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Introduction
Marburgvirus, a genus within the Filoviridae family, is the cause of 
the rare viral haemorrhagic fever known as Marburg virus disease 
(MVD). MVD is a severe and often fatal zoonotic illness comprising 
two distinct strains: the Marburg virus (MARV) and the Ravn virus 
(RAVV). MVD is an RNA-type virus that exhibits a connection to 
the Ebola virus (EBOV) but with notable distinctions.1,2 The goals 
of this review are to briefly provide background on MVD, i.e. 
structural organization of the Marburg virus, replication, clinical 
manifestations, and highlight the most recent practices for the 
treatment of MVD.

An extensive literature search was performed in PubMed, 
EMBASE, and Google Scholar. The author searched for published 
evidence from the databases using “Marburg Virus Disease”, 
“Marburg Haemorrhagic Fever,” and “Marburg Disease” as 
keywords for the review.
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The disease was first identified in 1967 during outbreaks in two 
German cities: Marburg, Frankfurt, and the Serbian capital, 
Belgrade. Since then, sporadic outbreaks have occurred in Africa, 
with the most recent outbreak reported in Uganda in 2007. (Figure1) 
The primary reservoir for MARV is believed to be Egyptian fruit 
bats, Rousettus aegyptiacus.

Abstract
Marburg virus infection is a rare, severe zoonotic illness caused 
by the Marburg virus (MARV), with the primary reservoir 
being Egyptian fruit bats. Marburgviruses have reemerged on 
multiple occasions, resulting in a very high fatality ratio of up to 
88% during the most significant outbreaks. MVD exhibits 
prominent clinical signs and symptoms such as haemorrhagic 
fever, coagulopathies, multi-organ failure in the affected 
individuals. This review provides insight into the MVD 
structure, genomic organisation, replication, clinical 
manifestations, and special emphasis on the available treatment 
strategies. Although no specific therapeutic interventions exist 
for management, supportive care like fluid administration and 
treatment of specific symptoms can improve survival rates and 
clinical outcomes. T-705 Favipiravir blocks the influenza virus's 
RNA-dependent RNA polymerase (RdRp) and suggests 
potential effectiveness in patients exhibiting lower viral loads. 
Remdesivir has shown efficacy in a study of MARV-infected 
Cynomolgus macaques; treatment improved clinical ratings, 
decreased plasma viral RNA, and boosted kidney and liver 
functions. BCX4430 Galidesivir showed 24-hour and 48-hour 
survival in animal groups after receiving the drug with no 
apparent toxicity and improved liver enzyme values.

MARV can induce significantly more severe epidemics than 
previously thought. These widespread outbreaks had a 
remarkably high mortality rate throughout a large geographical 
region, presenting substantial challenges in the field of medicine. 
High fever, haemorrhagic manifestation, organ failure, and 
coma are the prominent clinical signs of MVD. Supportive care 
and volume resuscitation are fervently recommended. 
Monoclonal antibodies and antivirals like Remdesivir and 
Favipiravir are potential treatment options; however, Galidesivir 
and Favipiravir can also be used. 
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Figure 1: MVD outbreaks in different countries, 1967-2023.

Marburg virus structure
Marburg virions exhibit pleomorphic morphology, manifesting as rod 
or ring-shaped, hexagonal, or branching structures. Cryo-electron 
microscopy analysis of pure virions revealed that infected Vero cells, 
which have a filamentous morphology, form about one-third of the 
virions. In comparison, 37% displayed a hexagonal structure, and the 
remaining were spherical.3 Although the size of MARV particles is 
significantly smaller than that of Ebola virions, the MARV genomic 
length is longer than that of EBOV.4,5 The outer membrane of the 
viral particles is obtained from the host and is adorned with 5–10 
mm-long, trimeric spiky structures, which are composed of highly 
glycosylated protein (GP) plays a key role in binding to receptive 
host cells. The ribonucleoprotein complex (nucleocapsid) which is 
located at the centre of the viral particles, comprises proteins from 
the nucleocapsid structure and the RNA genome from the MARV. 
The nucleocapsids are tubule-shaped and have diameters measuring 
45–50 nm. The central axis is encircled by a helical capsid exhibiting 
cross-striations spaced at regular intervals of 5 nm.4,5 

Genome organization
The viral genome consists of seven open reading frames (ORFs), 
specifically nucleoprotein (NP), virion protein 35 (VP35), VP40, 
VP30, VP24, GP, and big viral polymerase. These components are 
identified as single-stranded negative-sense RNA. (-ssRNA);6,7. The 
genes have exceptionally lengthy non-coding nucleotide sequences 
at their 3' and 5' ends, together with highly conserved transcription 
start and stop signals.6,7. The nucleocapsid made up of NP, VP35, 
VP30, and L, surrounds the viral genome.8

