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Abstract: In this paper, we study the Singular Value Decomposition of an 

arbitrary matrix A, especially its subspaces of activation, which leads in 

natural manner to the pseudo inverse of Moore -Bjenhammar - Penrose. Besides, 

we analyze the compatibility of linear systems and the uniqueness of the 

corresponding solution and our approach gives the Lanczos classification for 

these systems. 
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1. Introduction 

For any real matrix  , Lanczos [18] constructs the matrix: 

         = 	  0  0,                                                                        (1) 

and he studies the eigenvalue problem: 

          = ,                                                                                     (2) 

where the proper values are real because S is a real symmetric matrix. Besides, 

         rank		 ≡  = Number	of	positive	eigenvalues	of	,                                                 (3) 

such that 1 ≤  ≤ min,. Then the singular values or canonical multipliers, thus called by 

Picard [26] and Sylvester [31], respectively, follow the scheme: 

          , ,… , ,−,−,… ,−, 0, 0,… , 0,	                                                          (4) 

that is,  = 0 has the multiplicity   + − 2. Only in the case   =  =   can occur the 

absence of the null eigenvalue. 

The proper vectors of S, named ‘essential axes’ by Lanczos, can be written in the form: 
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           =   ,                                                                            (5) 

then (1) and (2) imply the Modified Eigenvalue Problem: 

           = 		,																 = 		,                                              (6) 

hence 

         = 	,																 = 	,                                                                (7) 

with special interest in the associated vectors with the positive eigenvalues because they permit 

to introduce the matrices: 

         = , ,… , ,													 = , ,… , ,                                               (8) 

verifying   =  =   because: 

         ∙  =  ∙  = 	,                                                               (9) 

therefore   ∙  = 2,			,  = 1,2,… , . Thus, the Singular Value Decomposition (SVD) 

express that A is the product of three matrices [18 - 21]: 

           = Λ	,											Λ = Diag	, ,… , .                                        (10) 

This relation tells that in the construction of A we do not need information about the null proper 

value; the information from  = 0 is important to study the existence and uniqueness of the 

solutions for a linear system associated to A. This approach of Lanczos is similar to the methods 

in [15, 16, 27, 28]. It  can be considered that Jordan [15, 16], Sylvester [30, 31] and Beltrami [2] 

are the founders of the SVD [29], and there is abundant literature [4, 6, 7, 11, 30, 34] on this 

matrix factorization and its applications. 

The rest of the paper is planned as follows: In Section 2, we realize an analysis of the proper 

vectors ,  = 1,… ,  + , associated to the eigenvalues (4), which leads to the subspaces of 

activation of A with the pseudo inverse of Moore [22], Bjerhammar [3] and Penrose [25]. In 

Section 3, we study the compatibility of linear systems, with special emphasis in the important 

participation of the null singular value and its corresponding eigenvectors. Finally, Section 4 

concludes the paper.  

2. Subspaces of Activation and Natural Inverse Matrix 

From (6), the proper vectors associated with the positive eigenvalues verify: 

             = 	,												 = 	,							 = 1,… ,                                                    (11) 

then 
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           − = −		,												 = −−),                                                  (12) 

that is, 

         =        implies        = −  ,                                                (13) 

therefore, the eigenvectors    and     correspond to the proper values  ,… ,   and  −,… , −,   respectively. Thus we must have  + − 2  eigenvectors connected to  = 0,  
which is denoted by  ,  and from (6) we further have:   

           = ⋮  	,											 = 0	,						 = 1,… ,  − ,                                       (14) 

              =  ⋮ 		,												 = 0	,						 = 1,… , − .                                    (15) 

The conditions (14) and (15) can be multiplied by 	and		,  then 	and		 are 

eigenvectors of the Gram matrices  	and		: 
              	 = 0	,																			 = 0	                                              (16) 

but by (7) these matrices have p proper vectors for ,… , , therefore only there are  −		and		 −   vectors  	and		, that can be selected with orthonormality: 

            ∙  = 	,																	 ∙  = 	                                                      (17) 

that is,   ∙  = ,  then  {}		and		{}  are bases for the Kernel  and  Kernel A, 

respectively. 

