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INTRODUCTION
Periodontal disease is a chronic inflammatory condition 
of the supporting structures characterized by persistent 
inflammation, connective tissue breakdown, and alveolar 
bone destruction. If left untreated, it continues with 
progressive alveolar bone destruction, leading to increased 
tooth mobility & subsequent tooth loss. One of the major 
goals of periodontal therapy is to obtain regeneration of the 
affected tissues to their original architecture & function.
Several procedures have been developed to achieve 
periodontal regeneration, including root surface 
conditioning,1-3 bone graft placement,3-5 guided tissue 
regeneration,1,3,5,-7 enamel matrix derivatives8-10 & growth 
factors11 application. However, these procedures used alone 
or in combination have limitations in obtaining a predictable 
outcome, especially in cases of advanced periodontal 
breakdown. So, recent advances in regenerative medicine 
&stem cell biology have provided the opportunities for 
tissue engineering & gene-based approaches in periodontal 
therapy.
Multilineage stem cells have substantial therapeutic potential 
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ABSTRACT
Stem cells, initially identified in embryonic tissues and later in numerous adult tissues, tend to possess the potentiality to 
differentiate into various cell types. Though most flexible of all stem cell lines, ethical issues restrict the use of embryonic 
cells. Furthermore, induced pluripotent stem cells (iPS) and adult stem cells (e.g: bone marrow stroma) can also be 
used. However, procurement of autologous bone marrow has its potential limitations. An alternate source of autologous 
adult stem cells which can be procured in large quantities, under local anesthesia, with minimal discomfort would be 
of keen interest. In the present context, human adult  adipose  tissue may be the best appropriate alternative source 
of mesenchymal stem cells.  Studies have shown that adipose  stem cells  (ASCs) extracted from subcutaneous human 
adult  adipose  tissue tend to contain heterogeneous cell population called stromal vascular fraction (SVF). It may be 
used directly or cultured in for selection and expansion of an adherent population, and hence, they are called  ASCs. 
The adipose tissue, obtained by suction-assisted lipectomy (i.e., liposuction), are processed to obtain a fibroblast-like 
population of cells, also called processed lipoaspirate (PLA). PLA cells has the potentiality to differentiate in vitro into 
adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. This 
attributable feature of ASCs may be of significant importance in future clinical cell-based therapy for periodontal disease 
as well. This review describes current knowledge & recent advances in ASCs & their application. This review describes
current knowledge and recent advances in ASCs and their application in periodontal regeneration.
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for applications in tissue engineering & gene therapy. 
Potent stem cells widely useful for these applications are: 
embryonic stem cells12 (ESCs), induced pluripotent stem 
cells (iPS)13,14 & autologous stem cells.15 Although they 
seem to be appealing due to their pluripotentiality, their 
practical use is limited due to the potential problems of 
cell regulation & ethical considerations. The autologous 
stem cells obtained from bone marrow have proven 
experimentally promising but its procurement is a major 
issue. Studies have shown that a population of stem cells 
can be isolated from human adipose tissue.16 Subpopulation 
of fibroblasts present within the fat tissues can be 
processed to obtain the processed lipoaspirates (PLA). 
These PLA cells, in vitro, can potentially differentiate into 
adipogenic,17,18chondrogenic,18-21myogenic22,23&osteogenic 
cells18,19,24-26in the presence of lineage-specific induction 
factors. The evidences have suggested that the periodontal 
microenvironment may induce ADMPC (Adipose-derived 
multilineage progenitor cells) to differentiate into 
periodontal tissues and that the ADMPC themselves might 
secrete various factors that stimulate resident progenitor 
cells.27 These unique properties make ADMPC an important 
cell source for stem cell-based therapeutic approaches 
in the field of periodontology. The effect of autologous 
mesenchymal stem cells transplantation has been 
investigated in clinical trials for periodontal regeneration 
of healthy patients.28 This review study discusses the 
potential use of adipose-derived stem cells in the field of 
periodontal regeneration.
Isolation of adipocytes-derived stem cells: Rodbell & 
colleagues in the 1960s pioneered the methods to isolate 
cells from adipose tissue using a rat.29-31A study was done 
by Tobita et al, 2007 in Wistar rat in which control group 
was passed platelet rich plasma (PRP) only & cases group 
were passed with adipocyte stem cells & PRP.32 This study 
showed that after two to four weeks of implantation, a 
small amount of alveolar bone regeneration was observed 
& eight weeks after implantation, periodontal ligament 
like structure was observed along with the alveolar bone. 
Human studies were also done by several groups.33-34 
Different progenitor cells were successfully isolated and 
characterized from human orbital adipose tissue.35

