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ABSTRACT

Weather Research & Forecasting model is known to exhibit systematic biases for weather variables. These biases need to be post-processed
to get an optimal result before applying the weather forecast data in hydrological modeling or similar applications. In this paper,
we examined the performance of Weather Research & Forecasting Model forecasts for rainfall and temperature over the Babai River
basin of Nepal considering various performance indicators using statistical approach. The model was able to capture the rainfall
event forecast (Rain/No Rain) sufficiently. However, the model showed poor skill in forecasting the amount and over-forecasted the
rainfall. The multi-category (No Rain, Light Rain, Moderate Rain and Heavy Rain) verifications showed over-forecast in light rain and
moderate rain categories and under-forecast in no rain and heavy rain categories. We examined various bias correction schemes such
as distribution-derived transformations, parametric transformations and nonparametric transformations to get de-biased results. The
empirical quantile mapping is the best scheme for bias correction of both rainfall and temperature. In case of temperature, the linear
transformation, robust quantile mapping and smoothing spline schemes also performed well.
Keywords: Precipitation, Temperature, WRF, Forecast Verification and Bias Correction

1. Introduction

The summer monsoon is the main rainfall season in Nepal.
About 79 % of the total annual rainfall occurs during this
season (DHM, 2017). According to the Department of
Hydrology and Meteorology of Nepal, the normal date of
onset of monsoon in Nepal is 13th of June and its nor-
mal date of withdrawal is 2nd of October. Although the
monsoon normally stretches from June to September, its
actual onset as well as the withdrawal dates are uncertain.
Both the dates of onset and withdrawal of summer mon-
soon are found to be delayed in recent years (Gautam and
Regmi, 2013). After the onset of monsoon, it will cover
the whole country within a week. The onset of monsoon
is also known as burst of monsoon because there is sud-
den change from hot and dry weather to wet and humid
weather. The onset showers can last for days after which it
takes a steady pattern of rain for few hours most days. The
pattern of monsoon rainfall over the Indian subcontinent
is greatly influenced by the position of monsoon trough,
frequency and tracks of monsoon depressions originating
in the Bay of Bengal and the complex topography it follows
afterward.

∗Corresponding author: Dilip K. Gautam,
dilipgautam65@gmail.com

The intensity and duration of monsoon are not uniform
from year to year. In some years it rains too much causing
floods and landslides while in other years it rains fewer
causing droughts. In some years, average monsoon rain-
fall is good but timing may not be proper and, in some
years, its daily distribution may be largely skewed. This is
called variability of monsoon. On the one hand, monsoon
supplies us with fresh water for agricultural production,
hydropower generation, and groundwater recharge, on the
other hand, it causes floods resulting in huge financial
losses, damage to lives and properties and destruction of
the environment. Therefore, it is important to predict and
understand monsoon rainfall patterns.

