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Abstract: In this paper, we study the Singular Value Decomposition of an
arbitrary matrix A,,,, especially its subspaces of activation, which leads in
natural manner to the pseudo inverse of Moore -Bjenhammar - Penrose. Besides,
we analyze the compatibility of linear systems and the uniqueness of the
corresponding solution and our approach gives the Lanczos classification for
these systems.
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1. Introduction

For any real matrix Ay, Lanczos [18] constructs the matrix:

S(nam)x(n+m) = ( /?T 'g), (1)
and he studies the eigenvalue problem:

S& = Ad, 2
where the proper values are real because S is a real symmetric matrix. Besides,

rank A = p = Number of positive eigenvalues of S, 3)

such that 1 < p < min(n, m). Then the singular values or canonical multipliers, thus called by
Picard [26] and Sylvester [31], respectively, follow the scheme:

A1, Az ey gy =2y, =g, ey =2, 0,0, ..., 0, @)

pl

that is, 4 = 0 has the multiplicity n 4+ m — 2p. Only in the case p =n =m can occur the
absence of the null eigenvalue.

The proper vectors of S, named ‘essential axes’ by Lanczos, can be written in the form:
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Benemr = (3) 7 - 5)
then (1) and (2) imply the Modified Eigenvalue Problem:
ApxmVUmx1 = Aty Amenﬂnxl =AUyt (6)
hence
ATAD = %D, AATY = 2%, (7)

with special interest in the associated vectors with the positive eigenvalues because they permit
to introduce the matrices:

Unxp = (ﬁlfﬂZJ ey ﬁ)p); mep = (131, 1}2, ey ﬁp), (8)
verifying UTU = VTV = I, because:

therefore  @; - @y = 28, j, k =1,2,..,p. Thus, the Singular Value Decomposition (SVD)
express that A is the product of three matrices [18 - 21]:

Ansm = UnapDpxpV " paem » A = Diag (14,23, ..., 1p). (10)

This relation tells that in the construction of A we do not need information about the null proper
value; the information from A = 0 is important to study the existence and uniqueness of the
solutions for a linear system associated to A. This approach of Lanczos is similar to the methods
in [15, 16, 27, 28]. It can be considered that Jordan [15, 16], Sylvester [30, 31] and Beltrami [2]
are the founders of the SVD [29], and there is abundant literature [4, 6, 7, 11, 30, 34] on this
matrix factorization and its applications.

The rest of the paper is planned as follows: In Section 2, we realize an analysis of the proper
vectors 51-, j=1,..,n+m, associated to the eigenvalues (4), which leads to the subspaces of
activation of A with the pseudo inverse of Moore [22], Bjerhammar [3] and Penrose [25]. In
Section 3, we study the compatibility of linear systems, with special emphasis in the important
participation of the null singular value and its corresponding eigenvectors. Finally, Section 4
concludes the paper.

2. Subspaces of Activation and Natural Inverse Matrix
From (6), the proper vectors associated with the positive eigenvalues verify:

then
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A(=9) = (=), AT = (=4)(=v), (12)

that is,
$(5) = 2 (5y) - imoties (%) = A0 (3) 13

therefore, the eigenvectors (;’ ) and (ué ) correspond to the proper values A4,...,4, and
J i

—A4, ..., —Ap, respectively. Thus we must have n +m — 2p eigenvectors connected to 4 = 0,
which is denoted by w( ), and from (6) we further have:
_,(‘0) n
8= , ATi” =0, j=1,.,n-p, (14)
f/m
0
0
Z© s ©_3
Win_pyrk = ﬁ?o) , Av, " =0, k=1,...m—p. (15)
‘Uk m

The conditions (14) and (15) can be multiplied by Aand A7, then uj( and v(o) are

eigenvectors of the Gram matrices AAT and AT A:

- —

(AAT) e 1 =T, (AT A) e B = 0 (16)

but by (7) these matrices have p proper vectors for Ay, ...,4,, therefore only there are n —

—(0)

p and m —p vectors U and 13,&0), that can be selected with orthonormality:

i a® =g, 53O = 6, (17)

that is, (T)](O) BIEO) 8jx, then {u(o)} and {v(o)} are bases for the Kernel AT and Kernel A,

respectively.