Obtaining the adipose tissues: Adipose tissue is harvested 
by liposuction procedure. Under local anesthesia, around 
1cm incision is given, through which a hollow blunt-
tipped cannula is inserted into subcutaneous space. The 
cannula is connected externally to a gentle suction which 
mechanically disrupts fat tissue &draws them out from 
the adipose compartment. In order to minimize the blood 
loss & contamination of tissue by peripheral blood cells, 

a solution of saline & epinephrine is infused into adipose 
compartment.36 In this way, raw lipoaspirate (~300 cc) is 
obtained.16

Processing of raw lipoaspirate: When preserved at 
room temperature, the aspirated fat should be processed 
as quickly as possible. It can be stored or transported 
overnight without adipose-derived stem cell yield loss or 
changes in biological properties if it is preserved at 40C.37 

The obtained raw lipoaspirate is extensively washed with 
equal volume of phosphate buffered saline(PBS). The 
extracellular matrix is then enzymatically digested at 37°C 
for 30 min with 0.0075 % collagenase16 or 40 min with 0.1% 
collagenase.33 This enzymatic activity is neutralized with 
Dulbecco’s modified Eagle’s medium (DMEM), containing 
10% FBS(Fetal Bovine Serum) & the cell suspension is 
centrifuged at 1200 xg for 10 minutes to isolate stromal 
vascular cells (SVC)38,39pellets from primary adipocytes.

Obtaining processed lipoaspirates: SVF pellet is 
resuspended in basal medium containing 10% fetal bovine 
serum40 or in  160 mM  NH4Cl  &  incubated at  room 
temperature  for  10 minutes to  lyse  the contaminating  
red  blood cells.16 The cell suspension is then filtered 
through 100µm cell strainer / nylon mesh to remove 
cellular debris. The cells are plated & incubated at 37°C 
/ 5% CO2 in control medium. The plates are then washed 
extensively with PBS to remove residual non-adherent 
RBCs. The medium should be changed in every second 
day till the cells reach 80-90% confluence. The cells were 
maintained at subconfluent levels in order to prevent 
their spontaneous differentiation. In this way, a large 
number of ASCs can be harvested approximately 2,50,000 
cells per gram of tissue.41,42 Furthermore, the use of PRP 
augments the proliferation of human ASCs.32ASCs can 
be successfully stored for more than six months which 
ensures the availability of autologous banked ASCs for 
clinical applications in the future.43,44

Characterisation of adipocytes stem cells:
1)	 Indirect immunoflourescence of PLA cells:		

It uses two antibodies; the unlabeled first (primary) 
antibody specifically binds with the target molecule, 
and the secondary antibody, that carries the 
fluorophore, recognizes the primary antibody and 
binds to it. PLA cells are then processed by using 
monoclonal antibodies to specific CD markers and 
lineage-specific protein. The cells are plated onto glass 
chamber slides, fixed in 4% paraformaldehyde in100 
mM Na3PO4buffer (pH 7.0) for 15 min.16 The cells 
are then extensively washed  for 10 min in 100 mM 
glycine in PBS (PBS/glycine) & blocked for one hour in 
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immunofluorescent blocking buffer (IBB) that contains 
5% bovine serum albumin  (BSA),  10%  FBS,  1× PBS,  
0.1%  Triton  X-100) followed by incubation  for  one  
hour  in  IBB  containing the  following  cell-specific  
monoclonal  antibodies: 

(1)	 Anti-smooth muscle actin: -To identify smooth muscle 
cells & pericytes.

(2) Anti-Factor VIII:- To identify endothelial cells.
(3) ASO2:- To identify fibroblasts & cells of mesenchymal 

origin.
The cells are again washed with PBS/glycine & incubated 
for one hour in IBB containing a fluoroisothiocyanate 
(FITC)-conjugated secondary antibody mounted with a 
solution containing DAPI(diamidino-2-phenylindole) to 
detect the nuclei.