Weather systems in Nepal have so far been little re-
searched by the atmospheric science community and
weather observation is largely lacking in coverage and
modern technology and the forecast has severely hand-
icapped due to poor performance of computer models in
this region. All modern forecasting methods involve obser-
vation of current conditions, along with the combination of
historical data, scientific methods and computer modeling
(Gibilisco, 2005). Numerical weather prediction (NWP)
is the forecasting of the weather based on the solutions of
mathematical equations by high-speed computers. In this
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regard, the Advanced Research Weather Research & Fore-
casting (ARW) model is the state-of-the-art NWP model
for the atmospheric circulation system (Dudhia, 2004). It
is designed to serve both operational forecasting as well as
atmospheric research needs. One of the greatest challenges
of NWP is to improve quantitative precipitation forecasting
(QPF) significantly (Yates et al., 2006). The weather fore-
casting models have systematic errors or bias problems that
are inherent in model physics, parameterization schemes,
initial conditions, resolution of the model, etc. These bi-
ases can be reduced using bias-correction schemes (Gud-
mundsson et al., 2012). The resulting forecast with less
forecast error can be fed into the flood forecasting models
for the reliable prediction of floods. A reliable forecasting
and warning system can save lives and reduce the loss of
properties. Bannister et al. (2019) investigated the ability
of bias-corrected WRF model output at 5 km grid spacing
to reproduce the spatiotemporal variability of precipita-
tion for the Beas and Sutlej River basins in the Himalaya,
measured by 44 stations spread over the period 1980 to
2012 and found that the raw (uncorrected) model output
generally underestimated annual, monthly, and daily pre-
cipitation amounts. However, applying a nonlinear bias-
correction method to the model output resulted in much
better results, which were superior to precipitation esti-
mates from reanalysis and two gridded datasets. These
findings highlight the difficulty in using current gridded
datasets as input for hydrological modeling in Himalayan
catchments, suggesting that bias-corrected high-resolution
regional climate model output is in fact necessary. In this
study, we verified the rainfall and temperature forecasts by
WRF model over the Babai River Basin (BRB) in western
Nepal. We also tested various bias-corrections schemes
and identified the best schemes for correcting biases in
the rainfall and temperature forecasts. No such study has
been conducted before for verification and bias correction
of WRF model forecasts over the river basins of Nepal.
Babai river is a rain-fed river. BRB is one of the most
flood-prone river basins in Nepal. During the 2014 floods
in Western Nepal, despite an established early warning
system, 31 people lost their lives along the Babai River
in Bardiya district (Shrestha et al., 2021). Flood forecast-
ing over the BRB could be significantly improved if bias-
corrected rainfall and temperature forecasts are employed
in the flood forecasting model.

2. Study Area

BRB is a medium-sized river basin located in the west-
ern part of Nepal. It covers three districts namely Salyan,
Dang and Bardiya. Its catchment area is about 3513 km2.
It originates in the Siwalik Mountain range, flows north-
westward parallel with the Bheri River and then southward
into Terai plain passing through the Bardiya National Park.
The basin has a very steep gradient in its upper course

which becomes gentle as the river enters the Dun Valley.
Here it is joined by small tributaries flowing in both from
the lower Himalayas in the north and the Siwalik hills in
the south. The elevation ranges from around 100 m at the
Nepal-India border to around 2500 m in the northern part
of the mountains. The locations of the Babai basin, precip-
itation stations and temperature stations are shown in Fig.
1.

3. Methodology

The methodology consists of data pre-processing, forecast
verification and bias correction.

3.1. Data Pre-processing

The observed daily data from 16 precipitation stations and
4 temperature stations (Ghorahi, Tulsipur, Salyan Bazaar
and Rani Jaruwa) as shown in Fig. 1 during the study pe-
riod of 2008 - 2013 was obtained from the Department of
Hydrology and Meteorology, Nepal. The daily rainfall data
are recorded at 03:00 UTC. Some of the stations are up-
graded to Automatic Weather Station (AWS). The missing
daily rainfall and temperature data were filled by AWS data
of the same station where available. The remaining miss-
ing data were filled using data of the neighboring stations
by a normal-ratio method ((Paulhus and Kohler, 1952);
(Young, 1992)). This method is preferred in the moun-
tainous regions where the annual average rainfall differs
considerably between locations. The consistencies of data
filling were checked by using double mass curves.

WRF model forecast is provided for 9 km grid resolution,
i.e., the forecast is averaged over 81 sq. km. area, which
is a large area, almost equal to a sub-basin. The rainfall
may vary significantly over this area. Hence, the rainfall
verification and bias correction were done on the sub-basin
scale.

Since the temperature doesn’t vary significantly over the
area covered by a single grid, the temperature verification
and bias correction were done on the station scale. The
average observed rainfall for each sub-basin was calcu-
lated using the Thiessen polygon method. The Thiessen
polygon method is more suitable in moderately rugged ar-
eas. This method is useful for areas, which are more or
less plain and are of intermediate size (500 to 5000 km2)
and when there are a few rain gauge stations compared
to the size of the basin (http://ecoursesonline.iasri.res.in/
mod/page/view.php?id=2212). With the help of ArcGIS
software, the basin was divided into six sub-basins W60,
W80, W90, W140, W180 and W190, representing water-
sheds from upstream to downstream (see Fig. 1).

