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ABSTRACT

The Bhumibol reservoir in the Ping River basin is the largest reservoir in the Kingdom of Thailand. This reservoir has contributed to
economic development of the country by supplying increased electricity and irrigation water demands as well as flood mitigation in riparian
areas along the Ping and the Chao Phraya River. The prediction of inflows to the reservoir is crucial for the optimal management of water
for irrigation, power generation and flood control. Properly customized rainfall-runoff models of the catchment could provide the basis for
predicting the inflows to the reservoir. Hence, five lumped conceptual rainfall-runoff models were developed for the Ping River basin to
simulate daily inflows to the Bhumibol reservoir. The rainfall-runoff models are Australian Water Balance Model (AWBM), Sacramento
Soil Moisture Accounting Model, Simplified Hydrolog Model (SIMHYD), Soil Moisture Accounting and Routing Model (SMAR) and
Tank Model. The evaluation of the performances of these models showed that all models are capable of predicting inflows. However,
the SIMHYD, Sacramento, AWBM and Tank models perform better than SMAR model. Hence, these models could be employed for
prediction of inflows to the reservoir with acceptable accuracy.
Keywords: Reservoir regulation, Rainfall-runoff model, Flood control, Inflow, Prediction.

1. Introduction

Reservoirs are the most important and effective storage
structures to regulate the flow of water in space and time.
They provide sustained flow of water for hydropower and
irrigation and also smooth out extreme inflow to mitigate
floods. To make the best use of water, optimal operation
of reservoir is very important. Daily reservoir inflow pre-
dictions with lead-times of several days are essential to
the operational planning and scheduling of hydroelectric
power plants. Forecast information on reservoir inflow
could be used to optimize short-term benefits by minimiz-
ing spills and maximizing the economic value of water
for hydropower production and other water uses. Hence,
forecast of future reservoir inflow can be very useful for
efficient operation of reservoir. The added value by using
inflow forecasting in combination with optimization can
be significant (Madsen et al., 2009).

Reservoir operation is usually carried out on the basis of
rule curves based on historical flows. Traditionally, reser-
voir rule curves are defined based on the driest envelope in
the entire historical record and the same rule curve is used
every year for reservoir operation. A common practice in
Thailand is to lower the reservoir to a pre-specified level
every year before the rainy season to accommodate the later
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monsoon peak flows. This unconditional/static reservoir
management strategy could be modified to evolve a dy-
namic reservoir management strategy if inflow forecasting
models are developed which could then be used to predict
inflows if the long range forecast of monsoon climate is
available.

The inflow to the reservoir could be predicted using
various methods. Chang and Chang (2006) have used
Adaptive Neuro-Fuzzy Inference System (ANFIS) for pre-
diction of water level in the Shihmen reservoir in Taiwan.
Mohammadi et al. (2005) have compared the performance
of artificial neural network (ANN), ARIMA time series
and regression analysis models to predict the spring inflow
in the Amir Kabir reservoir using snowmelt equivalent data
and found that the ANN predicts better. Artificial neural
networks have been widely used for reservoir inflow fore-
casting (see Sentu and Regulwar, 2011). Madsen et al.
(2009) have employed NAM, MIKE11 and MIKE BASIN
models for inflow forecasting and reservoir optimization
for hydropower production from the Hoa Binh reservoir in
Vietnam. Sankarasubramanian et al. (2009) used monthly
updated precipitation forecasts from ECHAM4.5 forced
with “persisted” sea surface temperatures for reservoir
inflow forecasts to improve both seasonal and intrasea-
sonal water allocation during the October–February sea-
son for the Angat reservoir in the Philippines. While
there are many publications on the application of vari-
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ous models for reservoir inflow prediction, there are few
studies on the comparisons of predictions. This study con-
tributes to fulfill the gap by presenting the performance
of five lumped conceptual models for the prediction of in-
flow to Bhumibol reservoir in Thailand. The models are
Australian Water Balance Model (AWBM), Sacramento
Soil Moisture Accounting Model, Simplified Hydrolog
Model (SIMHYD), Soil Moisture Accounting and Rout-
ing Model (SMAR) and Tank Model. These models are
chosen because they are easy to use and freely available
in Rainfall-Runoff Library (RRL) software developed by
eWater (https://toolkit.ewater.org.au/Tools/RRL).

