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Abstract: In this short paper, we obtain an expression for  



   ,   1;   1, ;  which is the  generalization of   



   ; ; . 

Keywords: Hyper-geometric functions 1F1 and 2F2, Rainville’s formula 

 

1. Introduction 

The mathematical formula in the title of this paper is important because it is a natural 

generalization of the Rainville’s expression [5] , which is given by the following relation: 

  


   ; ;   


  ;   ; ,									  0, 1, 2, …                          (1) 

The Section 2 has an elementary proof of (1). In the Section 3, we deduce a formula for the kth-

derivative of		  ,   1;   1, ; , which implies (1) when    . 

2. Rainville’s expression 

We have the relation [3]: 


  , … , ; , … , ;   ∙∙∙

∙∙∙
   1, … ,   1;   1, … ,   1; ,              (2) 

then:   


   ; ;   

     1;   1;     ; ; .                             (3) 

From the identity [3]: 

    1; ;     1  ;   1;       1  ; ; ,                                (4) 
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2 

 

with     1, we find that     1;   1;     ; ;       ;   1; ,  
thus (3) implies the expression:  

    


   ; ;   
   ;   1; ,                                                          (5) 

then (1) is immediate. 

3. kth-derivative of     

From (2) deduce that 

     ≡ 
   ,   1;   1, ; ,		  

  
   1    1,   2;   2,   1;     1  ,   1;   1, ; ,   

   
  ∑  ,													        ,                                          (6) 

where  

   
 	


 


	 

!  
! 	,                           (7) 

and we shall consider the case    . 
Then from (7): 

  



 

	,										  
	,                                                            (8) 

which means [1, 2, 4] that (6) is a hyper-geometric series: 

      
   ,   1;   2, ; ,                                                          (9) 

thus (9) implies (5) when    . If we apply successive derivatives to (9) we deduce the 

generalization of the Rainville’s formula: 

   


   ,   1;   1, ;   
 1  

  ∙                 (10) 

     ∙  ,   1  
 ;   1  ,   

 ;  , 

because (10) leads to (1) if    . 
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For the case      we take  	⟶		. 10 , therefore: 

 


   ,   1;   1, ;   !


  ;   1  ; .                       (11) 

4. Concluding Remarks 

Our approach shows that the Petkovsek-Wilf-Zeilberger’s algorithm, which is useful to identify 

hyper-geometric series, permits to obtain a natural generalization of the Rainville’s relation (1), 

that is, the expression (10). 
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Abstract: The multi-level just-in-time sequencing problem is one of the 

challenging research areas in supply chain management. In this paper, we 

present brief review and some recent research developments of just-in-time 

production systems together with supply chain logistics. Observing 

production flows and supply chain synchronization in production process, we 

present the mathematical models of just-in-time (JIT) sequencing problem in 

multi-level and single-level as nonlinear integer programming in terms of 

discrepancy functions under the specified constraints. Discrete apportionment 

approach is briefly reported as an efficient frontier for single-level.  
 

Keywords   Just-in-time, JIT sequencing, flows, supply chain, logistics 

 
 

1. Introduction  

In today’s global and dynamic production environment, the demand for high quality goods in 

minimum cost is more prevalent which needs a well-managed supply chain and logistics systems. 

Generating an optimal production schedule for an assembly line to balance the overall supply 

chain under a variety of practical constraints is a difficult task. Many companies are trying to 

make their production systems more flexible or adaptable with change to respond the diverse 

customer demands. One of the most significant concepts of production in past decades has been 

JIT production system (JITPS) originated in Toyota, Japan around 1970s [16]. JITPS is a 

management philosophy and a technique based upon the idea that no activity should take place 

until there is a need for it; that is, no products should be made or ordered if there is no demand. 

On top of this, it is a pull production system where demand pulls goods towards the market. JIT 

production logistics forms a specific part of the supply chain that deals with the planning and 

controlling of materials and information flows throughout the production and distribution 

systems of manufacturing companies. 

The JIT philosophy focuses on waste elimination and inventory reduction. This requires 

producing and transporting the right items in the right quantities at the right time with desired 

quality [14]. The JIT logistics is performed to optimize some sort of given performance 

measures, for example minimizing total operating costs, and to satisfy a given set of constraints, 
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for example budget constraints. The crux of the JITPS is to produce goods in mixed-model 

production sequence to synchronize with the different demands of the customers with minimal 

inventories and shortages. The sequenced delivery of the materials and products throughout the 

supply chain of companies is the ultimate realization of JIT principles - zero inventories, zero 

defects, zero waste. Sequencing problem is a problem that finds a permutation or an ordering of a 

finite collection of jobs or products that satisfies certain conditions, such as precedence 

constraints, integrality constraints, monotonic constraints [6]. Some of the benefits of JITPS are 

reduced inventory, improved quality, shorter lead times, lower production costs, increased 

productivity, increased workforce flexibility and greater output volume flexibility. 