We employed the forecast data of the WRF model run
by the Regional Integrated Multi-Hazard Early Warning
System for Africa and Asia (RIMES) in Bangkok, Thai-
land (https://www.rimes.int/pillar2). The WRF model is
a state-of-the-art mesoscale numerical weather prediction
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Figure 1. Location map of Babai River Basin in western Nepal along with precipitation and temperature stations’.

system designed for both atmospheric research and oper-
ational forecasting applications (https://www.mmm.ucar.
edu/models/wrf). The current operational model setup for
the WRF model at RIMES covers the region from 20°E to
150°E longitude and 16°S to 50°N latitude. The model is
configured to run with National Center for Environmental
Prediction (NCEP) Global Forecasting System (GFS) data
downloaded for 12 UTC initial conditions. The details of
the model parameters are presented in Table 1. The 24-
category USGS land-use and topography data sets were
used for interpolating topography and land use with a spa-
tial resolution of 2’ for domain. The NCEP Global Forecast
System (GFS) data of resolution 1°× 1°with Grib2 format
was used as input for initial and boundary conditions to the
model which was taken at six hourly intervals. The output
has been generated from the model every 180 minutes.

3.2. Forecast Verification

Verification is the process of comparing forecasts to rele-
vant observations, which measures the quality of forecasts
(Fowler et al., 2012). The verification of forecasts is impor-
tant(a) to improve model forecast, (b) to improve decision

making, (c) to understand model biases, and (d) to make
choice of a better model or better model configuration.

These methods include continuous verification, dichoto-
mous (binary) verification, multi-category verification, vi-
sual inspection of maps and plots (such as time series,
scatterplots, quantile plots, density plots, and box plots),
and spatial plots of forecast errors. Further details on these
methods are available at http://www.cawcr.gov.au/projects/
verification/#Methods for spatial forecasts.

Table 2 below presents the performance indicators of
continuous forecast verification.

Performance indicators of dichotomous (binary) and
multi-category forecast verification are calculated using
a contingency table as given in Table 3.

3.3. Bias Correction

Nepal has complex topography with plains in the southern
belt, high mountains in the northern belt and middle hills
and valleys in the middle belt. The bias in precipitation
is found to vary spatially. Therefore, the bias corrections
were carried out for each of 6 sub-basins of Babai River
basin separately. For our study 8 bias correction schemes
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Table 1. RIMES Operational Model Parameter Set

SN Parameters Values
1 Model domain 20°E to 150°E and

16°S to 50°N
2 Grid Resolution 9 km x 9 km
3 Projection Mercator
4 Topographical data USGS (2m)
5 No of grid points X

direction
1470

6 No. of grid points in
Y-direction

870

7 Forecast Interval 6 hourly
8 Time Step 45 s
9 No of vertical levels 27
10 Micro Physics option 5 (Ferrier (new Eta))
11 Cumulus Scheme 1 (Kain-Fritsch)
12 Forecast Lead time 84 Hours

were chosen. The first four were parametric transformation
schemes (qm1: scale, qm2: linear, qm3: power and qm4:
exponential asymptotic) the fifth one was a distribution-
derived transformation scheme (qm5: Bernoulli-gamma)
and the last three were non-parametric transformation
schemes (qm6: Robust Empirical Quantiles, qm7: Em-
pirical Quantiles, and qm8: Smooth Spline).

Parametric Transformation: The quantile-quantile re-
lation of observed and modelled value is fitted by using the
transformation to adjust the distribution of the modelled
data to match the distribution of the observations. The fol-
lowing parametric transformations were used for the study.