2) Spectrophotometric assays:

a)	 Alkaline Phosphatase (AP): Samples of PLA cells are 
placed in osteogenic medium (OM) for aroundsix 
weeks followed by washing with PBS. AP enzyme 
activity is then assayed using a commercial AP 
enzyme kit according to the method of Beresford et 
al(1986).45 AP activity is expressed as nanomoles of 
p-nitrophenol produced per minute per microgram of 
protein. 

b)	 Total Calcium: PLA cells are placed in osteogenic 
medium for six weeks, then washed with PBS (no Ca++ 

or Mg++), harvested & extracted in 0.1 N HCl at 4°C for 
around four hours & lastly centrifuged for five minutes 
at 10,000 ×g. A commercial kit is used to determine 
total calcium (millimolar Ca++ per microgram of 
protein) in the supernatant.46

c)	 Dimethyldimethylene Blue: High-density micromass 
protocol is employed to differentiate PLA cells 
inchondrogenic medium (CM) for three weeks.47 With 
the help of an established method,48 PLA nodules are 
harvested & assayed for sulfated proteoglycans. 

3)	 Cell  Senescence  Assay: The existence of senescence-
associated β-galactosidase  (SA-β-gal  or  SABG) was 
proposed in 1995 by Dimri et al49 following  the 
observation  that when  β-galactosidase  assays 
are carried out at pH 6.0, only cells 
in  senescence  state develop staining & not the 
proliferating cells. It is a hypothetical hydrolase 
enzyme which helps in catalyzingthe  hydrolysis  of 
β-galactosides into monosaccharides in senescent cells. 
Cells from each culture passage (passage 1 to passage 
15) are fixed for five minutes in 2% formaldehyde/
glutaraldehyde and incubated in a β-Gal reaction buffer 

(containing 1 mg/ml X-Gal, 40 mM citric acid/sodium 
phosphate buffer (pH 6.0), 5 mM each of potassium 
ferrocyanide and potassium ferricyanide, 150 mM NaCl, 
and 2 mM (MgCl2).Senescent cells (blue) are identified 
by light microscopy.

4)	 Flow Cytometry:	 Flow cytometry helps in 
analyzing light scatter which distinguishes different 
cells based on their size, shape, & internal complexity. 
The antibodies or ligands conjugated with fluorescent 
probes are used to measure the presence and amount 
of specific intracellular and cell surface molecules. 
Similarly, fluorescent indicators help in measuring the 
transport of ions across the cellular membranes, as well 
as assess the mitochondrial activity & other metabolic 
parameters. PLA samples are cultured in control 
medium 72 hours before analysis & then flow cytometry 
with a FAC scan argon laser cytometer is performed. 
Briefly, cells are harvested in 0.25% trypsin/EDTA & are 
fixed in ice-cold 2% formaldehyde for 30 min. The fixed 
cells are then washed in the buffer solution (PBS, 2% 
FBS, 0.2%Tween-20) & then incubated for 30 min inflow 
cytometry buffer containing fluorescein isothiocyanate-
conjugated monoclonal antibodies to SH3, STRO-1, and 
the CD antigens: 13, 14, 16,31, 34, 44, 45, 49d, 56, 62e, 
71, 90, 104, 105, and 106. PLA cells are stained with a 
phycoerythrin-conjugated nonspecific IgG to assess 
background fluorescence.

Multilineage differentiation potential of PLA cells: 
PLA cells possess adipogenic, chondrogenic, osteogenic, 
myogenic & neurogenic lineages depending upon their 
cultured in specific induction media (Table 1).16 DMEM is 
used for differentiation into all the cell types.

Table 1. Lineage-specific differentiation

Medium Serum Supplementation

Control 10% FBS None

Adipogenic 
(AM) 10% FBS

0.5  mM  isobutyl-methylxanthine (IBMX), 1  
µM dexamethasone,  10  µM insulin,  200 µM 
indomethacin,  1%  antibiotic/ antimycotic

Myogenic 
(MM)

10% FBS, 
5%  HS

0.1  µM  dexamethasone,  50  µM hydrocortisone,  
1% antibiotic/ antimycotic

Chondrogenic  
(CM) 1%  FBS

6.25 mg/ml  insulin, 10 ng/ ml  TGF- ß1, 50  
nM ascorbate-2-phosphate, 1%  antibiotic/ 

antimycotic

Osteogenic 
(OM) 10% FBS

0.1  µM  dexamethasone,  50  µM ascorbate-2-
phosphate, 10  mM  ß-glycerophosphate, 1%  

antibiotic/ antimycotic

Exploring the potential of human adipocytes Review Article

https://en.wikipedia.org/wiki/Beta-galactosidase
https://en.wikipedia.org/wiki/Senescence
https://en.wikipedia.org/wiki/Catalyst
https://en.wikipedia.org/wiki/Hydrolysis
https://en.wikipedia.org/wiki/Beta-galactoside
https://en.wikipedia.org/wiki/Monosaccharide