If we employ (10) in (14), SVD of A results VAU Tﬁfo) = 6, whose multiplication by the left
with A™1VT [remembering that UTU = VTV = I], gives the compatibility condition:

vi® =0 > %-u”=0, r=1.,p; j=1.,n-p, (18)
equivalently
=(0) _ _
ColU L u,”, k=1,.,n—p. (19)

Similarly, if we use SVD into (15) and we multiply by A™1UT:
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v =0, 5.-3”=0, r=1,.,p; k=1,.m—-p (20)
Clv L 3%, j=1.,m-p. 1)

It is convenient to make two remarks:

Remark 1: From A = UAVT is evident that the matrices U, A and V permit to construct 4, but
is useful to know more about the structure of A and its transpose:

A= (G ... Gp), AT = (&, ... &), (22)

where (dj)ny; and (Cx)mx1 are the corresponding columns. Then from (10) we obtain the

expressions:
d; = /111710)171 + -+ Apvlgj)ﬁp, j=1,.m, &= Alugk)ﬁl + -+ Apuék)f)’p, k=1,..,n
(23)
with the notation:
v = jth — component of B, , (24)
and similar for uﬁk) ; we observe that ¢f are the rows of A.
From (23) are immediate the equalities of subspaces:
ColA =Col U, Row A4 = Col V, (25)
but dim Col U = dim Col V = p, then:
rank A = dim Col A=dimRow A =p (26)
in according with (3).
Remark 2: We have the rank-nullity theorem [24, 32, 33]:
dim (Kernel A) + rank A = m, 27

therefore dim (Kernel A) = m — p, by this reason there are (m — p) vectors 1'7’,50) with the

property (15). Besides,
dim (Kernel AT) + rank AT = n, (28)

but rank AT =rankA =p, then dim (Kernel AT) =n—p in harmony with the (n—

7(0)

p) vectors u; verifying (14).

If A,,,m acts on an arbitrary vector X € E,, produces a vector y ¢ E,, , with the decompositions:
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¥ =x0 4+ Xy, y=9O +Jey, (29)
where
£©® gKernel A, XcyeColV, AZ® =0, 2©.z. =0, (30)
7© ¢ Kernel AT, JoyeColU, AT3©@ =0, 5@ .5, =0,
thus we say that 4 is activated into the subspaces Col U and Col V.

Therefore, AX = AXcy = and in the construction of ¥ we lost the information about %(,
then it is not possible to recover X from y, that is, it is utopian to search for an ‘inverse matrix’

acting on ¥ to give ¥. However, when %@ =0 and $® =0 we can introduce a ‘natural
inverse matrix’, thus named it by Lanczos, which coincides with the pseudo inverse of Moore
[22], Bjerhammar [3] and Penrose [25]:

“Any matrix A, ., , restricted to its subspaces of activation, always can be inverted”. (31)
In fact, if ¥ € ColV is an arbitrary vector, X = q;7; + *** + g1, , then from (6):
AX = A1q11; + -+ Apqptly, =Y € Col U, (32)
and now we search the inverse natural Ayl,,,, such that:
AV y=%, (33)

Or more gener al:

ANtAX =%, V XeColV, AANYY =y, V yeColl. (34)

If the decomposition (10) is applied to (32), we deduce the natural inverse matrix:
AN'mxn = Vinap Dpxp Upxno (35)
satisfying (33) and (34). With (35), it is easy to prove the properties [24, 32]:
AANIA = A, ANTAAN = AV, (AAZHT = AARY, (AVtA)T = A4, (36)

which characterize the pseudo inverse of Moore - Bjerhammar - Penrose, that is, the inverse
matrix [8, 9, 12] of these authors coincides with the natural inverse (35) deduced by Lanczos [18
- 21].

In the SVD only participate the positive proper values of S, without the explicit presence of the

vectors ﬁ]@) and ﬁ,go) associated with the null eigenvalue, then it is natural to investigate the

role performed by the information related with A = 0. In Section 3, we study linear systems

where A is the corresponding matrix of coefficients, and we exhibit that the 17}0) permit to
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analyze the compatibility of such systems; besides, when they are compatibles then with the ¥ (0),
we search if the solution is unique. In other words, the null eigenvalue does not participates when
we consider to A as an algebraic operator and we construct its factorization (10), but A = 0 is

important if A acts as the matrix of coefficients of a linear system.

3. Compatibility of Linear Systems

A Linear System of n equations with m unknowns can be written in the matrix form:

Anym Xmx1 = byt » (37)
where (10) implies that UAVTX = b whose multiplication by ﬁ}O)T gives the compatibility
conditions:

9.p=0, j=1,.,n—p (38)

due to (19). Then the system (37) is compatible if b is orthogonal to all independent solutions of

the adjoint system ATu = 0, therefore:

"A%¥ = b has solutionif b &ColU", (39)

which is the traditional formulation [6] of the compatibility condition for a given linear system.