Scale:
𝑃̂𝑜 = 𝑏×𝑃𝑚

Linear:
𝑃̂𝑜 = 𝑎 + 𝑏×𝑃𝑚

Power:
𝑃̂𝑜 = 𝑏×𝑃𝑐

𝑚

Exponential Asymptotic:

𝑃̂𝑜 = (𝑎 + 𝑏×𝑃𝑚) ×
(
1− 𝑒−

𝑃𝑚
𝜏

)
Where 𝑎, 𝑏, 𝑐, and 𝜏 are constants, 𝑃𝑚 is the model pre-
cipitation, and 𝑜 is the best estimate of the observed pre-
cipitation.

Distribution Derived Transformation: The Bernoulli-
Gamma Transformation was also tested for bias correction.
This transformation is a mixture of Bernoulli and Gamma
distributions. The parameters of these distributions are
estimated by maximum likelihood methods for both 𝑃𝑜

and 𝑃𝑚 independently (Yates et al., 2006).

Non-Parametric Transformation: The following non-
parametric transformations were used for the study.

Robust Empirical Quantiles: It estimates the values of
the quantile-quantile relation of observed and modelled
time series for regularly spaced quantile using local linear
least square regression and performs quantile mapping by
interpolating the empirical quantiles.

Empirical Quantiles: It estimates values of the empirical
cumulative distribution function of observed and modelled
times series for regularly spaced quantiles and uses these
estimates to perform quantile mapping.

Smoothing Spline: It uses the spline function to adjust
the distribution of the modelled data to match the distribu-
tion of the observation.

Verification (Gilleland, 2010) and qmap (Gudmunds-
son, 2016) packages in R (R Core Team, 2013) have been
utilized for forecast verification and bias correction in this
study.

4. Results

4.1. Verification of Rainfall Forecast

4.1.1) Continuous Forecast Verification

This method was used to evaluate how the values of fore-
casts differ from the values of observations. The amounts
of rainfall forecasted by the model for all sub-basins were
compared with the observed rainfalls. PBIAS and skill
scores were computed to evaluate the performance of the
model. The model showed very poor skill in forecasting
rainfall amounts for all subbasins. As shown in Fig. 2(a) all
sub-basins have negative skill scores indicating poor fore-
casts for all 3 days forecasts. The PBIAS in Fig. 2(b) indi-
cates that the model over-forecasted rainfall in sub-basins
W90, W180, and W190 which lie in Terai region whereas
it under-forecasted rainfall in W60, W80 and W140 sub-
basins which lie between Siwalik and Mahabharat range.

4.1.2) Binary Forecast Verification

This method was used to evaluate whether an event will
happen or not e.g. Rain or No Rain. To verify this type of
forecast, we used a contingency table as given in Table 3
that shows the frequency of ”yes” and ”no” forecasts and
occurrences. PC, POD, FAR and BIAS were computed for
all sub-basins for 3-day forecasts.

The PC was in the range of 66% - 84% indicating good
accuracy of the model in forecasting rainfall events. The
POD (HR) was in the range of 87% - 95% indicating good
detection of rainfall events by the model. The FAR was
in the range of 9% - 38%. The BIAS Score was greater
than one in all basins indicating an over-forecast of rain-
fall events. Besides, the performance of model forecasts
slightly degraded with the increase in length of forecasts,
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Table 2. Performance indicators of continuous forecast verification

SN Method Formula Description

1 Mean Error
(ME) ME =

∑(𝐹𝑖−𝑂𝑖 )
𝑛

Where 𝐹 is forecast and 𝑂 is observation. The perfect score
is 0, and the range varies from −∞ to +∞. ME > 0 indicates
over-forecasting, and ME < 0 indicates under-forecasting. It
measures bias.

2 Mean Absolute
Error (MAE) MAE =

∑ |𝐹𝑖−𝑂𝑖 |
𝑛

The perfect score is 0, and the range varies from 0 to +∞. It
gives the average magnitude of errors in a given set of forecasts
and measures accuracy.

3 Mean Square
Error (MSE) MSE =

∑(𝐹𝑖−𝑂𝑖 )2

𝑛

The perfect score is 0, and the range varies from 0 to +∞. It
gives error variance and measures accuracy.

