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Abstract: In this work we construct the element of volume vector rdσ  of a 

surface of constant retarded distance around the trajectory of a charged particle 

with arbitrary motion in a Riemannian space. This constitutes a generalization 

of the method pioneered by Synge [1] in special relativity. The technique 

employed is suggested by the ‘radiation coordinates’ 
ry  introduced by 

Florides-McCrea-Synge [2, 3] in the study of gravitational radiation. 
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1. Introduction 

Here, the Florides-McCrea-Synge coordinates [2, 3] are used for the electromagnetic radiation 

and are considerably adapted to this purpose because, for such coordinates, the curved space 

behaves like a “flat space” in some aspects. That is, the use of 
ry implies that what was learned 

in Minkowski space can be naturally translated to a Riemannian space. Our expression for the 

element of volume vector 
rdσ , of a surface of constant retarded distance, agrees with that 

obtained by Villarroel [4] by means of the procedure that DeWitt-Brehme [5] use when 

constructing a surface with constant instantaneous distance.  However, we think that our method 

is simpler and more powerful, because it turns immediate the results on radiation tensors deduced 

in [6]. We shall use the World Function Ω  of Ruse [7] which allows having covariant 

expansions in a curved space. This function remained forgotten for a long time, and its present 

relevance may be seen in [5, 8-20]. 

2. Radiation Coordinates 

We assume the Dedekind (1868) [21, 22]-Einstein summation convention for the addition of 

repeated indices, and that the metric locally takes the form, ( ) ( )1,1,1,1 −=abη  at any event.  In 

order to construct the radiation coordinates y
r
 [2] we need a timelike curve C (which in this case 

will be the electron trajectory) with an orthonormal tetrad on it: 

                              ( ) ( ) ( ) ( ) ( ) ''
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where, 
ds

dx
i

i
'

' =λ  is the unitary tangent vector to C, and 
r

x  is a totally arbitrary coordinate system 

with ji

ij dxdxgds ⋅⋅=2 . The primed indices label points on C. Now let us see how 
r

x gives new 

coordinates: We parameterize the null geodesic P’P in the form ( )vxr
 with 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  For every P we construct the past sheet of its null cone which intersects to C in P’ 

(retarded point associated to P). 

0v v=  at P’, and 01 vvv >=  at P with 
dv

dx
V

r
r =  as its tangent vector, satisfying V

 r
Vr = 0. The 

assigned radiation coordinates to P are given by: 

                                             
( ) ( ) ''

'

' jrsy j

jr

j

r λλλ +Ω−=   (2) 

where ΩΩ  of derivativecovariant   thedenote 'j , see Synge [14]: 

                                        ( ) '

' 1 0 '', 0,j

j jv v VjΩ = − − Ω Ω =     (3) 

so that 
( )

syy
j

j

j

j +Ω=Ω−= '

'

4'

' , λλ σσ
 which implies that in radiation coordinates 

the curve C is reduced to y
σ’ 

= 0, y
4’ 

= s. If we introduce the notation: 
 

                                        
'

'

'

''' , j

j

j

jjj w λλξξ Ω=−=Ω−=  (4) 

then we obtain the form of the relation (9.3) of Synge [1] for flat space: 

                                   
( )

swyyyy
j

j +=−=== 4

4'

' ,σ
σ

σ λξ , (5) 

in this sense the curved space behaves like a Minkowski space-time, which is very useful. On the 

other hand, at P’ the metric tensor can be written in terms of the tetrad as: 

                                              
( )

( ) '''

'

'' jij

i

jig λλλλ σ
σ −=  (6) 

then ( ) 2''''

'' wgyy
jiji

ji =+= λλξξσ
σ

 due to (3, 4), from where ( ) ''' jjj wy λλξ σ
σ += ,    
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therefore y
r
- y

r’
 behaves like a null vector (y

r
-y

r’
)(yr –yr’)=0. Thus, our expressions are 

compatibles with (4, 5, 9) of [1].     Following the corresponding procedure in flat space 

let us introduce a new system of coordinates: 

 