The two types of JITSPs are studied in the literature: single-level [7] and multi-level [9, 12]. The 

single-level problem minimizes the variations in the product rates at which different products are 

produced on the production line. The multi-level problem is to minimize the variations in 

demand rates for outputs of supplying processes. Moreover, the objective of both the problems is 

to minimize the discrepancies between ideal and actual productions. To attain this goal, JITPS 

penalizes both earliness and tardiness of the operations which has spawned a rapidly developing 

line of research in scheduling theory. The time needed to switch from one product to another is 

assumed to be negligible.  

The rest of the paper is planned as follows: Section 2 describes the logistics flows in supply 

chain and Section 3 presents the supply chain synchronization. The mathematical models of 

multi-level and single-level JITSPs are given in Sections 4 and 5 respectively. Section 6 presents 

an efficient frontier for the single-level JIT sequencing problem, and finally Section 7 concludes 

the paper.   

2. Production Flows in Supply Chain 

Production logistics is the movement of materials, data and products into, through and out of 

manufacturing companies. Inbound logistics covers the movement of materials received from 

initial suppliers, and outbound logistics refers the physical distribution of finished goods to the 

customers. In general, there exist four types of flows between suppliers and customers in their 

production and distribution networks as shown in Fig. 1 below [17]. We describe them briefly as 

follows: (a) Goods flows are the external logistics flows where transportation is predominant, and 

storage or value added logistics may occur on the way. The goods flow may be part of physical 

distribution for suppliers or part of physical collection for the customers. (b) Transaction flows 

are generalizations of markets and sells, which are commercial distribution in view of suppliers 

and commercial supply in view of customers. (c) Money flows are mainly payments for the goods 

received. (d) Information flows are two way flows and usually there are a number of them related 

to each goods flow; closely related to transaction and money flows often transformed into 

information flows. 
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Fig. 1. Production and distribution network flows 

Information may be transformed in time, space and in form to optimize the operations [20, 21]. 

Modern production management is oriented towards automation and computer-integrated 

manufacturing, heavily relying on data flows as a controlled flow of materials producing 

information along with products and by-products.  

3. Supply Chain Synchronization  

Production and logistics are like the two faces of a coin. The integration of overall production 

and distribution processes within and among companies is being the most fundamental trend in 

production management. A synchronized view of these processes includes all traditional areas of 

supplier-buyer relationships coping with the production of goods and their distribution as well 

[19]. The supply chain system consists of three major parts: procurement, production and 

distribution. The multi-level JIT sequencing problem (JITSP) consists of several levels in the 

production supply chain: raw materials → components → subassemblies → final products → 

distribution centres → retailers → final customers. In this chain, multiple copies of different 

models are produced at final assembly level, which is interlinked with several upstream 

production levels where raw materials are procured, stored and fabricated to produce the final 

products and with several downstream distribution levels where final products are stored and 

distributed to the retailers and then to the customers. The whole body of supply chain consists of 

inbound logistics along the production levels and outbound logistics along the distribution levels. 

The Fig. 2(a), Fig. 2(b) and Fig. 2(c) best illustrate this situation as synchronized view of seven 

levels of production and supply chain networks. 
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Fig. 2(a). Production levels 

 

Fig. 2(b). Distribution levels 

 

There can occur several sublevels in between any two production levels and hence the 

mathematical model of the multi-level JITSP contains L levels, where .,,2,1 Ll L=  The aim of 

supply chain synchronization is to coordinate the flow of materials, products, and information 

between supply chain partners to reduce the overproduction, underproduction and duplication.  

To realize the best quality production and timely distribution to the customer in a rapidly 

changing scenario, it is essential to create a cross-docking environment throughout whole supply 

chain that is capable to address the diversified demands. It is the movement of products directly 

from receiving dock to shipping dock with minimum dwell time in between. By arranging 

immediate cross-docks of incoming products, retailers are able to reduce in-transit time for their 

incoming products. This is relatively new logistics technique used in the retail and trucking 

industries with operations seeking to move materials from inbound to outbound locations as 

quickly as possible, that requires good information systems and close synchronization of all 
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inbound and outbound shipments [18]. The implementation of cross-docking in food products 

distribution can lead to the significant cost advantages and savings, particularly for small orders 

and frequent deliveries, e.g., perishable products. The cross-docking logistics problem is 

formulated as truck sequencing problem [2, 18]. 