2. Study Area

The Bhumibol reservoir lies in the Ping sub-basin of
Chao Phraya river basin. Figure 1 shows the study area.
The reservoir was constructed in the 1960s for the purpose
of irrigation, flood control and hydroelectric power pro-
duction. The dam is an arch-gravity type and is 154 m
high, 486 m long and 8 m wide at its crest. It withholds
a reservoir of 13,462 million m3 of which 9,762 million
m3 is active or ”useful” storage. The dam’s catchment
area is 26,400 km2 while its surface area is 300 km2. Its
power plant contains eight different turbines for an installed
capacity of 749 MW.

The Bhumibol reservoir provides water supply to both
northern and central region of Thailand. The reservoir
operation in Thailand is difficult because the country is
susceptible to both drought and flood risks. The operation
of the reservoir during a certain month could critically
affect the flow during the subsequent months. Thailand
gets rainfall from both southwest monsoon and northeast
monsoon. The southwest monsoon usually starts in mid-
May and ends in mid-October bringing a stream of moist air
from the Indian Ocean towards Thailand causing abundant
rain over the country. The northeast monsoon starts in
mid-October and ends in mid-February causing abundant
rain over the southern part while northern part remains
relatively cold and dry.

Table 1 shows the seasonal rainfall for different regions
of Thailand. The rainy season spanning from mid-May to
mid-October provides about 75% of rainfall for the north-
ern and central region. The northern region gets 8.5%
rainfall in winter, 14.7% in summer and 76.8% in the rainy
season. Similarly, the central region receives 10.2% rain-
fall in winter, 15.4% in summer and 74.4% in the rainy
season. The deficit water supply during the winter and
summer has to be supplemented by the water stored in the
reservoir during the rainy season.

3. Data and Methodology

3.1. Data

The following data were used:

Fig. 1. Location of Bhumibol reservoir in Thailand.

Table 1. Seasonal rainfall (mm) in Thailand based on 1971-2000 period.

Region Winter
Season

Summer
Season

Rainy
Season

Total
Rainfall (mm)

North 105.5 182.5 952.1 1240.1
Northeast 71.9 214.2 1085.8 1371.9
Central 124.4 187.1 903.3 1214.8
East 187.9 250.9 1417.6 1856.4
Southeast Coast 759.3 249.6 707.3 1716.2
Southwest Coast 445.9 383.7 1895.7 2725.3

1. A continuous series of mean catchment rainfall data
computed from observed station rainfall data

2. A continuous series of catchment average poten-
tial/actual evapotranspiration data computed from ob-
served pan evaporation data

3. Observed daily inflow values for the reservoir for
model calibration and verification

4. Catchment area to convert flow into depth of runoff
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Fig. 2. The Ping basin and stations.

The reservoir inflow data for four years (01/01/2008-
17/02/2012) have been obtained from Royal Irrigation De-
partment of Thailand. Similarly, rainfall data for eight
stations have been obtained from Thai Meteorological De-
partment and Royal Irrigation Department for the same
period. Pan evaporation data for six stations have also
been collected from Thai Meteorological Department.

Figure 2 shows the location of the stations and Figure 3
presents the mean daily rainfall, mean pan evaporation and
inflow data. Table 2 presents the list of stations.

3.2. Rainfall-Runoff Models

The Rainfall-Runoff Library (RRL) has been used in the
study which was developed by eWater, a publicly owned
not-for-profit organisation committed to ecologically sus-
tainable water management in Australia and around the
world. The software is freely available to download
from the website (https://toolkit.ewater.org.au/Tools/RRL)
by registering as a Toolkit member.

RRL currently contains five rainfall-runoff models,
seven calibration optimizers, eleven objective functions
and three types of data transformation methods. The

Fig. 3. Mean rainfall, mean pan evaporation and inflow.

Table 2. List of stations.

