$$

where $x_{n}^{*}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
This method is known as trapezoidal Newton's method. The method (4) can be written as-

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\frac{\left[f^{\prime}\left(x_{n}\right)+f^{\prime}\left(x_{n}^{*}\right)\right]}{2}} \tag{5}
\end{equation*}
$$

The method (4) is also called arithmetic mean Newton's method because this variant of Newton method can be viewed as values obtained by using arithmetic mean of $f^{\prime}\left(x_{n}\right)$ and $f^{\prime}\left(x_{n}^{*}\right)$ instead of $f^{\prime}\left(x_{n}\right)$ in Newton method (1).

Ababneh [1] used the contra harmonic mean instead of the arithmetic mean in (5) and he got new iterative method

$$
\begin{equation*}
x_{n+1}=x_{n}-f\left(x_{n}\right) \frac{\left[f^{\prime}\left(x_{n}\right)+f^{\prime}\left(x_{n}^{*}\right)\right]}{f^{\prime 2}\left(x_{n}\right)+f^{\prime 2}\left(x_{n}^{*}\right)} \tag{6}
\end{equation*}
$$

where $\quad x_{n}^{*}=x_{n}-\frac{f\left(x_{n}\right)}{f \prime\left(x_{n}\right)}$.
This method is called contra harmonic Newton method and the order of convergence of this method is 3 .

2. The Iterative Method and Convergence Analysis

As the aim of this paper, we purpose the following method in which the iteration are preformed alternatively from method (6) and the secant method:

$$
\begin{equation*}
x_{n+1}=\tilde{x}_{n}-\frac{\tilde{x}_{n}-x_{n}}{f\left(\tilde{x}_{n}\right)-f\left(x_{n}\right)} f\left(\tilde{x}_{n}\right) \tag{7}
\end{equation*}
$$

where $\quad \tilde{x}_{n}=x_{n}-f\left(x_{n}\right) \frac{\left[f^{\prime}\left(x_{n}\right)+f^{\prime}\left(x_{n}^{*}\right)\right]}{f^{\prime 2}\left(x_{n}\right)+f^{\prime 2}\left(x_{n}^{*}\right)}$,
with $\quad x_{n}^{*}=x_{n}-\frac{f\left(x_{n}\right)}{f r\left(x_{n}\right)}$

Precisely, we have proved the following theorem for convergence analysis.

Theorem: Let α be a simple zero of a function f which has sufficient number of smooth derivatives in a neighborhood of α. Then for solving nonlinear equation $f(x)=0$, the method (7)-(10) is convergent with order of convergence 4.

Proof. Let e_{n} and \tilde{e}_{n} be the error in x_{n} and \tilde{x}_{n} respectively. Then $x_{n}=\alpha+e_{n}$ and $\tilde{x}_{n}=\alpha+$ \tilde{e}_{n}. Ababneh [1] proved that the error equation of (9) as

$$
\begin{equation*}
\tilde{e}_{n}=\left(2 c_{2}^{2}+\frac{1}{2} c_{3}\right) e_{n}^{3}+O\left(e_{n}^{4}\right)=\mathrm{K} e_{n}^{3}+O\left(e_{n}^{4}\right) \tag{10}
\end{equation*}
$$

where

$$
c_{j=\frac{1}{j!}} \frac{f_{(\alpha)}^{j}}{f_{(\alpha)}^{\prime}}, \quad j=2,3, \ldots . \quad \text { and } K=2 c_{2}^{2}+\frac{1}{2} c_{3}
$$

Using Taylor's theorem, we get

$$
\begin{align*}
f\left(x_{n}\right) & =f\left(\alpha+e_{n}\right) \\
& =f(\alpha)+e_{n} f^{\prime}(\alpha)+\frac{e_{n}^{2}}{2!} f^{\prime \prime}(\alpha)+\frac{e_{n}^{3}}{3!} f^{\prime \prime \prime}(\alpha)+\frac{e_{n}^{4}}{4!} f^{\prime v}(\alpha)+\cdots \\
& =e_{n} f^{\prime}(\alpha)\left[1+c_{2} e_{n}+c_{3} e_{n}^{2}+O\left(e_{n}^{3}\right)\right] \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
f\left(\tilde{x}_{n}\right) & =f\left(\alpha+\tilde{e}_{n}\right) \\
& =f(\alpha)+\tilde{e}_{n} f^{\prime}(\alpha)+\frac{\tilde{e}_{n}^{2}}{2!} f^{\prime \prime}(\alpha)+\cdots \\
& =\tilde{e}_{n} f^{\prime}(\alpha)+\frac{\tilde{e}_{n}^{2}}{2!} f^{\prime \prime}(\alpha)+\cdots \\
& =K e_{n}^{3} f^{\prime}(\alpha)+O\left(e_{n}^{4}\right) \tag{12}
\end{align*}
$$