The ribonucleoprotein is surrounded by a matrix consisting 
of VP40, VP24, and a lipid envelope with surface GP spikes.9  
The determination of cell and tissue tropism, as well as virus-
cell membrane fusion, are regulated by the MARV GP protein. 
Furthermore, GP may contribute to immune evasion by neutralising 
the antiviral properties of tetherin, which is an interferon (IFN) that 
hinders viral transmission.10,11 VP40, a virulence factor, primarily 
functions to inhibit host cell responses to IFN signalling.12 VP40 
counteracts the innate immune response and is a major matrix 
protein.13 The main function of VP40 in MARV immunopathology 
is to suppress host cell responses to IFN signalling.12 It also helps in 
the budding and binding of the matrix and nucleocapsid.14 The VP35 
protein serves as a multifunctional virulence factor, aiding immune 
escape by hindering the IFN response. Additionally, it plays a crucial 
role in the synthesis of viral RNA, functioning as an RdRp. VP24, a 

protein found in the minor matrix, blocks the cellular response to 
IFN. The L protein facilitates the process of genome replication and 
transcription.11,15 The interaction between VP24 and NP plays a key 
role for the release of new virions.

Replication cycle 
Currently, most studies dealing with the replication cycle of MARV 
have utilised recombinant techniques. MARV invasion is a three-
step process: Attachment of the virus to the cell, endocytosis, and 
fusion. The replication cycle begins with the attachment of MARV 
to the cell surface molecules, which subsequently undergo caveolin-
mediated endocytosis. GP helps with attachment and viral fusion. 
The endosomal cholesterol transporter Niemann-Pick C1 (NPC1), 
which is a MARV entry receptor, helps in the fusion.16 Endosomal 
protease fragments GP1 and GP2 participate in the fusion process. 
After the release of the nucleocapsid in the cytoplasm, viral 
transcription starts.17 Cellular C-type lectins, which include ASGP-R, 
dendritic cell-specific ICAM-grabbing non-integrin (DC-SIGN), 
DC-SIGNR, human macrophage galactose-type lectin (hMGL), and 
liver sinusoidal endothelial cell lectin (LSECtin), also play a vital role 
in the process.8,18,19 Evidence suggests that macro- phagocytosis is the 
major entry pathway for EBOV20 and the other way is the trafficking 
of virions in the endocytic vesicles.21

Transcription and replication
Upon the release of the nucleocapsid inside the cytoplasm, the 
viral RNA genome undergoes transcription and replication. At 12 
hours after infection, electron microscopy investigation reveals the 
initial morphological indication of viral replication: the presence of 
granular substances in the cytoplasm which are primarily RNA and 
viral proteins. Afterwards, tubular nucleocapsids gradually appear 
in the granular structures.5 MARV transcription is in line with the 
‘stop-start’ model proposed for all different types of non-segmented 
negative-sense (NNS) RNA viruses.22 The viral polymerase enters 
the genome and starts scanning until it reaches the first gene's GS 
signal, the point of the initialization of transcription. The polymerase 
complex, placed at the top of the newly formed mRNA, moves along 
the template until it identifies a GE signal, ending the transcription 
process. A poly-A tail is added to the newly formed mRNA facilitated 
by the polymerase, and it starts searching for the next GS signal to 
start transcription.15 The newly formed nucleocapsids translocated 
to the budding site of the virus. VP40 mediates the release of the 
viral particles by budding at internal membranes and at the plasma 
membrane by using the coat protein complex II (COPII) vesicular 
transport and the endosomal sorting complex required for transport 
(ESCRT) machinery after encasing with the plasma membrane.14

Clinical sign, symptoms, complication
At present, there is a lack of clinical evidence that provides a 
comprehensive understanding of the specific illness progression and 
the underlying pathophysiological basis of Marburg haemorrhagic 
fever (MHF). Moreover, the clinical syndromes induced by 
filoviruses and their related disease severity might differ based on 
various circumstances, including the medical environment, host 
vulnerability, and the genetic makeup and virulence of the viral strain. 
Nevertheless, extensive clinical data were acquired during the initial 
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epidemic in 1967, and the subsequent outbreak in the Democratic 
Republic of Congo from 1998 to 2000 serves as the primary source 
of our current understanding of the development of MHF illness.23–25