 

Fig. 2(c). Supply chain synchronization 

4. Multi-Level Product Sequencing Problem  

Multi-level JITSP consists of L production levels such that Ll ,,2,1 L=  with the first product 

level 1 . The number of different part types and the demand of item i  in level l  are denoted by 

ln  and ild  respectively, .,,2,1 lni L=  The number of total units of item i  at level l  required 

to produce one unit of the product p  is denoted by ilpt such that ∑
=

=
1

1 1

n

p pilpil dtd is the 

dependent demand for item i  at level l determined by the final product demands 

11 ,,2,1 nd p L=  and .,,2,1 Ll L=  Note that 1=ilpt  if pi =  and 0  if otherwise. Finally, 

∑
=

=
1

1

n

i ill dD denotes the total demand at level ,l and the ratio 
l

il
il

D

d
r = gives the demand rate 

for item i of level l  such that  1
1

=∑
=

ln

i ilr  at each level .,,2,1 Ll L=  The production schedule 

at level 1consists of
1D stages in total and at each stage a single unit of an end-product can be 

processed. An item is at stage 
1,,1, Dkk L= , if k units of product is produced at level 1 and 

there will be k complete units of products p at level 1 during the first k time units.  
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Let ilkx  be the necessary quantity of item i  produced at level l  during the time units 1 through 

k  and ∑=
=

ln

i ilklk xy
1

be the cumulative quantity of item  i  produced at level l  during the same 

time units such that .
1

1 11 ∑=
==

n

i kik kxy  Due to pull nature of JITPS, particular combination of 

the highest level products produced during k time units determines the necessary cumulative 

production at every other level. Thus, the required cumulative production for item i at level l

with 2≥l  through k time units is given by .
1

1 1∑ =
=

n

p kpilpilk xtx  For a convex penalty function 

li niF ,,2,1, L=  with minimum 0 at 0, the maximum deviation and the sum deviation multi-

level JITSPs are mathematically formulated to minimize the objectives maxZ and sumZ  as follows 

[9, 10, 20]:  

 

( ) ( )1maxmin
,,

max illkilki
kli

ryxFZ −=  

( ) ( )2min
1

1 1 1

∑∑∑
= = =

−=

D

k

L

l

n

i

illkilkisum

l

ryxFZ  

subject to 

( )3,,2,1;,,2,1;,,2,1, 1

1

1

1

DkLlnixtx l

n

p

kpilpilk LLL ====∑
=

      

( )4,,2,1;,,3,2, 1

1

DkLlxy
ln

i

ilklk LL === ∑
=

               

( )5,,2,1, 1

1

11

1

Dkkxy
n

p

kpk L=== ∑
=

          

( ) ( )6,,2,1;,,2,1, 11111 Dknpxx kpkp LL ==≥
−

( )7,,2,1,0, 11011 1
npxdx ppDp L===  

0≥ilkx , integer and kli ,,  as above                (8) 

The constraint (3) ensures that the necessary cumulative production of part i  of level l  by the 

end of time unit k is determined explicitly by the quantity of products produced at level1 . 

Constraints (4) and (5) show the total cumulative production of level l  and level 1  respectively 

during the time slots 1  through .k  Constraint (6) ensures that the total production of every 

product over k time units is a non-decreasing function of .k  Constraint (7) guarantees that the 

demands for each product are met exactly, and (8) is the integral constraint. The constraints (5), 

(6), (8) jointly ensure that exactly one unit of a product is scheduled during one time unit in the 

product level. This is an integer programming problem targeting to find the best production 
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sequence in mixed-model that minimizes one of the objectives (1) or (2) under the constraints (3) 

to (8). This model is assumed to be non-preemptive (i.e., once commenced production at level 1  

must be completed prior to switch into another unit).  

The particular cases of the min-max objective (1) and the min-sum objective (2) are  studied in 

terms of absolute and squared deviations, and the weighted cases with NP-hard results are also 

discussed in [5, 16]. The  objective (1) aims to find a smooth schedule in every time period for 

every output. It is the basic concept underlying Toyota's sequencing algorithm [11]. The 

objective (2) seeks optimal schedules that may have relatively large deviation in a single period 

or for a certain output while having the lowest possible total deviation. This problem is NP-hard 

in general. However some heuristics [11, 20]; the dynamic programming [9] and pegging 

assumption [12] exist for heuristic and suboptimal solutions. 