J-GMC-N | Volume 13 | Issue 01 | January-June 2020 page 71

Table 2. Markers and assays of lineage -specific
differentiation

Lineage Serum Lineage-specific  determinant

Adipogenic 10% FBS Lipid  accumulation

Myogenic

1. Phase contrast microscopy

2. Myosin- and  MyoD1-specific 
and  MyoD1 expression mono-
clonal antibodies

1. Multinucleation

2. Skeletal muscle myosin 
heavy-chain

Chondro-
genic

1. Alcian Blue (pH  1.0)  stain

2. Collagen II-specific  mono-
clonal antibody

1. Sulfated proteoglycan- rich 
matrix

2. Collagen II  synthesis

Osteogenic
1. AP  stain

2. Von Kossa stain

1. AP  activity

2. Calcified matrix production

Adipogenesis:            					   
Adipogenic inductive compounds (Table 1):		
		 a)	 Glucocorticoid receptor ligands (dexamethasone),

b)	 Insulin, 

c)	 Biotin,

d)	 d-pantothenate,

e)	 Cyclic AMP agonist (forskolin) &

f)	 Equivalent Peroxisome proliferator activated receptor 
gamma agonist (PPARγ)

In response to these adipogenic induction medium, ASCs 
tend to differentiate into adipocytes.16,50-52 Within two 
weeks after placing in adipogenic medium, the ASC contain 
vacuoles filled with neutral lipid cells. The cells are fixed 
at room temperature in 4% formaldehyde/ 1% calcium 
for 60 minutes, washed with 70% ethanol, incubated in 
2% (wt/vol) Oil Red O reagent for five minutes at room 
temperature. Oil Red O stain (Table 2) is used to stain 
intracellular lipid droplets accumulation.53Excessive 
stain are removed by washing with 70% ethanol & 
counterstaining is done with hematoxylin for two minutes. 
ASCs tend to undergo morphological changes & reduce 
their proliferation rate during the differentiation. During 
differentiation, parameters including leptin, adipogenic 
mRNA like fatty acid binding protein, aP2 mRNA levels are 
increased by several hundred-fold.51,54,55

Clinical implication:
i.	 Replacement of adipose tissue
ii.	Replacement in large soft tissue defects formed due to 

trauma, burns & oncological resections.

Chondrogenesis: 
Chondrogenic induction medium (Table 1):16, 21, 56

a)	 Ascorbate, 
b)	 Dexamethasone 
c)	 Transforming growth factor-β

ASCs cells are incubated for three weeks in DMEM 
containing 1% FBS, 40mg/ml proline, 100 mg/ml 
pyruvate, 50 mM L-ascorbic acid-2-phosphate, 10 ng/
mltransforming growth factor-b3.57 The cells are then fixed 
for one hour with 4% paraformaldehyde & rinsed with PBS. 
After induction, cell condensation occurs followed by ridge 
spheroid/nodule formation by two days. Chondrogenesis 
is confirmed using the histologic stain Alcian Blue (Table 
2) at acidic pH (one& below) (pH 2.5, Wako) which stains 
sulfated proteoglycans present in cartilagenous matrices. 
Quantitation of sulfated proteoglycan levels revealed a 
time-dependent increase in cartilage-induced PLA cells 
upto two weeks of induction, followed by a slight decrease 
at three weeks. Expression of aggrecan, chondroitin 
sulphate, cartilagenous collagen type II & IV isoformsare 
suggestive of chondrogenesis. Standard hematoxylin and 
eosin staining are used to assess cellular morphological 
features of the processed lipoaspirate cell nodules (paraffin 
sections), & the presence of collagens was confirmed with 
Goldner’s trichrome stain.

Clinical implication:

i.	 Envisioning the therapies that facilitate cartilage repair

ii.	Substantial cartilage remodeling and repair

Osteogenesis: Osteogenic induction medium (Table 1): a) 
Ascorbate, b) β-glycerophosphate, c) Dexamethasone d) 
Vitamin D3. 