In humans, the incubation period generally lasts between five and 
10 days (ranging from 3 to 21 days).17 Viral transmission does not 
happen during this period. The clinical course of the disease can 
be divided into three distinctive phases: the first generalised phase, 
which generally lasts 1-4 days, is associated with influenza–like 
symptoms commencing with a high fever (~40°C) accompanied 
by a severe headache, chills, myalgia, malaise anorexia, abdominal 
discomfort, severe nausea, vomiting, and diarrhoea26,27 The next 
phase is the early organ phase, consisting of days 5 to 13, which 
signifies the beginning of the severe phase of MVD. This is followed 
by the late organ or convalescence phase, which occurs at 13+ days. 
Survivors seldom exhibit the most severe symptoms of the disease 
and may never proceed to the late organ phase.28

Evidence suggests that the disease intensifies on days 5–7, i.e., the 
initial days of the early organ phase, with a prominent characteristic 
haemorrhagic manifestation such as maculopapular rash and 
petechiae, bleeding from the GI tract, and the phlebotomy sites. 
Neurological changes are seen mainly in the later stages of the 
disease, which could lead to even coma.29 Other symptoms include 
pain in the joints, uveitis, orchitis, reported during convalescence, 
inflammation of the liver, pericardium, prostration, dyspnoea, and 
poor mental health, which happens gradually.28 Sustained high fever 
associated with neurological complications, including encephalitis, 
confusion, delirium, irritability, and aggression, are seen in these 
patients.26,27,30 Multiple evidence from the outbreaks documented the 
severity of late stage of the early organ phase when multiple organs 
e.g. liver, pancreas and kidneys are affected. Prominent haemorrhagic 
manifestations such as petechiae, ecchymoses, haematoch ezia, 
melena, and hematemesis occurs at this stage. The late organ phase 
extends from day 13 until day 20 or beyond during the progression 
of the disease. During this stage, the MARV victim progresses 
to a gradually deteriorating condition, which is characterised by 
convulsions, major disruptions in metabolic pathways, widespread 
blood clotting abnormalities, failure of multiple organs, and shock. 
Significant dehydration leads to poor blood flow and anuria. 
Neurological complications include restlessness, obtundation, 
disorientation, and dementia.24 Deaths usually happen during a 
period of 8 to 16 days after the symptoms first appear.26,27

Main clinical diagnostic criteria
Controlling MHF epidemics necessitates a combination of 
identifying cases, tracking contacts, isolating patients, and utilising 
laboratory tests. The diagnosis of MARV in the early phase cannot 
be made merely only on clinical examination, as it resembles not 
only other Filovirus haemorrhagic fevers but also exhibits signs and 
symptoms comparable to other prevalent infectious diseases like 
malaria, rickettsial infections, and typhoid.31 This frequently leads 
to a significant delay in the implementation of infection control 
protocols and patient management. However, immediate isolation 
and laboratory investigations should be the primary steps to follow. 
First–line detection for MHF is based on the detection of the MARV 
RNA in clinical specimens by Reverse Transcriptase-Polymerase 
Chain Reaction (RT-PCR), or viral antigen detection by Enzyme-

Linked Immunosorbent Assay (ELISA) in whole blood and serum 
with a high sensitivity and specificity.32,33 Pan–MARV or pan–
filovirus RT–PCR assays, which utilise consensus PCR primer sets, 
able to amplify all MARV strains or a wide array of filoviruses are 
used for rapid diagnosis,34 which helps to curb the early outbreak, 
with a great advantage in epidemiological and epi-zoological 
perspective. For acute MHF diagnostics, IgG and IgM ELISA are 
frequently used by utilizing either hyperimmune serum or virus 
protein–specific (e.g., nucleoprotein) antibodies to capture MARV 
antigen31,35 IgM response implies initial stages of infection from the 
the1st week of infection and peaks during the 2nd week, whereas 
the appurtenance of virus-specific IgG is the next event.31,36 However, 
employing several distinct, responsive, and reliable diagnostic 
techniques is crucial instead of relying on a solitary test to confirm 
the diagnosis.