S. No. Station No. Station Name Data Type

1 300201 Mae Hong Son Rainfall,
evaporation

2 300202 Mae Sariang Rainfall,
evaporation

3 310201 Phayao Rainfall,
evaporation

4 327501 Chiang Mai Rainfall,
evaporation

5 376202 Mae Sot Rainfall,
evaporation

6 376203 Bhumibol Dam Rainfall,
evaporation

7 TCY12 Lampang Rainfall
8 TCY14 Ban Don Chai Rainfall

9 963073 Bhumibol Reservoir,
Khao Kaeo

Inflow,
evaporation

graphical user interface comprises menus, dialogues and
graph display tools. The rainfall-runoff models are Aus-
tralian Water Balance Model (AWBM), Sacramento Soil
Moisture Accounting Model, Simplified Hydrolog Model
(SIMHYD), Soil Moisture Accounting and Routing Model
(SMAR) and Tank Model. A detail description of these
models could be found in Podger (2004). A brief descrip-
tion of the models is given below.

3.2.1 Australian Water Balance Model

The Australian Water Balance Model (AWBM) is a
catchment water balance model that computes runoff at
the outlet of the catchment using rainfall and evapotranspi-
ration data as input with daily or hourly time scales. Figure
4 shows the schematic diagram of the AWBM model. The
model consists of eight parameters and it uses three surface
storage elements to simulate partial areas of runoff. The
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Fig. 4. Schematic diagram of AWBM model.

water balance of each surface storage element is calculated
independently of the others.

The water balance equation can be described as follows:

𝑠𝑡𝑜𝑟𝑒(𝑛, 𝑡) = 𝑠𝑡𝑜𝑟𝑒(𝑛, 𝑡 −1) + 𝑟𝑎𝑖𝑛(𝑡) − 𝑒𝑣𝑝(𝑡) (1)

where, n = 1 to 3.
The three parameters A1, A2 and A3 (which represent

the proportions of the areas of the catchment) are con-
strained with the following relationship.

𝐴1+ 𝐴2+ 𝐴3 = 1 (2)

Hence, only A1 and A2 are set and A3 is calculated from
equation (2).

When runoff occurs from any storage element, part of the
runoff recharges the base flow storage. The fraction of the
runoff used to recharge the base flow storage is BFI*runoff,
where BFI is the base flow index i.e. the ratio of base flow
to total flow in the stream. The remainder of the runoff, i.e.
(1 - BFI)*runoff, is surface runoff. The base flow storage
is depleted at the rate of (1 - K)*BS where BS is the current
moisture in the base flow storage and K is the base flow
recession constant.

The surface runoff is routed through storage to simulate
the delay of runoff reaching the outlet of a catchment.
The surface storage acts in the same way as the base flow
storage, and is depleted at the rate of (1 - KS)*SS, where
SS is the current moisture in the surface runoff storage and
KS is the surface runoff recession constant of the time step
being used.

3.2.2 Sacramento Soil Moisture Accounting Model

The Sacramento soil moisture accounting model is a
conceptual model with spatially lumped parameters which
attempts to parameterize soil moisture characteristics in a
manner that logically distributes applied moisture in vari-
ous depths and energy states in the soil and that has rational

Fig. 5. Schematic diagram of Sacramento model.

percolation characteristics (Burnash et al., 1995; Burnash
and Ferral, 1973). The model represents the distribution
of soil moisture by an upper and lower zone. Within each
zone the moisture is separated into tension water (water
held tightly by soil particles) and free water (water which
can move within the soil mantle). Figure 5 shows the
schematic diagram of the Sacramento model.

The movement of water between the two zones is con-
trolled by a physically based percolation equation which is
controlled by the contents of the upper zone free water and
the soil moisture deficiency in the lower zone. The model
also includes a representation of the impervious portion
of a catchment. The model contains five states and six-
teen parameters defining the capacities of the soil zones,
the drainage rates of the zones, the shape of the perco-
lation curve, and the size of the impervious areas. The
model has a basic approach for simulating the effects of
frozen ground. A time series of temperature is required for
analysis of frozen ground effects. The model uses precip-
itation (rain plus melt) and evapotranspiration as input to
simulate the runoff from the outlet of the catchment. Ob-
served runoff data are required for model calibration and
verification. The model is suitable for large river basins.

3.2.3 Simplified Hydrolog Model

Simplified Hydrolog Model (SIMHYD) is a simplified
version of the daily conceptual rainfall-runoff model, HY-
DROLOG, that was developed in 1972 (Porter and McMa-
hon, 1971) and the more recent MODHYDROLOG (Chiew
and McMahon, 1994). It estimates daily stream flow from
daily rainfall and potential evapotranspiration data. It has
seven parameters. The structure of SIMHYD is shown in
Figure 6.