 

                                      syyyzyz =−== σσσσ 44, , (7) 

that is, 
4z remains constant on the null cone with vertex at 'P . It is clear that the Jacobian of the 

transformation ( )rr zy →  is equal to one, J (z
i
 / y

r
) = det (∂zi

 / ∂yr
) = 1, therefore: 
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now let us calculate (8). We have that ( )
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σσσσ λλλλ , where were employed the    

  properties   ( ) rrr

r

r

r

r

r

Vvvws
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'
'

, −=ΩΩ−==
∂

∂ − λλ , hence:  

              ( ) ( ) ( )
1 2 3 4

1 ' 2 ' 3 '1

' ' '

a
j r tijkm ijkm

j i r j t k mb i j k m

z z z z z
J w

x x x x x
ε ε λ λ λ−  ∂ ∂ ∂ ∂

= = Ω Ω Ω Ω 
∂ ∂ ∂ ∂ 

,         (9) 

for the skew-symmetric nature of the Levi-Civita density 
ijkmε . On the other hand, the World 

Function satisfies  Ωm = Ωp’m Ωp’
, substituting this into (9) we get: 

                                ( ) ( ) ( ) ( ) ''3'2'1

'''''

1 det ptrj

ptrjbab

a

w
x

z
J ΩΩ−=







 − λλλε  ; (10) 

from (3) it is clear that 
'pΩ  can be written in terms of the tetrad: 

                                   
( )

4

'

'

'

4

''
awaa

p

p

ppp −=Ω=∴+=Ω λλλ σ
σ ,  

then, thanks to the skew-symmetry of 
ijkmε , equation (10) acquires the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )Dpg
x

z
J

ir

ba

ptrj

ptrjbab

a

'detdetdet 2
1

'

'

'4'3'2'1

'''''

−
−=Ω−=Ω−=








λλλλλε ,   (11) 

where  ( )' ' '
, '

a b i j
D g P g= − −Ω = − .  Let us introduce the notation:  

                                ( ) ( ) ( )
1 1

1 2 2 ' , ijg D g P g P D g P g
− −−∆ = = = − , (12) 

thus from (11):               

                                                     ( )
1

2

a

b

z
J g P
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= − ∆ 
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(13) 
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Taking into account the last identity it is clear the remark in [5] page 231 and [10] page 1251: the 

geodesics emerging from P begin their intersection when 01 =∆− , arising the so-called ‘caustic 

surface’. We shall therefore accept that P is near to P’, in order to have this only geodesic 

between them. The analysis performed allows consider the volume element of the curved space-

time: 

                                     ( )
1

4 4 1 32 ,
x

d x J d z g P dsd z
z

− − 
= = ∆ 

 
   (14) 

but 
( )  vectorspacelikeunitary with ''

1' =−=== −

iii

i

i wpwpwpz λξλ σσσ
:  

 

 

 

 

 

 

 

 
 

Fig. 2.  The quantities 
σp  represent the components of 

'jp  in the basis 
( ) 'jσλ  

Therefore, 
1 2 3

cos , , cosz wsin z wsin sen z wθ φ θ φ θ= = =  which implies  

γdwdwzd 23 =  where  dγ = sinθdθdφ is the element of solid angle in the rest frame of 

the charge. Then (14) adopts the form: 

 

                                     ( )
1

4 1 22d x g P w dsdwdγ
− −= ∆ , (15) 

which together with (13) represents the generalization to Riemannian spaces of the results (9.15, 

21) of Synge [1] (who made use of imaginary coordinates) for Minkowski space-time: 

                                   γdsdwdwxd
x

z
J

b

a
24,1 =−=








. (16) 

In the next section we will apply (15) to the particular case of the surface w = constant, which is 

important when studying the electromagnetic radiation 

3. Surface of Constant Retarded Distance 

Let us consider the 3-space w = constant, then the covariant derivative rw;  is orthogonal to that 

surface. It is therefore evident that its vector volume element is given by (where σd  is the 3-

element of volumen): 

                                                σσ dwwwd r

a

ar ;

2
1

;

;

−

= ,                                             (17) 
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Fig. 3.  Surface of constant retarded distance. 