If we employ (10) in (14),  SVD of A results Λ = 0, whose multiplication by the left 

with  Λ [remembering that   =  = ], gives the compatibility condition: 

         = 0 						⇒ 						  ∙  = 0,					 = 1,… , 		; 					 = 1,… ,  − ,                           (18) 

equivalently 

         Col			 ⊥ 			 	,							 = 1,… ,  − .                                                         (19) 

Similarly, if we use SVD into (15) and we multiply by  Λ: 
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           = 0	,										 ∙  = 0,						 = 1,… , 	; 					 = 1,… −                              (20) 

          ∴ 					Col				 ⊥ 		 	,						 = 1,… , − .                                                          (21) 

It is convenient to make two remarks: 

Remark 1: From  = Λ is evident that the matrices , Λ		and		 permit to construct , but 

is useful to know more about the structure of  and its transpose: 

         =  …	,														 =  …	,                                                         (22) 

where 		and		 are the corresponding columns. Then from (10) we obtain the 

expressions: 

  =  + ⋯+ ,			 = 1,…,							 =  + ⋯+ ,				 = 1,… ,    

                  (23) 

with the notation: 

             = 	th − component	of		,                                                               (24) 

and similar for ; we observe that    are the rows of . 
From (23) are immediate the equalities of subspaces: 

              Col	 = Col		,													Row	 = Col		,                                                         (25) 

but dim Col  = dim Col  = , then: 

              rank  = dim Col  = dim Row  =                                                             (26) 

in according with (3). 

Remark 2: We have the rank-nullity theorem [24, 32, 33]: 

              dim (Kernel ) + rank  = ,                                                                      (27) 

therefore dim (Kernel ) =  − , by this reason there are  − 	vectors		 with the 

property (15). Besides, 

                dim (Kernel ) + rank  = ,                                                                    (28) 

but rank	 = rank	 = , then dim (Kernel  =  − 	 in harmony with the  −	vectors		  verifying (14). 

If  acts on an arbitrary vector  		 produces a vector  			, with the decompositions: 
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                  =  + 	,														 =  + 	,                                                           (29) 

where 

                 		Kernel		,						Col	,									 = 0,						 ∙  = 0,         (30) 

              		Kernel	,					Col	,								 = 0,				 ∙  = 0, 
thus we say that  is activated into the subspaces Col 		and		Col	. 
Therefore,   =  =   and in the construction of   we lost the information about  , 
then it is not possible to recover 		from	, that is, it is utopian to search for an ‘inverse matrix’ 

acting on 		to	give		. However, when   = 0		and		 = 0  we can introduce a ‘natural 

inverse matrix’, thus named it by Lanczos, which coincides with the pseudo inverse of Moore 

[22], Bjerhammar [3] and Penrose [25]: 

 “Any matrix  	, restricted to its subspaces of activation, always can be inverted”.          (31) 

In fact, if  		Col	 is an arbitrary vector,   =  + ⋯+ 	, then from (6):  

  =  + ⋯+  = 			Col	,                                                     (32) 

and now we search the inverse natural  		  such that: 

                     	 = 	,                                                                                 (33) 

or more general: 

                         = ,				∀				Col	,											 = ,					∀				Col	.                           (34) 

If the decomposition (10) is applied to (32), we deduce the natural inverse matrix: 

                      		 = 	Λ 	 ,                                                                    (35) 

satisfying (33) and (34). With (35), it is easy to prove the properties [24, 32]: 

       = ,										 = ,											 = ,											 = ,        (36) 

which characterize the pseudo inverse of Moore - Bjerhammar - Penrose, that is, the inverse 

matrix [8, 9, 12] of these authors coincides with the natural inverse (35) deduced by Lanczos [18 

- 21].  

In the SVD only participate the positive proper values of S, without the explicit presence of the 

vectors  	and		 associated with the null eigenvalue, then it is natural to investigate the 

role performed by the information related with  = 0. In Section 3, we study linear systems 

where  is the corresponding matrix of coefficients, and we exhibit that the   permit to 
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analyze the compatibility of such systems; besides, when they are compatibles then with the , 
we search if the solution is unique. In other words, the null eigenvalue does not participates when 

we consider to  as an algebraic operator and we construct its factorization (10), but   = 0 is 

important if  acts as the matrix of coefficients of a linear system. 

3. Compatibility of Linear Systems 

A Linear System of  equations with  unknowns can be written in the matrix form: 

                                       	 =  ,                                                                 (37) 

where (10) implies that  Λ =   whose multiplication by  	 gives the compatibility 

conditions: 

                                         ∙  = 0,							 = 1,… ,  −                                                         (38) 

due to (19). Then the system (37) is compatible if   is orthogonal to all independent solutions of 

the adjoint system   = 0, therefore: 

                                     " =    has solution if   			Col		",                                                  (39) 

which is the traditional formulation [6] of the compatibility condition for a given linear system. 