In SIMHYD, daily rainfall first fills the interception
store, which is emptied each day by evaporation. The
excess rainfall is then subjected to an infiltration function
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Fig. 6. Schematic diagram of SIMHYD model.

that determines the infiltration capacity. The excess rainfall
that exceeds the infiltration capacity becomes infiltration
excess runoff.

Moisture that infiltrates is subjected to a soil moisture
function that diverts the water to the stream (interflow),
groundwater store (recharge) and soil moisture store. In-
terflow is first estimated as a linear function of the soil
wetness (soil moisture level divided by soil moisture ca-
pacity). The equation used to simulate interflow therefore
attempts to mimic both the interflow and saturation excess
runoff processes (with the soil wetness used to reflect parts
of the catchment that are saturated from which saturation
excess runoff can occur). Groundwater recharge is then es-
timated, also as a linear function of the soil wetness. The
remaining moisture flows into the soil moisture store.

Evapotranspiration from the soil moisture store is esti-
mated as a linear function of the soil wetness, but cannot
exceed the atmospherically controlled rate of areal poten-
tial evapotranspiration. The soil moisture store has a finite
capacity and overflows into the groundwater store. Base
flow from the groundwater store is simulated as a linear
recession from the store. The model therefore estimates
runoff generation from three sources –infiltration excess
runoff, interflow (and saturation excess runoff) and base
flow.

3.2.4 Soil Moisture Accounting and Routing Model

The Soil Moisture Accounting and Routing (SMAR)
model is a lumped conceptual rainfall-runoff model com-
prising two components in sequence, a water balance com-
ponent and a routing component (O’connell et al., 1970;
Kachroo, 1992; Tuteja and Cunnane, 1999). A schematic
diagram of the SMAR model is shown in Figure 7.

The water balance component divides the soil column
into horizontal layers, which contain a prescribed amount
of water at their field capacities. Evaporation from soil

Fig. 7. Schematic diagram of SMAR model.

layers is treated in a way that reduces the soil moisture
storage in an exponential manner from a given potential
evapotranspiration demand. The routing component trans-
forms the surface run-off generated from the water balance
component to the catchment outlet by a gamma function
model form (Nash and HRS, 1960), a parametric solution
of the differential routing equation in a single input sin-
gle output system. The generated groundwater run-off is
routed through a single linear reservoir and provides the
groundwater contribution to the stream at the catchment
outlet. The SMAR model contains nine parameters; five
of which are water balance parameters and four are routing
parameters.

3.2.5 Tank Model

The tank model is a simple model, composed of four
tanks laid vertically in series as shown in Figure 8. It
consists of fifteen parameters. Precipitation is put into
the top tank, and evaporation is subtracted sequentially
from the top tank downwards. As each tank is emptied
the evaporation shortfall is taken from the next tank down
until all tanks are empty. The outputs from the side outlets
are the calculated runoffs. The output from the top tank
is considered as surface runoff, output from the second
tank as intermediate runoff, from the third tank as sub-
base runoff and output from the fourth tank as base flow
(Sugawara, 1995).

The total runoff is calculated as the sum of the runoffs
from each of the tanks. The runoff from each tank is
calculated as

𝑞 =

4∑︁
𝑥=1

𝑛𝑥∑︁
𝑦=1

(
𝐶𝑥 −𝐻𝑥𝑦

)
𝑎𝑥𝑦 (3)

where, q = runoff in mm, 𝐶𝑥 = water level of tank x, 𝐻𝑥𝑦

= outlet height, 𝑎𝑥𝑦 = runoff coefficient for the respective
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Fig. 8. Schematic diagram of Tank model.

tank outlet. If water level is below the outlet, no discharge
occurs. The evapotranspiration is calculated using Beken’s
equation.

𝐸𝑇𝐴 =

4∑︁
𝑥=1

1− exp (−𝛼𝐶𝑥) (4)

where, ETA = evapotranspiration in mm, 𝛼 = evapotran-
spiration coefficient and 𝐶𝑥 = water level of tank. The
infiltration in each tank is calculated using:

𝐼𝑥 = 𝐶𝑥𝐵𝑥 (5)

where, 𝐼𝑥 = infiltration in mm, 𝐶𝑥 = water level of tank x
and 𝐵𝑥 = infiltration coefficient of tank x.