ASCs cells are incubated for three weeks in DMEM 
containing 10% FBS, 100 nM dexamethasone, 10 mM 
β-glycerophosphate and 50 μM L-ascorbic acid-2-
phosphate.After fixation cells are incubated with 0.16% 
naphthol AS-TR phosphate and 0.8% Fast Blue BB 
dissolved in 0.1 M Tris buffer (pH 9.0) for one hour at 37°C. 
For osteogenic differentiation, cells were also incubated 
in 1% alizarin red S for three minutes to detect calcium 
deposition.58In order to assess osteogenesis, levels of AP 
enzyme activity is determined by alkaline phosphatase 
stain &extracellular matrix calcification is quantitated 
by Von Kossa staining. To detect AP activity, cells are 
incubated in osteogenic medium for two weeks, rinsed 
with PBS, & stained with a 1% AP solution (1% naphthol 
ABSI phosphate, 1  mg/mL Fast Red TR) at 37°C for 30 min. 
For Von Kossa staining (Table 2), the cells are incubated in 
OM for four weeks, fixed with 4% paraformaldehyde for 
60 min at room  temperature, rinsed with distilled water 
&then overlaid with a 1% (wt/ vol) silver nitrate solution 
in the absence of light for 30 minutes. The cells are 
developed under UV light for 60 minutes & finally counter-
stained with 0.1% eosin in ethanol. Expression of genes 
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& proteins associated with osteoblasts phenotypes such as 
osteopontin, osteonectin, osteocalcin, collagen type I, BMP-
2 and BMP-4, CBFA-1 are suggestive of osteogenic potential 
of adipocytes stem cells.16,54 The first case of autologous ASC 
use for osseous repair has been reported in the treatment of 
a calvarial defect in a seven-year-old girl.59 A study involved 
treatment of four patients possessing large cranial defects 
with a combination of ADSCs and b-tricalcium phosphate 
granules. Computed tomography scanning subsequently 
revealed improved ossification in all of the cases.60

Myogenesis:

A.	 Skeletal muscle: Skeletal muscle myogenic medium 
(MM) (Table 1):-

a)	 0.1  mM Dexamethasone, 

b)	 50 mM Hydrocortisone, 

c)	 10% FBS 

d)	 5% Horse serum			   		
			  PLA cells, when placed in myogenic medium (MM) for 

upto six weeks, result in the expression of the multiple 
myogenic transcription factor myod1, myosin, myf6, 
myf5 & myogenin16,18 followed by fusion & the formation 
of multinucleated cells that expressed the myosin heavy 
chain.61 The expression of myogenic transcription factors 
can be confirmed by immunohistochemical staining 
&real time-PCR. Thus, skeletal myogenesis is peculiarized 
by a period of myoblast proliferation, followed by the 
expression of muscle-specific proteins and fusion to form 
multinucleated myotubules. 

B.	 Smooth muscles: Smooth muscle inductive medium 
(Table 1):-

a)	 MCDB131 supplemented with 1% FBS &

b)	 100u/ml of heparin(for upto six weeks at 37°C with 
5% CO2)

The expression of smooth muscle specific proteins like: - 
smooth muscle actin (SMA), calponin, SM22, smoothelin, 
h-caldesmon &smooth muscle myosin heavy chain 
(SMMHC)62,63 are suggestive of myogenic potential of 
adipocytes stem cells. The smooth muscle differentiation 
has effect on cell size, shape, membrane potential, 
metabolic activity & responsiveness to external signals. 

Differentiated SMCs exhibit two specific phenotypes64 
namely,

i.	 Synthetic &proliferative
ii.	 Contractile and quiescent phenotype

Contractility is an important characteristic of SMCs which 
plays role in angiogenesis, blood vessel maintenance, & 

mechanical regulation of hollow organs such as bladder. 
This property can be of value in the repair of smooth 
muscle defects in the gastrointestinal and urinary tracts..

Neurogenesis: Human ASCs also exhibit neuronal and/
or oligodendrocytic markers. The neurogenic induction 
medium include (Table 1):-DMEM enriched with 500 mM 
IBMX, 200 mM INDO, & 5 mg/ml insulin for 1 hour. PLAs in 
neurogenic medium, when express neuronal markers like:- 
S100, NF70, NSE,NeuN, MAP-2, nestin in addition to GFAP 
and GalC as markers of astrocytes and oligodendrocytes 
respectively, are suggestive of neurogenic potential of 
ASCs. It is still unclear that whether the transplanted cells 
replace the lost neurons or provide a supporting scaffold 
for existing stem cells and injured neurons. Specifically, 
these PLA cells undergo retraction,forming compact cell 
bodies with multiple extensions. Western blotting test 
confirms an increase in NSE protein upon induction while 
real time-PCR analysis confirms the expression of nestin. 
This sums up that the expression of nestin, NSE, & NeuN, 
along with absence of choline acetyltransferase, myelin-
basic protein, or GFAP expression, suggests that PLA cells 
may be capable of assuming an early neuronal or neural 
precursor phenotype.