5. Single-Level Sequencing Problems 

Suppose there are n  products to be produced within the specified time horizon with the integer 

demands nddd ,,, 21 KK  such that .
1

Dd
n

i i =∑=
 If 

D

d

i
ir =  is the ideal production rate for the 

parts of type i  such that 1
1

=∑=

n

i ir ,  then the scheduling goal for the assembly line is to 

maintain the total cumulative production of product i  to the total production as close to ir  as 

possible. This means exactly ikr  units of product i  should be produced in the first k  time 

period, which is the ideal production where .,,2,1 Dk L=  

Let ,,,2,1;,,2,1, Dknixik LL == be the actual cumulative production of product i in the 

time period 1 through .k  For a convex symmetric penalty function niFi ,,2,1, L=  with 

minimum ( ) ;00 =iF the maximum deviation and the sum deviation JITSPs are formulated to 

minimize maxF  and sumF  as follows [4, 5, 8, 14, 15]: 

           ( ) ( )9maxmin
,

max iiki
ki

krxfF −=                                      

  ( ) ( )10min
1 1

iik

n

i

D

k

isum krxfF −= ∑∑
= =

                              

subject to    

  ( )∑
=

==
n

i

ik Dkkx
1

11,,2,1, L  

  ( ) ( )12,,2,1;,,2,1,1 Dknixx ikki LL ==≤−
 

  ( )13,,2,1, nidx iiD L==  

           ikx  is a non-negative integer                                                  ( )14        
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The constraint (11) ensures that exactly k units are scheduled in periods1 to ,k and constraint 

(12) represents the monotone condition guarantying total production of every product over k is 

non-decreasing. The constraint (13) ensures that production requirements are met for each 

product. These constraints indicate that exactly one product is produced during each stage. It is 

an integer programming problem with cardinality, monotonicity and integrality constraints. The 

perfect matching [13] for maximum deviation case, and assignment approach [8] for sum 

deviation case are available. The stronger bottleneck and some algebraic properties of maximum 

deviation with some conjectures are provided [3]. An efficient frontier is given for sum deviation 

case via discrete apportionment [4].  

Example: We explain how mixed-model production sequences are generated. Suppose the 

demands of three models ba,  and cof a base product be ,71 =d 52 =d  and 23 =d units 

respectively such that the total demand is .14=D One of the production sequences based on 

batch production system looks like: .ccbbbbbaaaaaaa  The number of setups is 

minimized in this sequence. But production is unsynchronized with demand which generates 

large inventories and customers have to wait to get their choices. To avoid this defect, the 

companies have to inter-mix the models to exploit the benefits of mixed-model sequence.  Here, 

we observe the four mixed-model sequences as follows: 

;caababacbababa    ;caaababcababab    ;abababababaacc  

.aacbbabcabaaba  The number of possible sequences associated with this example in total 

are .072,72
!2!5!7

!14

!!!

!

321

==
ddd

D
 In mixed-model production system, each product is produced 

concurrently with respect to the demand, small batches of each product are produced and hence 

there occurs small inventories. The detail explanation is found in [4, 16].  

 

6. Discrete Apportionment: an Efficient Frontier 

The sum deviation JITSP is simultaneously handled via discrete apportionment, which is a fair 

division problem aiming to allocate integer seats to sates or parties according to population size 

or votes [4]. The crux of the problem is to minimize the deviation between ideal and actual 

apportionments. Given house size ,h let sstates are to get integer seats siai ,,1, L= such that

∑ =
=

s

i i ha
1

 with total population∑ =
=

s

i i pp
1

.  The ideal quota is calculated by 
p

hp

i
iq =  which 

is not necessarily an integer. The generic problem is to minimize ( )∑=
−

s

i ii qa
1

2
or 

∑=
−

s

i ii qa
1

 subject to ∑ =
=

s

i i ha
1

 and .+
∈Zai  One can assign either a  or 1+a  seats to a 

state. Among various apportionment methods [1], divisor methods are dealt and mean-based 

divisor methods are established providing stronger bounds [4]. The sum deviation JIT objectives 

are compared with the apportionment objective functions in terms of local and global deviations. 
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and sufficient conditions are established with same set of optimal solutions, i.e., the sum 

deviation JITSP objective and apportionment objective are equivalent. The complexities of the 

problems are also equivalent being ( )nDO and ( )shO  respectively. The ideal case of JITSP is 

,0=− iik krx which is very rare to attain. So we need to find the smallest possible upper bound 

that minimizes the overproduction and underproduction. 1 and D
11−  are the two upper bounds 

studied so far. Our key idea is to compute a stronger bound setting 0=a and 1101 =+=+a

from the mean-based partition given to be ( ) 3.01000
2
1

5
1 =++++  which works for both 

problems reducing the deviations significantly. Also, product to product rate variation problem is 

shown to be equivalent with pair-wise apportionment problem with their respective relative 

differences [4]. 

7. Conclusion  

The mixed-model JITSP has been widely studied with various mathematical aspects and solution 

approaches. But it is still challenging area due to its interesting base model of theoretical value 

and wide real-world applications. Single-level problem is solvable in pseudo-polynomial time, 

but multi-level one is NP-hard. An efficient frontier via discrete apportionment is presented for 

single-level. The simultaneous study of production and logistics is still a challenging area having 

many research issues. Our further work will be focused on synchronized study of production and 

logistics to balance overall supply chain. 
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