The amount of water in each tank affects the amount of
rainfall, infiltration, evaporation and runoff. The storages
are calculated from the top to the bottom tank. The evap-
oration is initially deducted from the first storage up to a
maximum of the potential rate. The remaining potential
evapotranspiration is taken from each of the lower tanks
until the potential rate is reached or all of the tanks have
been evaporated. After evaporation has been taken from
the tanks rainfall is added to the top tank and based on the

revised level runoff, infiltration is estimated. This is sub-
sequently deducted from the storage level. The next tank
subsequently receives the infiltration from the tank above.
The process continues down through the other tanks.

3.3. Model Calibration Method

Calibration could be done manually, automatically or
combination of both. The RRL provides many different
types of optimizers for calibrating models. However man-
ual calibration is also an important aspect of model calibra-
tion. Manual calibration can be used to investigate how the
different parameters change the shape of the simulated hy-
drograph and also to refine an optimized calibration. The
RRL provides a manual calibration tab in the calibration
dialogue which contains a dynamic update checkbox, a list
of calibration parameters and an update graph button.

There are seven generic optimization algorithms avail-
able in RRL. These are

1. Uniform random sampling

2. Pattern search

3. Pattern search multi start

4. Rosenbrock

5. Rosenbrock multi start

6. Genetic algorithm

7. SCE-UA

A custom calibration method is also available for
AWBM model. There are 8 primary objective functions
available as follows.

1. Nash-Sutcliffe criterion

2. Sum of square errors

3. Root mean square error (RMSE)

4. Root mean square difference about bias

5. Absolute value of bias

6. Sum of square roots

7. Sum of square of the difference of square root

8. Sum of absolute difference of the log

There are three secondary objective functions as given
below:

1. Runoff difference in

2. Flow duration curve

3. Base flow method 2
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Fig. 9. Nash-Sutcliffe coefficients for calibration and verification period.

4. Results

The observed data were available for four years only.
Hence, two years data were taken for calibration and the
remaining data were taken for verification set. The first five
months data of calibration set (01/01/2008 - 31/05/2008)
and verification set (01/01/2010 - 31/05/2010) have been
selected for the warm up of the model. The warm up
period provides the estimate of the initial soil moisture
storage. Calibration and verification periods have been
specified from 01/06/2008 to 31/12/2009 and 01/06/2010
to 17/02/2012 respectively.

Table 3 presents the summary of the data set. Mean
areal rainfall and mean pan evaporation were calculated
by arithmetic average method. Since SMAR model uses
pan evaporation as input, the Pan factor for this model is
1. Other models use either potential evapotranspiration or
actual evapotranspiration as input. Hence, the Pan factor
of 0.75 was used for other four models. Among seven
optimization methods, genetic algorithm has been found
to be the most effective to find the optimal values of pa-
rameters. Nash-Sutcliffe criterion has been selected as
objective function. The set of optimal parameter values
for each model are presented in Table 4.

Figures 9 and 10 present the comparative values of Nash-
Sutcliffe coefficient and relative difference for calibration
and verification period for different models.

Figures 11 and 12 present the observed and simulated
inflows obtained by different models for calibration and
verification period.

The results show that all models are good in conserv-
ing runoff volume with SIMHYD, AWBM, Sacramento
and Tank models performing relatively better than SMAR
model. In terms of Nash-Sutcliffe coefficient, Sacramento
model performed better for calibration set with Nash-
Sutcliffe coefficient of 0.715 whereas SIMHYD performed
better for verification set with Nash-Sutcliffe coefficient of

Fig. 10. Relative differences for calibration and verification period.

Fig. 11. Observed and simulated inflows for calibration period.

Fig. 12. Observed and simulated inflows for verification period.

0.672. In terms of relative difference of runoff volume,
SIMHYD model performed better for both calibration and
verification set. The relative difference of SIMHYD model
was within 5% for both calibration and verification period.
Generally, Nash-Sutcliffe coefficient greater than 0.5 and
relative difference less than 10% is considered acceptable.
All models achieved Nash-Sutcliffe coefficient greater than
0.5. However, the relative difference of SMAR model was
-21.94% for calibration set.