4 Percent Bias
(PBIAS) PBIAS = 1

𝑛

∑ (
𝐹𝑖−𝑂𝑖

𝑂𝑖
×100

) The perfect score is 0. A positive value indicates a tendency of
model overestimation, and a negative value indicates a tendency
of model underestimation.

5 Skill Score
(SS) SS = 1− MSEforecast

MSEreference

It measures the relative improvement of the forecast over some
reference forecast. The perfect score is 1, and the range varies
from−∞ to 1. Zero indicates no improvement over the reference
forecast.

(a) (b)

Figure 2. (a) Skill Score for sub-basins and (b) Percent Bias for sub-basins.

Table 3. Confusion Matrix with Event Forecast and Marginal Totals

Event Observed

Ev
en

tF
or

ec
as

t

YES NO Marginal Total

YES 𝑎 𝑏 𝑎 + 𝑏
NO 𝑐 𝑑 𝑐+ 𝑑

Marginal Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐+ 𝑑

where: 𝑎 = Hits, 𝑏 = False Alarms, 𝑐 = Misses, 𝑑 =

Correct Negatives

i.e., Day 1 forecasts were slightly better than Day 2 fore-
casts and Day 2 forecasts were slightly better than Day 3
forecasts (see Fig. 3(a) - 3(d)).

4.1.3) Multi-Category Forecast Verification

A contingency table, as given in Table 3, showing the
frequency of forecasts and observations in the various bins,
e.g., no rainfall, light rainfall, moderate rainfall, and heavy
rainfall, was prepared to verify multi-category forecasts.
The four categories used for rainfall were as follows: No
Rain = 0 mm; Light Rain = 0.1 – 10 mm; Moderate Rain
= 10.1 – 30 mm; and Heavy Rain = above 30 mm.

In case of heavy rainfall and no rainfall categories, in
most of the sub-basins, in general, the model showed under-
forecasts. In contrast, in the case of light and moderate
rainfall categories, in most of the sub-basins, in general,
the model showed over-forecasts. (See Figs. 4(a) – 4(d)).
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Table 4. Performance indicators of dichotomous (binary) and multi-category forecast verification

SN Method Formula Description

1 Bias Score or
Frequency Bias (BIAS) BIAS = 𝑎+𝑏

𝑎+𝑐

BIAS > 1 indicates over-forecasting, and BIAS < 1 indicates
under-forecasting. The perfect score is 1, and the range varies
from 0 to ∞.

2 Percent Correct
(PC) PC = 𝑎+𝑑

𝑛

Indicates the overall fraction of correct forecasts. The perfect
score is 1, and the range varies from 0 to 1. Strongly influenced
by the common category.

3 Probability of Detection
(POD) POD = 𝑎

𝑎+𝑐

Represents the fraction of predicted ”yes” events that occurred.
It is sensitive to misses. The perfect score is 1, and the range
varies from 0 to 1.

4 False Alarm Ratio
(FAR)) FAR = 𝑏

𝑎+𝑏

Gives the fraction of predicted ”yes” events that did not occur.
It is sensitive to false alarms, not misses. The perfect score is 0,
and the range varies from 0 to 1.

(a) (b)

(c) (d)

Figure 3. (a) Percent Correct for sub-basins, (b) Probability of Detection for sub-basins, (c) False Alarm Ratio for sub-basins and (d) Bias Score
for sub-basins

4.2. Verification of Mean Temperature Forecast

The 3-day temperature forecasts for stations 417 (Rani
Jaruwa), 508 (Tulsipur), 511 (Salyan Bazaar) and 515
(Ghorahi) were compared with the observed mean daily
temperature. The PBIAS was in the range of -3.1 to +3.23,
which is very good result. The PBIAS was positive in
stations 417 (Rani Jaruwa) and 515 (Ghorahi) indicating
slightly over-forecast whereas it was negative in stations
508 (Tulsipur) and 511 (Salyan Bazaar) indicating slightly
under-forecast. The Skill Score was in the range of 0.52
– 0.88 indicating good skill of model in forecasting mean
temperatures for the stations under study (See Figs. 5(a) –
5(b)).