Treatment strategies
Supportive care
There is no specific prophylaxis as well as specific therapeutic 
interventions for managing MVD. The primary approach to 
management is the use of early and proactive supportive care 
measures, such as oral or intravenous fluid administration for 
rehydration and treatment of specific symptoms, which enhance 
overall survival rates and improve clinical outcomes significantly. 
Identifying Marburg virus illness triage is an essential initial measure 
in both disease outbreaks and solitary cases. Upon suspicion of the 
diagnosis, implementing patient isolation becomes an imperative 
initial measure to mitigate the risk of nosocomial transmission.2 
Patients with filovirus infection generally exhibit distinct variations 
in disease aetiology and clinical progression compared to those with 
other kinds of sepsis. However, it is noteworthy that patients can still 
be managed under established recommendations for severe sepsis or 
dengue care.37 Fluid resuscitation should be done for patients with 
significant gastrointestinal volume loss, and replenishment should be 
done promptly. The first assessment of vital signs will guide the initial 
course of therapy. Fluid resuscitation is mandatory when a substantial 
loss of gastrointestinal volume is observed, and close monitoring is 
vital.37,38 ≥ 5-10 L/day of intravenous or oral fluids is recommended 
for the maintenance of hemodynamic stability and replenishment 
of gastrointestinal fluid depletion.39 Intricate monitoring and 
pre-emptive correction of acid-base disturbances and electrolyte 
imbalances (e.g., potassium) can mitigate the risk of potentially 
fatal arrhythmias and metabolic complications. Treatment with 
ceftriaxone, ciprofloxacin, or ampicillin is recommended to curb the 
migration of the bacteria from the gastrointestinal tract.39,40

Immunotherapy
Combined with the anti-MARV mAb MR191, it completely 
eradicated MARV infection in NHPs. King et al. employed structural 
analysis to illustrate how the monoclonal antibody MR191, which 
has protective and therapeutic properties, interacts with the receptor-
binding region of the MVD GP. The resulting structure surpasses 
the host entry receptor NPC1 to counteract MVD. The structure 
also highlights hitherto disorganised, functionally significant areas 
of the MVD GP. The combination of the monoclonal antibodies 
(mAbs) blocks three essential phases of viral entry by inhibiting 
nonoverlapping epitopes in the GP trimer's apex and base.41 
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Figure 2: Mechanism of action of MR191 mAb41

The therapeutic antibody cocktail for pan-ebolavirus (PE) has high 
efficacy in suppressing all three pathogenic ebolaviruses that have 
caused human fatalities. The cocktail inhibits three essential steps 
of viral entry by blocking nonoverlapping epitopes situated at both 
the apex and base of the GP trimer. The combination allows for an 
anticipatory response to potential mutations that are not specific to 
attaching to particular antibodies, thus augmenting the likelihood 
of viral escape. Three antibody cocktails can prevent the viral 
transmission caused by both the ebolavirus and the Marburg virus. 
Due to the incorporation of both human and macaque components, 
the actions that elicit a response are completely carried out by the 
fully human Fc domains of these antibodies. In a rhesus macaque 
model infected with EVD, IFN-1a treatment has been demonstrated 
to increase survival.42 

IFN-2b therapy in a Cynomolgus model infected with EVD 
decreased viremia and extended the time to death. Five naive 
rhesus macaques were given an intramuscular injection of the 
MARV with a target dosage of 1,000 pfu. Within 15 to 30 minutes, 
MARV-specific immunoglobulin G (IgG) therapy was started in the 
three experimental macaques. The other two macaques received 
either a phosphate-buffered saline (PBS) solution or non-specific 
fractionated IgG as a therapy as part of the control group. Four and 
eight days following the challenge, further treatment dosages were 
administered. The control macaques died with the characteristic 
symptoms of filovirus haemorrhagic fever, but the MARV-specific 
IgG provided 100% protection with no illness or detectable viremia. 
A re-challenge with Marburg exhibited complete protection 77 
days later. In another study, the first dosage was administered 
intravenously 48 hours after the challenge, and the next doses were 
administered on days 4 and 8. Despite one animal suffering a little 
illness, all three animals survived.43

Antiviral therapy
Galidesivir
Cynomolgus macaques, which are infected with wild-type MARV 
(Musoke variant) obtained from humans, are given intramuscular 
15 mg kg−1 BCX4430 twice daily, beginning 1–48 hours post-
infection, for two weeks. The virus-inoculated controls were dead 
by day 12, with the signs and symptoms of filovirus infections 
reflected in raised hepatic markers, e.g., aspartate aminotransferase 
and bilirubin, with subsequent higher levels of prothrombin time 
(PT) and activated partial thromboplastin time (aPTT). Macaques 
administered with BCX4430 beginning 24 or 48 hours post-infection 
survived. 83% of animals survived with BCX4430 beginning 1 hour 
after MVD infection.44 BCX4430 treatment significantly diminished 
the viral load without inducing type I IFN responses, as seen in c3-
Npc A in mice.45