But when building the shell formed by dwww +,  and the null cones at P1 and P2, we get  

for its 4-volume σσ ddwwwdldxd a

a ⋅⋅==
−

2
1

;

;

4 , and after comparison with (15) 

implies that ( )
1 1

; 1 22 2
;

a

aw w d g P w dsdσ γ
− − −= ⋅∆ , then (17) acquires the following form:                         

 

                                            ( )
1

1 22
;r rd g P w w dsdσ γ

− −= ∆ . (18) 

On the other hand, from (4) we deduce the expression: 

               ( ) rrr

i

i

ji

ji

i

rir WXwo
ds

d
ww Ω+−=Ω








Ω+Ω−Ω= −− 1'

'

''

''

1'

'; ˆλλλλ , (19) 

where we used the notation  ' ' ' ' '

' ' ' ' '
ˆ , ,i i j i i

r i r i j i i

d
o X W

ds
λ λ λ λ µ= Ω = Ω = Ω = Ω .  

The substitution of (19) into (18) provides the result (3.35) of [4]: 

                               ( ) ( )
1

12 ˆ
r r rd g P w wo X W dsdσ γ

− −= ∆ − + Ω   , (20) 

which is the generalization to curved spaces of the result (10.6) in [1]. The deduction of (20) was 

simple thanks to the radiation coordinates. Nevertheless, the usefulness of 
rz goes far beyond 

that; in our opinion, its true importance lies on the analogies that we can establish with the 

Minkowski space-time, which will be seen more clearly in the next section. 

4. Radiation Tensors 

In a flat space we have the following radiative part of the Maxwell tensor corresponding to the 

Liénard-Wiechert retarded field [23]: 

                                      ( )
π

ξξµ
4

','
22242 e

eWwweR
T

sr

rs
=−= −− , (21) 
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with r

r

r

r
r

r

r

r Ww
ds

d
λξµξ

λ
µµµµ −=−=== ,,,2 , which satisfies:  

                                                           0=srs

R
T

ξ , (22) 

                                                            0

,

=

s

rs

R

T
. (23) 

A tensor field is said to be of the radiative type when it satisfies the properties (22) and (23). The 

continuity equation (23) is consequence of: 

                                     ( ) ( ) 0',0' 2642 == −− s

sr

s

sr Www ξξξξµ , (24) 

which in turn are particular cases of the identity: 

                                    ( )[ ] 4,0'2 −=−−=−
mnWwf

s

sr

mn ξξµ , (25) 

f  being an arbitrary function of 
2µ . It seems natural to wonder whether (21) can be extended to 

the curved space. The answer is positive under the two following prescriptions: 

a).- Identify rξ  with rΩ− , see (4). 

b).- Multiply (21) by ( )
1

2

a

b

z
J g P

x

 
= ∆ 

 
 due to the fact that xd

4
 contains the factor 

( )
1

12g P
− −∆  with respect to the corresponding expression for the flat space, see (16).  

Thus 

                                        ( ) ( )
1

2 4 2 2 22'
rs

r s

T
e g P w w WR µ− −= ∆ − Ω Ω  (26) 

satisfies (23) with covariant derivative, due to the fact that the validity of (22) turns out to be 

evident. We can also expect the generalization of (24): 

                        ( ) ( )
; ;

1 1
2 4 6 22 20, 0

s s

r s r sg P W g P w Wµ − −   ∆ Ω Ω = ∆ Ω Ω =      
, (27) 

besides from (15) and (26) we have: 

                                       ( ) γξξµ dsdwdWwwexdR
T

sr

rs 222224 ' −− −=  (28) 

which is important when performing some integrations around the world line of the charged 

particle. It is worth noting that (26) and (27) correspond to the results (2.28,…,31) of Villarroel 

[6]. However, in our approach they can be obtained in a natural way by means of an explicit 

correspondence with the Minkowski space-time. The verification of (27) can be found in the 

work of the aforementioned author. 
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