To assess the model performance of mean temperature
forecasts in multi-categories, verification measures such
as bias scores (BIAS) were analyzed. The three categories
used for mean temperature analysis were as follows: Cat-
egory 1 (cold): less than 15 Degree Celsius; Category 2
(warm): 15 – 25 Degree Celsius; Category 3 (hot): above
25 Degree Celsius.

Figs. 6(a) – 6(c) show the Bias Scores for cold, warm and
hot conditions. The category 1 (cold condition) is under-
forecasted in station 417 (Rani Jaruwa) and over-forecasted
in stations 508 (Tulsipur) and 511 (Salyan Bazaar). The
category 2 (warm condition) is under-forecasted in station
511 (Salyan Bazaar) and over-forecasted in stations 508
(Tulsipur) and 515 (Ghorahi). The category 3 (hot con-
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(a) (b)

(c) (d)

Figure 4. Bias Score for (a) “No Rain”, (b) “Light Rain”, (c) “Moderate Rain” and (d) “Heavy Rain” categories.

(a) (b)

Figure 5. (a) Skill Score for temperature stations and (b) Percent Bias
for temperature stations.

dition) is over-forecasted in station 511 (Salyan Bazaar)
and under-forecasted in stations 508 (Tulsipur) and 515
(Ghorahi).

4.3. Bias Correction of Rainfall Forecasts

The performances of eight bias correction schemes were
evaluated for all 3-days rainfall forecasts for all sub-basins
to identify the best bias correction scheme. Figs. 7(a) -
7(c) show the percent bias for Day 1 (D1), Day 2 (D2) and
Day 3 (D3) forecasts using different schemes for all sub-
basins. The percent bias of model forecast was reduced
significantly by all bias correction schemes but empirical
quantile scheme has reduced the bias to a minimum. How-
ever, other schemes like robust empirical quantile, linear
and exponential asymptotic schemes had also reduced the
bias significantly.

Upon comparison of the 100% quantile of the bias cor-
rected forecasts from different schemes with 100% quantile
of observed rainfall, the bias corrected forecast from the
empirical quantile schemes (qm7) was found to be either
matching or close to the 100% quantile of the observed

(a)

(b)

(c)

Figure 6. Bias Score for (a) “Cold”, (b) “Warm” and (c) “Hot” cate-
gories.

rainfall. It suggested that the extreme rainfall cases are well
captured by empirical quantile method. Besides, 100%

Journal of Hydrology and Meteorology, Vol. 12, No. 1 SOHAM-Nepal
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quantile from other non-parametric schemes such as ro-
bust empirical quantile (qm6), smoothing spline (qm8) and
parametric scheme such as exponential asymptotic (qm4)
were also close to the observed quantile (See Table 5).

(a)

(b)

(c)

Figure 7. Percent Bias for (a) “Day 1”, (b) “Day 2” and (c) “Day 3”
rainfall forecast.

4.4. Bias Correction of Temperature Forecasts

The performances of eight bias correction schemes were
evaluated for all 3-days temperature forecasts for all four
stations to identify the best bias correction scheme. Figs.
8(a) – 8(c) show the percent bias for Day 1 (D1), Day
2 (D2) and Day 3 (D3) forecasts using different schemes
for all stations. The percent bias of mean temperature
forecast was less than 5 percent for all stations for 3-days
forecast. This was further reduced by all bias correction
schemes. However, empirical quantile, robust empirical
quantile, smoothing spline, linear and exponential asymp-
totic schemes have reduced the bias significantly.
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(a)

(b)

(c)

Figure 8. Percent Bias for (a) “Day 1”, (b) “Day 2” and (c) “Day 3”
temperature forecast.

5. Conclusion

We employed 3-day forecast data of WRF model run by
RIMES and observed data of 16 rainfall stations and 4
temperature stations (Ghorahi, Tulsipur, Salyan Bazaar
and Rani Jaruwa) by DHM for the period of 01/01/2008-
31/12/2013 for verification and bias-correction of rainfall
and temperature over the BRB. The average observed rain-
fall for each sub-basin was calculated using the Thiessen
polygon method.