Since $f(\alpha)=0$, as α is the root of $f(x)$.
Thus,
and

$$
\begin{gather*}
f\left(\tilde{x}_{n}\right)-f\left(x_{n}\right)=e_{n} f^{\prime}(\alpha)\left[-1-c_{2} e_{n}+\left(K-c_{3}\right) e_{n}^{2}+O\left(e_{n}^{3}\right)\right] \\
=-e_{n} f^{\prime}(\alpha)\left[1+c_{2} e_{n}+\left(c_{3}-K\right) e_{n}^{2}+O\left(e_{n}^{3}\right)\right] \\
\frac{1}{f\left(\tilde{x}_{n}\right)-f\left(x_{n}\right)}=\frac{1}{-e_{n} f^{\prime}(\alpha)}\left[1+c_{2} e_{n}+\left(c_{3}-K\right) e_{n}^{2}+O\left(e_{n}^{3}\right)\right]^{-1} \\
=\frac{1}{-e_{n} f^{\prime}(\alpha)}\left[1-\left\{c_{2} e_{n}+\left(c_{3}-K\right) e_{n}^{2}+O\left(e_{n}^{3}\right)\right\}\right. \\
\left.+\left\{1+c_{2} e_{n}+\left(c_{3}-K\right) e_{n}^{2}+O\left(e_{n}^{3}\right)\right\}^{2}+\ldots\right] \\
=\frac{1}{-e_{n} f^{\prime}(\alpha)}\left[1-c_{2} e_{n}+\left(K-c_{3}+c_{2}^{2}\right) e_{n}^{2}+O\left(e_{n}^{3}\right)\right] \tag{13}
\end{gather*}
$$

Also, we have

$$
\begin{align*}
\tilde{x}_{n}-x_{n} & =\alpha+\tilde{e}_{n}-\left(\alpha+e_{n}\right) \\
& =\tilde{e}_{n}-e_{n} \\
& =e_{n}^{3}-e_{n}+O\left(e_{n}^{4}\right) \tag{14}
\end{align*}
$$

From (12), (13) and (14), we get

$$
\begin{aligned}
\frac{\tilde{x}_{n}-x_{n}}{f\left(\tilde{x}_{n}\right)-f\left(x_{n}\right)} f\left(\tilde{x}_{n}\right) & =\left[K e_{n}^{3}+O\left(e_{n}^{4}\right)\right]\left[1-c_{2} e_{n}+\left(K-c_{3}+c_{2}^{2}\right) e_{n}^{2}+O\left(e_{n}^{3}\right)\right] \\
& =K e_{n}^{3}+O\left(e_{n}^{4}\right)
\end{aligned}
$$

Thus, error equation of (7) is given by

$$
\begin{aligned}
e_{n+1} & =\tilde{e}_{n}-\left[K e_{n}^{3}+O\left(e_{n}^{4}\right)\right] \\
& \left.=\mathrm{K} e_{n}^{3}+O\left(e_{n}^{4}\right)-K e_{n}^{3}+O\left(e_{n}^{4}\right)\right] \\
& =O\left(e_{n}^{4}\right),
\end{aligned}
$$

which prove that order of convergence of method (7)-(9) is of order 4.

3. Numerical Examples

In order to check the performance of the introduced fourth-order method, we have presented numerical results on some test functions. We have also compared the results of this method with Newton method (NM), Weerakoon and Fernando (W-F) method and contra harmonic Newton method. Numerical computations have been performed on Matlab software. We have used the
stopping criteria $\left|x_{n+1}-x_{n}\right|<\varepsilon$, where $\varepsilon=(10)^{-14}$ and $\left|f\left(x_{n}\right)\right|<\delta$ where $\delta=(10)^{-15}$ for the iterative process of our results.

The test functions and their roots α which are used as numerical examples are given below:
(i) $f_{1}=x^{3}+4 x^{2}-10$, $\alpha=1.365230013414097$
(ii) $f_{2}=(x-1)^{8}-1$,

$$
\alpha=2
$$

(iii) $f_{3}=\cos x-x e^{x}+x^{2}$,
$\alpha=0.639154069332008$
(iv) $f_{4}=\sin ^{2} x-x^{2}+1$,
$\alpha=1.404491648215341$
(v) $f_{5}=x^{2}-e^{x}-3 x+2$,
$\alpha=0.2575302854398608$

Table 1: Comparison table for the function $f_{1}=x^{3}+4 x^{2}-10$, taking initial guess $x_{0}=1$.

