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Abstract: In this work we construct the element of volume vector do, of a

surface of constant retarded distance around the trajectory of a charged particle
with arbitrary motion in a Riemannian space. This constitutes a generalization
of the method pioneered by Synge [1] in special relativity. The technique

employed is suggested by the ‘radiation coordinates’ y" introduced by

Florides-McCrea-Synge [2, 3] in the study of gravitational radiation.
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1. Introduction

Here, the Florides-McCrea-Synge coordinates [2, 3] are used for the electromagnetic radiation
and are considerably adapted to this purpose because, for such coordinates, the curved space
behaves like a “flat space” in some aspects. That is, the use of y” implies that what was learned
in Minkowski space can be naturally translated to a Riemannian space. Our expression for the
element of volume vector do,, of a surface of constant retarded distance, agrees with that
obtained by Villarroel [4] by means of the procedure that DeWitt-Brehme [5] use when
constructing a surface with constant instantaneous distance. However, we think that our method
is simpler and more powerful, because it turns immediate the results on radiation tensors deduced
in [6]. We shall use the World Function £ of Ruse [7] which allows having covariant
expansions in a curved space. This function remained forgotten for a long time, and its present
relevance may be seen in [5, 8-20].

2. Radiation Coordinates

We assume the Dedekind (1868) [21, 22]-Einstein summation convention for the addition of
repeated indices, and that the metric locally takes the form, (77,,)=(1,1,1,—1) at any event. In

order to construct the radiation coordinates y" [2] we need a timelike curve C (which in this case
will be the electron trajectory) with an orthonormal tetrad on it:

Aa)AbY =, Ma) Aj=g,,, Ma) =X W)
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dx’

ds

where, ' = is the unitary tangent vector to C, and x" is a totally arbitrary coordinate system

with ds* = g; -dx' - dx’ . The primed indices label points on C. Now let us see how x" gives new

coordinates: We parameterize the null geodesic P’P in the form x” (v) with

A

Fig. 1. For every P we construct the past sheet of its null cone which intersects to C in P’

(retarded point associated to P).

r

o e dxT e
v =v, at P’,and v=v, >v, at P with V' =—— as its tangent vector, satisfying V"V, = 0. The

dv
assigned radiation coordinates to P are given by:
Y ==Q AV +54.A(r) ) )

where €, denote the covariant derivative of Q, see Synge [14]:

Q, =—(n-w)Vj\ Q0 =0, 3)

J

so that y? =—-Q jﬂ(g)j , y'=Q,X +s which implies that in radiation coordinates

the curve C is reduced to y” = 0, y* = s. If we introduce the notation:
$.=-Q,, w=-¢{1V=Q71 4)

J

then we obtain the form of the relation (9.3) of Synge [1] for flat space:
Y=y, =AY Y=y =wes, (5)

in this sense the curved space behaves like a Minkowski space-time, which is very useful. On the
other hand, at P’ the metric tensor can be written in terms of the tetrad as:

81y = A7 Ky = Ay ©)

then y°y, = é,fj.(gi'j' + ﬁfﬂj')= w? due to (3,4), from where &, = y" 4. +wAa,,
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therefore y'- y behaves like a null vector (y"-y")(y, —y,)=0. Thus, our expressions are
compatibles with (4, 5, 9) of [1].  Following the corresponding procedure in flat space
let us introduce a new system of coordinates:

Zazya’ Z4:y4_ /ycfycf =g, (7)

that is, z* remains constant on the null cone with vertex at P'. It is clear that the Jacobian of the

transformation (y' —_— z’) is equal to one, J (7' / y") = det (67’ / 8y") = 1, therefore:

{247)

o 4
now let us calculate (8). We have that gzl =—Q A"+ N°Q., ?)Zi =-w'Q, with
x X

N = w"l(Q,j,/l"/l(")f +Q,. 5 AV 4 Q j /l(")’) , where were employed the
s s

’

properties air =As, =—w'1Q, Q= (v, = v, V., hence:
z’ ijlam dz' d9z° 9z’ 9z —1 . ijlm 1) 2(2)r 2 (3)r"
J| = =" —————=w " Q. Q. Q AV AT A, 9
(xbj ox' dx’ 9x* ax™ SRR ©)

for the skew-symmetric nature of the Levi-Civita density £ . On the other hand, the World
Function satisfies Q,,= Q,,, €, substituting this into (9) we get:

J(ij =w det(-Q,, )&, AV AV ArQr (10)
X

from (3) it is clear that Q” can be written in terms of the tetrad:

Q= ag/l(”)p' +a A s ow= Qp,/ip' =-a,,
then, thanks to the skew-symmetry of £’ , equation (10) acquires the form:
J(ij = det(=Q,, )e . AV AP AV A = det(-Q,, )det(A)= - ¢ 2(p)D. (11)
X

where D = —|—Qa,b

, g(P)= —‘gi,j,‘ . Let us introduce the notation:

A=§"1D=g_%(P)g_%(P')D, g(P)=—‘gij, (12)

thus from (11):

2)e-stm.
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Taking into account the last identity it is clear the remark in [5] page 231 and [10] page 1251: the
geodesics emerging from P begin their intersection when A™ =0, arising the so-called ‘caustic
surface’. We shall therefore accept that P is near to P’, in order to have this only geodesic
between them. The analysis performed allows consider the volume element of the curved space-

d'x= J(zj
Z

but z% = wp® = wp, A" with p, = w™'&. — A, = unitary spacelike vector :

time:

d'z=g 7 (P)A"dsd’z, (14)

(3) )
n ]ll

P » 1)

20 j'

Fig. 2. The quantities p° represent the components of p’ in the basis A"

Therefore, 7' =wsinfcos¢@, z° =wsinfsend, 7' =wcos€  which  implies

d’z=w’dwdy where dy = sinfdfdy is the element of solid angle in the rest frame of
the charge. Then (14) adopts the form:

_1
d'x=g A(P)Aflwzdsdwd)/, (15)
which together with (13) represents the generalization to Riemannian spaces of the results (9.15,
21) of Synge [1] (who made use of imaginary coordinates) for Minkowski space-time:

J[ZJ =—1, d*x=wldsdwdy. (16)

In the next section we will apply (15) to the particular case of the surface w = constant, which is
important when studying the electromagnetic radiation

3. Surface of Constant Retarded Distance
Let us consider the 3-space w = constant, then the covariant derivative w.,, is orthogonal to that
surface. It is therefore evident that its vector volume element is given by (where do is the 3-

element of volumen):

P do (a7)

— sa
do, = ‘W;aw
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w+ dw

—

Fig. 3. Surface of constant retarded distance.

But when building the shell formed by w, w+ dw and the null cones at P, and P,, we get

_1
for its 4-volume d4x:dld0'=‘w;uw;“ % -dw-do, and after comparison with (15)

implies that ‘w;aw;“ K do= g_y2 (P)-A'w’dsdy, then (17) acquires the following form:

_1
do.=g % (P)A'Ww, dsdy . (13)
On the other hand, from (4) we deduce the expression:
w,=Q, A - w‘l(Qi,j,ﬂ’"ﬂf' +Q. dﬂ"'jgr =0, -w'(X+W)Q,, (19)
s

where we used the notation 6, =Q, A", X =Q, A'A"\W=Q, di/i’” =Q.u".
: s
The substitution of (19) into (18) provides the result (3.35) of [4]:
do, =g > (P) A w[wé, —(X +W)Q, |dsdy, (20)

which is the generalization to curved spaces of the result (10.6) in [1]. The deduction of (20) was

simple thanks to the radiation coordinates. Nevertheless, the usefulness of z" goes far beyond
that; in our opinion, its true importance lies on the analogies that we can establish with the
Minkowski space-time, which will be seen more clearly in the next section.

4. Radiation Tensors

In a flat space we have the following radiative part of the Maxwell tensor corresponding to the
Liénard-Wiechert retarded field [23]:

T
K= wil—wiwieg, o= @)
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with > = u’, u = a4, , w==¢u', W=-&A, which satisfies:

ds
TrS S
R ¢ =0, (22)
T,”

A tensor field is said to be of the radiative type when it satisfies the properties (22) and (23). The
continuity equation (23) is consequence of:

(wwes k=0, wwee)=o. (24)
which in turn are particular cases of the identity:

(2w wrEg =0, —n—m=-4, (25)

f being an arbitrary function of £ . It seems natural to wonder whether (21) can be extended to

the curved space. The answer is positive under the two following prescriptions:

a).- Identify & with —Q _, see (4).

)

_1
g % (P ) A" with respect to the corresponding expression for the flat space, see (16).

1
b).- Multiply (21) by = gA(P)A due to the fact that d‘x contains the factor

Thus
T
R =e"” g%(P)Aw_“(uz—w_zW2)SZ,SZX (26)

satisfies (23) with covariant derivative, due to the fact that the validity of (22) turns out to be
evident. We can also expect the generalization of (24):

)

[g% (P) Aﬂzw*‘grgs] =0, [g% (P)Aw"’WzQ,QS} =0, @7
besides from (15) and (26) we have:
T
g d'x=e’w? (,u2 —wW? )f,é’sdsdwd}/ (28)

which is important when performing some integrations around the world line of the charged
particle. It is worth noting that (26) and (27) correspond to the results (2.28,...,31) of Villarroel
[6]. However, in our approach they can be obtained in a natural way by means of an explicit
correspondence with the Minkowski space-time. The verification of (27) can be found in the
work of the aforementioned author.
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