WRF model forecast is a deterministic forecast. Hence,
we employed continuous, binary and multi-category veri-
fication methods using different indicators to evaluate the
performance of WRF model to forecast rainfall and tem-
perature. We also evaluated the performance of 8 bias
correction schemes to identify the best scheme for bias
correction of rainfall and temperature forecasts. The rain-
fall verification and bias correction were done on sub-basin
scale and temperature verification and bias correction were
done on station scale.

The amounts of rainfall forecasted by the model for all
sub-basins were compared with the observed rainfalls. The
model showed very poor skill in forecasting the amount
of rainfall for all subbasins as indicated by negative skill
scores for all 3-day forecasts. The model over-forecasted
rainfall over sub-basins of Terai region whereas it under-
forecasted over sub-basins of Siwalik and Mahabharat
ranges. In general, the model over-forecasted amount of
rainfall in the BRB.

The binary verification of forecasting rainfall events
(Rain or No Rain) showed good accuracy with the PC
ranging from 66% to 84%, POD 87% to 95%, and FAR
9% to 38%. However, the BIAS Score was greater than one
in all basins indicating an over-forecast of rainfall events.
Besides, the performance of model forecasts slightly de-
graded with the increase in the lead time of forecast.

A multi-category verification of forecasting rainfall
events showed that the model under-forecasted the fre-
quency of ‘Heavy Rain’ and ‘No Rain’ categories in most
of the sub-basins, whereas it over-forecasted ‘Light Rain’
and ‘Moderate Rain’ categories. Continuous verification
of 3-day temperature forecasts for four stations showed
very good matching of forecasted temperatures with the
observations as indicated by the PBIAS in the range of
-3.1 to +3.23, and Skill Score in the range of 0.52 to 0.88.
The WRF model slightly over-forecasted mean daily tem-
perature in stations 417 (Rani Jaruwa) and 515 (Ghorahi),
whereas it was slightly under-forecasted in stations 508
(Tulsipur) and 511 (Salyan Bazaar).

A multi-category verification of 3-day temperature fore-
casts showed mixed results with category 1 (cold con-
dition) under-forecasted in station 417 (Rani Jaruwa)
and over-forecasted in stations 508 (Tulsipur) and 511
(Salyan Bazaar). The category 2 (warm condition) is
under-forecasted in station 511 (Salyan Bazaar) and over-
forecasted in stations 508 (Tulsipur) and 515 (Ghorahi).
The category 3 (hot condition) is over-forecasted in station
511 (Salyan Bazaar) and under-forecasted in stations 508
(Tulsipur) and 515 (Ghorahi).

We evaluated the performances of eight bias correction
schemes for all 3-days rainfall forecasts for all sub-basins.
It is found that the percent biases of rainfall forecasts were
reduced significantly by all bias correction schemes but
empirical quantile scheme has reduced the biases to a
minimum. However, other schemes like robust empirical
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quantile, linear and exponential asymptotic schemes also
reduced the biases significantly. Hence, empirical quantile
method is the best bias correction scheme to correct biases
in WRF model rainfall forecast for the sub-basins of the
BRB. However, in case of parametric transformations ex-
ponential asymptotic function can also be considered as it
has also reduced the biases in rainfall forecast significantly.

Evaluation of the performances of eight bias correction
schemes for 3-day temperature forecasts for all four stations
showed the percent bias of less than 5% by all bias cor-
rection schemes. However, empirical quantile, robust em-
pirical quantile, smoothing spline, linear and exponential
asymptotic schemes have reduced the bias significantly. In
general, WRF model is quite capable of forecasting mean
temperature with less than 5% bias. Hence, bias correc-
tion may not be necessary for mean temperature forecast.
However, linear transformation, robust empirical quantile,
empirical quantile, and smoothing spline could be con-
sidered as appropriate bias correction schemes to correct
biases in the mean temperature for the stations of the BRB
if deemed necessary.
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