Method	n	x_{n}	$\left\|x_{n}-x_{n-1}\right\|$	$\left\|f\left(x_{n}\right)\right\|$
Newton	1	1.454545454545455	0.454545454545455	1.540195341848236
	2	1.368900401069519	0.085645053475936	0.060719688639942
	3	1.365236600202116	0.003663800867403	0.000108770610424
	4	1.365230013435367	0.000006586766749	0.000000000351239
	5	1.365230013414097	0.000000000021270	0.000000000000000
Trapezoidal	2	1.365227728691384	0.020203491451578	0.000037728495677
Newton's	3	1.365230013414097	0.000002284722713	0.000000000000000
Contra	1	1.326092820189911	0.326092820189911	0.633947708152762
harmonic	2	1.365197720317173	0.039104900127263	0.000533260354388
mean	3	1.365230013414080	0.000032293096906	0.000000000000286
Newton's	4	1.365230013414097	0.000000000000017	0.000000000000000
Present	1	1.373441267296347	0.373441267296347	0.136142115306203
(7)-(9)	2	1.365230014536936	0.008211252759411	0.000000018541892

92 A Newton Type Iterative Method with Fourth-order Convergence

Table 2: Comparison table for the function $f_{2}=(x-1)^{8}-1$, taking initial guess $x_{0}=3$.

Method	n	x_{n}	$\left\|x_{n}-x_{n-1}\right\|$	$\left\|f\left(x_{n}\right)\right\|$
Newton	1	2.750976562500000	0.249023437500000	87.357346190860710
	2	2.534581615819526	0.216394946680474	29.755297235115897
	3	2.348995976046720	0.185585639772806	9.966934095828560
	4	2.195747198046065	0.153248778000655	3.179409976051812
	5	2.082041836760382	0.113705361285683	0.879110950859817
	6	2.018764916659598	0.063276920100784	0.160357585160917
	7	2.001166173395949	0.017598743263649	0.009367555001261
	8	2.000004743257317	0.001161430138632	0.000037946688497
	9	2.000000000078744	0.000004743178573	0.000000000629949
	10	2.000000000000000	0.000000000078744	0.000000000000000
Trapezoidal	1	2.642780601144118	0.357219398855882	52.044031781287146
Newton's	2	2.354990027463031	0.287790573681086	10.362889700504827
	3	2.138737278626852	0.216252748836179	1.827406853620104
	4	2.020373440786471	0.118363837840382	0.175095510323507
	5	2.000119480784913	0.020253960001557	0.000956246093262
	6	2.000000000026847	0.000119480758066	0.000000000214779
	7	2.000000000000000	0.000000000026847	0.000000000000000
Contra	1	2.699505988924965	0.300494011075035	68.595569774589435
harmonic	2	2.446809725767508	0.252696263157457	18.199563543679137
mean	3	2.239873461530432	0.206936264237076	4.584945186476709
Newton's	4	2.086661678930914	0.153211782599518	0.944262123369496
	5	2.010026436999853	0.076635241931061	0.083083478739881
	6	2.000026415906221	0.010000021093632	0.000211346789200
	7	2.000000000000516	0.000026415905705	0.000000000004128
	8	2.000000000000000	0.000000000000516	0.000000000000000
Present	1	2.588926224921406	0.411073775078594	39.628413545152938
(7)-(9)	2	2.272225422328508	0.316700802592898	5.862977216933422
	3	2.062754438656234	0.209470983672275	0.627284246036169
	4	2.000891038518675	0.061863400137558	0.007150578400151
	5	2.000000000061337	0.000891038457338	0.000000000490697
	6	2.000000000000000	0.000000000061337	0.000000000000000

Table 4: Comparison table for the function $f_{3}=\cos x-x e^{x}+x^{2}$, taking initial guess $x_{0}=1$.

Method	n	x_{n}	$\left\|x_{n}-x_{n-1}\right\|$	$\left\|f\left(x_{n}\right)\right\|$
	1	0.724644697567095	0.275355302432905	0.221820009620489
Newton	2	0.644658904870270	0.079985792696824	0.013402585003872
	3	0.639177807467281	0.005481097402990	0.000057481709000
	4	0.639154096773051	0.000023710694230	0.000000001069179
	5	0.639154096332008	0.000000000441043	0.000000000000000
Trapezoidal	1	0.665881945014898	0.334118054985102	0.066172545899518
Newton's	3	0.639154096332011	0.000015476410485	0.000000000000008
	4	0.639154096332008	0.000000000000003	0.000000000000000
Contra	1	0.680435718288194	0.319564281711806	0.103390816892531
harmonic	2	0.639250900896522	0.041184817391673	0.000234691879059
mean	3	0.639154096333320	0.000096804563201	0.000000000003182
Newton's	4	0.639154096332008	0.000000000001313	0.000000000000000
Present	1	0.649689059626464	0.350310940373536	0.025751201751007
(7)-(9)	2	0.639154110108977	0.010534949517487	0.000000033398190
	3	0.639154096332008	0.000000013776969	0.000000000000000

Table 5 : Comparison table for the function $f_{4}=\sin ^{2} x-x^{2}+1$, taking initial guess $x_{0}=1$.