The observed and simulated hydrograph plots show that
all models underestimate the peak flows of 2009 and 2011
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Table 3. Summary of data set.

Data set Start date End date Length Missing Total (mm) Mean (mm) Std. dev. (mm) Skew (mm)
Evaporation 01-01-08 17-02-12 1509 0 5710.07 3.784 1.052 0.815
Rainfall 01-01-08 17-02-12 1509 0 5042.725 3.342 5.439 2.652
Obs. Runoff 01-01-08 17-02-12 1509 330 1172.786 0.995 1.259 3.122
Calib. Obs. Runoff 01-06-08 31-12-09 579 73 440.28 0.87 1.015 4.19
Verif. Obs. Runoff 01-06-10 17-02-12 627 67 702.071 1.254 1.484 2.423

Table 4. Model parameters.

AWBM Sacramento SIMHYD SMAR Tank
Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value
A1 0.31 Adimp 0.0235 Baseflow Coefficient 0.14 C 0.26 H11 400
A2 0.3 Lzfpm 32.55 Impervious Threshold 10 G 0.95 a11 0.2
BFI 0.71 Lzfsm 36.27 Infiltration Coefficient 200 H 0.05 a12 0.1
C1 23.5 Lzpk 0.286 Infiltration Shape 1.3 Kg 0.06 a21 0.54
C2 482 Lzsk 0.027 Interflow Coefficient 0.032 N 1 a31 1
C3 1490 Lztwm 371.76 Pervious Fraction 0.989 NK 1 a41 0
KBase 0.9 Pctim 0.0039 Rainfall Interception Store Capacity 3.43 T 0.7 alpha 3
KSurf 0.97 Pfree 0.27 Recharge Coefficient 0.714 Y 3000 b1 0.008

Rexp 2.62 Soil Moisture Store Capacity 572 Z 150 b2 0.52
Rserv 0.68 b3 0.08
Sarva 0.0078 C1 90
Side 0.447 C2 90
Ssout 0.0627 C3 77
Uzfwm 77.8 C4 17
Uzk 0.051 H12 262
Uztwm 9.41 H21 0.39
Zperc 14.43 H31 18

H41 90

during calibration and verification period. This shows
the limitation of these models for peak flow forecasting.
Nevertheless, SIMHYD, Sacramento, AWBM and Tank
models could be employed for prediction of inflows to the
reservoir with reasonable accuracy.

5. Conclusion

The Ping basin in the Northern Thailand gets about 75%
of annual rainfall during monsoon season spanning from
mid-May to mid-October. During this period, the flood in
the Ping River causes loss of life, damage to infrastruc-
tures and the environment downstream up to the Bangkok.
Rest of the time, there is a deficit of water availability for
hydropower and irrigation. Hence, the Bhumibol reservoir
has been constructed to provide the regulated water supply
for hydropower and irrigation throughout the year and for
the purpose of flood control.

The reservoir is operated based on rule curve derived
from historical flow records and the same rule curve is used
each year. A common practice in Thailand is to lower the
reservoir to a pre-specified level every year before the rainy
season to accommodate the later monsoon peak flows. This
unconditional/static reservoir management strategy could
be modified to evolve a dynamic reservoir management
strategy if inflow forecasting models are available. The
inflow to the reservoir could be predicted using various
methods. This study utilized five lumped conceptual mod-
els available in Rainfall-Runoff Library (RRL) developed
by eWater, Australia. The skills of the models in terms
of Nash-Sutcliffe coefficient and relative difference have
been computed. Comparison has also been done by vi-
sualizing hydrograph plots of the observed and simulated
series. It is found that all models are good in conserv-
ing runoff volume but underestimate the peak flows. In
terms of Nash-Sutcliffe coefficient, all models achieved
the value greater than 0.5. In terms of relative difference
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of runoff volume, SMAR model showed poor performance
with -21.94% for calibration set. However, the relative
difference for other four models was below 10%. Hence,
Sacramento, AWBM, SIMHYD and Tank models could
be employed for prediction of inflows to the reservoir with
acceptable accuracy. However, care should be taken while
employing these models in peak flow forecasting.
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