DISCUSSION
The ultimate goal of the treatment of periodontal disease 
is the reorganization of functional tissues, predictable 
regeneration of the lost periodontal tissues and eventually 
achieving the periodontal health. The regeneration of 
periodontal tissue requires the restoration of cementum, 
periodontal ligament, and alveolar bone.65 A number 
of surgical regenerative techniques including osseous 
grafts,3-5alloplast grafts,3guided tissue regeneration 
(GTR) technique,1,3,5,6enamel matrix proteins,8-10chemical 
mediators,11 have been developed to regenerate the 
lost periodontal tissues. Although these treatment 
modalities have been widely accepted, the amount of 
tissue regenerated could not be well-predicted in cases 
of advanced periodontal defects. So, periodontal tissue 
regeneration with autologous stem cells (embryonic 
stem cells, iPS,bone marrow mesenchyme stem cells) was 
introduced for cell-based therapy in periodontal diseases. 
However, the procurement of such stem cells has its own 
potential limitations.

Till date, human adult  adipose  tissue may be the best 
suitable alternative source of mesenchyme stem cells 
which is obtainable in large quantities, under local 
anesthesia, with minimal site morbidity & patient 
discomfort. This alternative source of autologous stem 

Exploring the potential of human adipocytes Review Article



J-GMC-N | Volume 13 | Issue 01 | January-June 2020 page 73

cells contain multilineage potential to differentiate 
towards the adipogenic, osteogenic, chondrogenic, 
neurogenic & myogenic lineages with appropriate medium 
supplementation. Following induction, the differentiation 
to specific lineage can be assessed using histology & 
immunohistochemistry.

Tissue-specific scaffolds (stable supporting structures), 
signalling systems & vascularization are the major pre-
requisites for the differentiation of stem cells into the 
desired cells & use them effectively to construct the three-
dimensional (3D) tissues. Various scaffolds that can be 
used are: - collagen I (excellent cellular compatibility), 
porous collagen bead (injectable cell delivery vehicles), 
placental dermal matrix, XLHA (hyaluronan sulphate) 
incorporated in placental dermal matrix, hyaluronic acid 
gel, HFIP silk fibroin chitosan scaffold, gelatin sponges, 
monofilament polypropylene, polyglycolic acid meshes etc. 
The autologous transplantation of MSCs in combination 
with tissue engineering, such as cell sheet technology, 
has been shown to be effective for regeneration of the 
periodontium.66,67

A histological analysis after injection of ASCs+PRP 
admixture into periodontal defect showed a small 
amount of alveolar bone regeneration at 2nd& 4th weeks of 
implantation and a periodontal ligament-like structure at 
8th weeks.32 The effect of autologous MSC transplantation 
has been investigated in clinical trials for periodontal 
regeneration of healthy patients.28,68 Some studies have 
shown that the periodontal microenvironment induces 
ADMPC to secrete various factors that stimulate resident 
progenitor cells to differentiate into periodontal tissues.27

Although many clinical trials have demonstrated the 
efficacy of autologous MSC transplantation, their clinical 
application is limited by age restrictions, tissue quality and 
systemic diseases (such as diabetes mellitus, rheumatoid 
arthritis, systemic lupus erythematosus), which alters the 
intrinsic properties of MSCs and also increase the difficulty 
of isolating MSCs.69 Efficient use of allogeneic MSCs may 
be an alternative strategy that overcomes the limitations 
of autologous MSC transplantation procedures for the 
regeneration of large periodontal defects.

In recent years, evidence has supported periodontal 
regeneration by allogeneic MSC transplantation in 
periodontal defects using animal models.70 Bone-
morphometric analysis following the allogeneic 
transplantation of ADMPC in a micro-mini pig periodontal 
defect model showed a significant amount of bone 
regeneration ability. The histologic analysis showed 
a comparable regeneration potentiality of ADMPC by 

allogenicc transplantation as compared to those of 
autologous transplantation. These results indicate that 
ADMPC have immune-modulation capability that can 
induce periodontal tissue regeneration by allogeneic 
transplantation.65

CONCLUSION						    

The future  of  engineering the mesodermally derived  
tissues  from  stem  cells  is very promising  &  it definitely 
requires  a  readily  available source  of  donor  cells. 
Although further characterization of the PLA cells within 
adipose tissue is necessary, the results obtained from 
large number of studies suggest that adipose tissue may 
be another potent source of pluripotent stem cells with 
multiple germline potential.
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