From (25) and (39) is clear that A and the augmented matrix (A E) have the same column space:
Col A = Col (Ab) = Col U, (40)

thus at the books [32] we find the result:
"A% = b is compatible if rank A = rank (A b)". 41)

If b & Col U, then from (11):

- - - (€Y) ®)
b:b(l)ﬁ1+...+b(p)ﬁp=AQ, Q =b_{7’1_|_...+b_1}’p’ (42)
A .

and (37) leads to:
A(Z—-Q) =0. (43)

The set of solutions of (43) is the Kernel A with dimension (m — p) due to (27), therefore (43)

has the unique solution X — (3 =0 when p = m, that is, when rank A coincides with the

number of unknowns we have not vectors ﬁ,go) #0 verifying Aﬁ,&o) = 0. Then:
"The compatible system AX = b has unique solution only when p = m", (44)

besides from (24) and (42) we obtain that b® = b - U, =0 and:
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_ o @ o Y00 =5-%,, r=
xr_Q()_)11 v} +...+/1p vy =b-t,, r=1..,m (45)
where
- U(r) v(r)
tT=A1_ﬁ1+...+ALﬂp e Col U, (46)
1 14

thus the value of each unknown is the projection of b onto each vector (46). In consequence,

b &ColU guarantees the solution of (37), and it is unique only if p = m.

Besides, from (42) we see that the solution X = 5 implies that X € Col V, then we have the
system  AX = b where % and b are totally embedded into Col V and Col U, respectively, that

is, ¥ and b are into the subspaces of activation of A, thus from (32) and (33) there is the natural
inverse Ay' such that:

p(1)
p@D A
2 _ =17 _ -1 T 5 _ya-1( : — : —
%= A5"b = Vi Ay Ulhxn b =VA (b(.m)> =v{ i |=
Am
p@ (1 p(M (1
T‘Ui )+~~+Wv,(n)
p=m, 47

b)) (m) ‘ p(M) (m)
AT g m

in according with (45). The vectors (46) are important because their inner products with b give
the solution of (37) via (45), and they also are remarkable because permit to construct the natural
inverse:

AITllmxn = (El EZ Z)m)T' p=m. (48)

Lanczos [6] considers three situations:

i) n<m: The linear system is under-determined because it has more unknowns than
equations, and from 1 < p < min (n,m) is impossible the case p = m, therefore, if (37)
is compatible then its solution cannot be unique.

ii) n=m: The system is even-determined with unique solution when p = m, that is, if
detA # 0. In this case also p = n, we have not vectors iZ](O) + 0,thus beColU and

automatically the system is compatible.

ili) n >m: The linear system is over-determined, and by 1 < p < min (n,m) can occur the
case p = m for unique solution if the system is compatible.

Hence it is immediate the classification of linear systems introduced by Lanczos [21]:

Free and complete: p =n =m, unique solution,

Restricted and complete:
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p = m < n, over-determined, unique solution, 49)
Free and incomplete: p = n <m, under-determined, non-unique solution,
Restricted and incomplete: p <n and p < m, solution without uniqueness,

with the meaning:

Free: The conditions (30) are satisfied trivially.

Restricted: It is necessary to verify that beColU. (50)
Complete: The solution has uniqueness.

Incomplete: Non-unique solution.

When p # m, the homogeneous system AV = 0 has the non-trivial solutions @ (0), then from (27)
we conclude that the general solution of (37) is:

F=0+ e+t ey B (51)

m-p’

where the c;, are arbitrary constants.

4. Conclusion

With the SVD we can find the subspaces of activation of 4, and it leads to the natural inverse [6,
26-28] of any matrix, known it in the literature as the Moore-Penrose pseudo inverse. Besides,
the SVD gives a better understanding of the compatibility of linear systems. On the other hand,
Lanczos [21] showed that the Singular Value Decomposition provides a universal platform to
study linear differential and integral operators for arbitrary boundary conditions. We note that the
term ‘singular value’ was introduced by Green [10] (see [5] too) in his studies on
electromagnetism. The SVD is very useful to study the rotation matrix in classical mechanics
[14] and to comprehend the matrix technique to deduce gauge transformations of Lagrangians
[17]. For a graphic example of the use of the SVD in image processing, we refer see [1]; and for
its use in cryptography, we refer [23]. Heat [13] mentions software for singular value
computations.
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