Favipiravir
T-705 Favipiravir is a guanidine nucleoside analogue that works 
against many RNA viruses. It blocks the RdRP of the influenza virus. 
The initial studies showcased the effectiveness of mouse models 
against EBOV and sparked considerable interest in their potential 
use during the MVD outbreak in West Africa. The outcomes of 
a large-scale Guinea study (JIKI) yielded ambiguous findings, 
albeit suggesting potential effectiveness in patients exhibiting a 
lower viral load (Ct value 20).46 The trial used historical controls, 
but a Guinea study showed a better survival rate in the treatment 
group without statistical significance except for its influence on 
survival time.47 Intravenous administration of Favipiravir to six 
Cynomolgus macaques twice a day for 2 weeks, beginning on Day 1 
of the challenge, with 1000 PFUs of MVD, showed that five animals 
survived. Oral dosage had not demonstrated any medical efficacy.48

Therapeutic efficacy was observed when MARV-infected nonhuman 
primates were treated with remdesivir (GS-5734). 83% of the 
Cynomolgus macaques treated with remdesivir with a loading 
dosage of 10 mg/kg, and 50% of the 5 mg/kg survived. Compared 
to vehicle-control mice, animals treated with remdesivir showed 
improved clinical ratings, a decreased viral RNA load, and enhanced 
renal, hepatic, and coagulopathy function indicators. Remdesivir is 
a prodrug of an adenosine analogue, a widely used broad-spectrum 
antiviral drug. Profound efficacy of antiviral activity against 
respiratory syncytial virus, SARS-CoV, MERS-CoV, and other 
coronaviruses, as well as paramyxoviruses. The drug is currently 
in use for EVD in NHPs. Treatment with Remdesivir (OD, 5 mg 
or 10 mg for 12 days) showed improved health in MVD-exposed 
Cynomolgus macaques 4-5 days after treatment. Survival rates with 
double doses are promising: 50% and 83%.49 Jacobs et al. reported that 
an MVD-infected nurse treated with remdesivir had convalesced. 
However, the patient suffered from meningoencephalitis.50 The viral 
load was higher in cerebrospinal fluid (CSF) than in blood, and a 
high dose of steroid therapy reduced the virus load to undetectable 
levels. A preterm baby delivered by an Ebola-infected pregnant 
lady also received remdesivir. The baby received ZMapp (a cocktail 
of monoclonal antibodies) along with leukocytes and survived the 
treatment.51 Treating MVD-affected macaques with a combination 
of MR186-YTE and remdesivir starting at 6 days post-infection (dpi) 
protected them significantly (80%), which extended the therapeutic 
window.52

Treatment for the children
Healthcare professionals or paediatricians should provide supportive 
care and volume resuscitation for afflicted children. In the West 
Africa Ebola outbreak from 2014 to 2016, robust parenteral fluid 
resuscitation and widespread use of oral rehydration solutions 
were encouraged, which can be followed in the present outbreak. 
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Particularly for "wet" individuals with complications such as 
active vomiting or diarrhoea, intravenous fluid delivery is more 
desirable. Children who cannot tolerate an intravenous route might 
be prioritised for intra-osseous and subcutaneous routes. Using 
pre-packaged or readily available therapeutic food and treating 
undernourished children in accordance with malnutrition guidelines 
should be a top priority. Clinical expertise and scant evidence-based 
guidelines serve as the foundation for treatment recommendations.53

Conclusion
Recent outbreaks have demonstrated that MARV can cause far more 
severe outbreaks than previously believed. These major outbreaks 
exhibited extremely high fatality rates within a broader geographic 
area and posed significant clinical hurdles. The extensive research 
carried out in this work provides insight into the intricate genetic 
makeup, replication of MV, clinical manifestations, diagnosis, 
and treatment strategies. Our understanding of the MARV 
pathophysiology and treatment strategies relies substantially on 
early case reports and analogies to EBOV.  The primary approach 
to managing MVD is to use early and proactive supportive care 
measures, such as oral or intravenous fluid administration, 
rehydration, and treatment of specific symptoms. Fluid resuscitation 
is mandatory when a substantial loss of gastrointestinal volume is 
observed, and close monitoring is vital. Antibody treatments show 
great potential for preventing, treating, and providing therapeutic 
treatment for MVD. Anti-viral therapies with mAbs, FVM04, 
and CA45 protect NHPs. Galidesivir, Favipiravir and Remdesivir 
results are promising for MVD treatment. The therapeutic options 
would significantly improve future MHF outbreaks and infections. 
The insights from previous epidemics highlight the significance 
of readiness, cooperation, and ingenuity in tackling this recurrent 
threat. By implementing coordinated endeavours, we can anticipate 
preventing future MV outbreaks and reducing their impact on 
human lives.
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