Method	n	x_{n}	$\left\|x_{n}-x_{n-1}\right\|$	$\left\|f\left(x_{n}\right)\right\|$
Newton	1	1.649190196932272	0.649190196932272	0.725961325382220
	2	1.439042347687187	0.210147849245085	0.088101775402360
	3	1.405385086160459	0.033657261526728	0.002219488277199
	4	1.404492272936243	0.000892813224217	0.000001550853411
	5	1.404491648215647	0.000000624720595	0.000000000000759
	6	1.404491648215341	0.000000000000306	0.000000000000000
Trapezoidal	1	1.311567755348155	0.311567755348155	0.214082403902797
	2	1.403843587357776	0.092275832009621	0.001607976570500
	3	1.404491648036039	0.000648060678263	0.000000000445113

94 A Newton Type Iterative Method with Fourth-order Convergence

Contra	1	1.245238231250271	0.245238231250271	0.347085646983947
harmonic	2	1.397048894592266	0.151810663341996	0.018368771038801
mean	3	1.404491114013924	0.007442219421658	0.000001326139939
Newton's	4	1.404491648215341	0.000000534201417	0.000000000000000
Present	1	1.481032008570244	0.481032008570244	0.201491824657889
$(7)-(9)$	2	1.404518413202386	0.076513595367858	0.000066444746114
	3	1.404491648215341	0.000026764987044	0.000000000000000

Table 6: Comparison table for the function $f_{5}=x^{2}-e^{x}-3 x+2$, taking initial guess $x_{0}=0$.

Method	n	x_{n}	$\left\|x_{n}-x_{n-1}\right\|$	$\left\|f\left(x_{n}\right)\right\|$
Newton	1	0.250000000000000	0.250000000000000	0.028474583312259
	2	0.257524945045740	0.007524945045740	0.000020179599371
	3	0.257530285437195	0.000005340391455	0.000000000010071
	4	0.257530285439861	0.000000000002665	0.000000000000000
Trapezoidal	1	0.256936468335819	0.256936468335819	0.002243963693351
Newton's	2	0.257530285432059	0.000593817096240	0.000000000029480
	3	0.257530285439861	0.000000000007802	0.000000000000000
Contra	1	0.256738822192933	0.256738822192933	0.002990900075557
harmonic mean	2	0.257530285417054	0.000791463224121	0.000000000086181
Newton's	3	0.257530285439861	0.000000000022807	0.000000000000000
Present	1	0.257509005898130	0.257509005898130	0.000080408534813
(7)-(9)	2	0.257530285439861	0.000021279541731	0.000000000000000

4. Conclusion

From section 2, it is evident that when the iterations are performed alternately from third order contra harmonic Newton's method and secant method, we get a fourth -order iterative method. This result is also supported by numerical examples. From tables, we observed that the iterative method (7)-(9) takes less number of iterations as compared to Newton method, trapezoidal Newton's method as well as contra harmonic Newton's method. Moreover, the method which we have derived is free from higher order derivatives and in most of the cases, this method requires less or equal number of functions evaluation as required in other compared methods. Thus, the method (7)-(9) is not only faster but also requires no more effort than the methods mention here.

Acknowledgement

The author would like to express sincere and hearty gratitude to Dr. Pankaj Jain, South Asian University, New Delhi and Prof. Chet Raj Bhatt, Tribhuvan University for several useful discussion and suggestions. The author is also very much pleased to thank University Grant Commission, Nepal for providing financial support through the PhD fellowship to pursue the research work.

References

[1] Ababneh OY (2012), New Newton's method with third order convergence for solving nonlinear equations, World Academy of Science and Engineering and Technology, 61:10711073.
[2] Bradie B (2007), A friendly introduction to Numerical Analysis, Pearson.
[3] Burdan LR and Fairs JD (2011), Numerical Analysis, Cengage Learning.
[4] Dheghain M and Hajarian M (2010), New iterative method for solving nonlinear equations fourth-order convergence. International Journal of Computer Mathematics, 87: 834-83.
[5] Jain D (2013), Families of Newton-like methods with fourth-order convergence, International Journal of computer mathematics, 90 : 1072-1082.
[6] Jain P (2007), Steffensen type methods for solving non-linear equations, Applied Mathematics and Computations, 194 : 527-533.
[7] Jain P, Bhatta CR and Jnawali J (2015), Modified Newton type methods with higher order convergence, Jordan Journal of Mathematics and Statistics, 8(4) : 327-341
[8] Özban AY (2004), Some new variants of Newton's method, Applied Mathematics Latters, 13: 677-682.
[9] Weerakoon S and Fernando TGI (2002), A variant of Newton's method with accelerated thirdorder convergence, Applied Mathematics Letters 13: 87-93.