From (25) and (39) is clear that  and the augmented matrix  	  have the same column space: 

                               Col	 = Col		 = Col	,                                                                (40) 

thus at the books [32] we find the result: 

                                          " =    is compatible if   rank  = rank		".                          (41) 

If  		Col	, then from (11): 

                       =  + ⋯+  = 	,								 =   + ⋯+  ,                        (42) 

and (37) leads to: 

                                          −  = 0.                                                                           (43) 

The set of solutions of (43) is the Kernel  with dimension  −  due to (27), therefore (43) 

has the unique solution   −  = 0		when		 = , that is, when rank  coincides with the 

number of unknowns we have not vectors   ≠ 0		verifying		 = 0. Then: "The compatible system   =   has unique solution only when   = ",                              (44) 

besides from (24) and (42) we obtain that   =  ∙ ,  =   and: 
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                =  =   + ⋯+   =  ∙ 	,					 = 1,… ,                                   (45) 

where 

                  =   + ⋯+  				Col	,                                                                   (46) 

thus the value of each unknown is the projection of  onto each vector (46). In consequence, 			Col	  guarantees the solution of (37), and it is unique only if   = . 
  Besides, from (42) we see that the solution  = 	implies that 		Col	, then we have the 

system        = 		where		and	 are totally embedded into Col 	and		Col	, respectively, that 

is, 	and	 are into the subspaces of activation of , thus from (32) and (33) there is the natural 

inverse   such that: 

 

 = 	 = 		Λ 	 			=	Λ ⋮ = ⋮
 =

  ⋯ ⋮ ⋯  ,							 = ,               (47) 

in according with (45). The vectors (46) are important because their inner products with    give 

the solution of (37) via (45), and they also are remarkable because permit to construct the natural 

inverse: 

                                    			 = 	 …	,					 = .                                                       (48) 

Lanczos [6] considers three situations: 

i)  < :   The linear system is under-determined because it has more unknowns than 

equations, and from  1 ≤  ≤ min	, is impossible the case   = ,	 therefore, if (37) 

is compatible then its solution cannot be unique. 

ii)  = :   The system is even-determined with unique solution when   = , that is, if  det  ≠ 0. In this case also   = , we have not vectors   ≠ 0, thus				Col	  and 

automatically the system is compatible. 

iii)  > :   The linear system is over-determined, and by 1 ≤  ≤ min	,  can occur the 

case   =  for unique solution if the system is compatible. 

Hence it is immediate the classification of linear systems introduced by Lanczos [21]: 

    Free and complete:                =  = ,   unique solution, 

    Restricted and complete:      
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  =  < ,   over-determined,   unique solution,                                         (49) 

    Free and incomplete:             =  < ,   under-determined, non-unique solution, 

Restricted and incomplete:    < 			and				 < ,  solution without uniqueness, 

with the meaning: 

                                  Free: The conditions (30) are satisfied trivially. 

                     Restricted: It is necessary to verify that  		Col	.                                            (50) 

                                  Complete: The solution has uniqueness. 

                                  Incomplete: Non-unique solution. 

When  ≠ , the homogeneous system  = 0 has the non-trivial solutions , then from (27) 

we conclude that the general solution of (37) is: 

                                         =  +  + ⋯+  ,                                              (51) 

where the  are arbitrary constants. 

4. Conclusion 

With the SVD we can find the subspaces of activation of , and it leads to the natural inverse [6, 

26-28] of any matrix, known it in the literature as the Moore-Penrose pseudo inverse. Besides, 

the SVD gives a better understanding of the compatibility of linear systems. On the other hand, 

Lanczos [21] showed that the Singular Value Decomposition provides a universal platform to 

study linear differential and integral operators for arbitrary boundary conditions. We note that the 

term ‘singular value’ was introduced by Green [10] (see [5] too) in his studies on 

electromagnetism. The SVD is very useful to study the rotation matrix in classical mechanics 

[14] and to comprehend the matrix technique to deduce gauge transformations of Lagrangians 

[17]. For a graphic example of the use of the SVD in image processing, we refer see [1]; and for 

its use in cryptography, we refer [23]. Heat [13] mentions software for singular value 

computations.                                            
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