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1 Introduction and preliminaries

In mathematics,quantum calculus is the study of the classical calculus without the notion of limit

and it is also known as q-calculus , where q is a parameter 0 < q < 1. In q - calculus we obtain

mathematical expression in terms of q and whenever q → 1 it again reduces to the original

form. The history of q-calculus traced back to the Euler (1707- 1783), who first introduced

the q-calculus to deal Newton’s work of infinite series. In the twentieth century Jackson [3]

was the first mathematician who started the systematic study of q- calculus and introduced

q-definite integral .Hermite- Hadamard investigated one of the fundamental inequalities for a

convex function in analysis, that is

f
(a+ b

2

)

≤
1

(b− a)

∫

b

a

f(x)dx ≤
f(a) + f(b)

2
(1)

which is known as Hermite-Hadamard inequality. For the first time, in [7], Tariboon and

Ntouyas investigated the q-analogue several of classical integral inequalities, from which they
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obtained the q-analogue of Hermite - Hadamard inequality. But their finding was not compat-

ible for q ∈ (0, 1) for the left hand side, was proved in [1] by Alp et.al by giving a counter

example and proved the correct q- Hermite Hadamard inequality. Recently, many extensions

were given with the use of convex functions by several researcher. In 2020 years, the inves-

tigation on q- Hermite -Hadamard inequality for general convex functions has been done and

several extensions and variants have been developed .

The purpose of this paper is to present the q- calculus analogue of Hermite-Hadamard inequal-

ities for sevral Godunova -Levin class of function in finite interval [a, b].

We now present some notations and definitions from the q-calculus, which are necessary for

understanding this paper. Let J := [a, b] ⊂ R be an interval and q be a constant with 0 < q < 1.

Definition 1. [6] The q-derivative of a continuous function f : J → R at x is defined as:

aDqf(x) =
f(x)− f(qx+ (1− q)a)

(1− q)(x− a)
; for x 6= a (2)

For x = a it is defined as

aDqf(a) = lim
x→a

aDqf(x)

If aDqf(x) exists for all x ∈ J , then f is q- differentiable on J. Moreover, if a = 0, then 2

reduces to

0Dqf(x) = Dqf(x) =
f(x)− f(qx)

(1− q)x
; x 6= 0

For more details, see [4]

The higher -order q-derivatives of functions on J are also defined.

Definition 2. [6] For a continuous function f : J → R, the second - order derivative of f on J,

if aDqf is q- differentiable on J, denoted by aD
2

qf and defined by

aD
2

qf = aDq(aDq)f

Similarly, nth order q- derivative aD
n
q f can be defined on J, provided that aD

n−1
q f is defined

on J.

Definition 3. [6] Let f : J → R be a continuous function. Then the q-definite integral on J is

represented as

∫ x

a

f(t) adqt = (1− q)(x− a)
∞∑
n=0

qnf(qnx+ (1− q)a) ; for x ∈ J. (3)
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If a=0 in 3 , it reduces to the classical q-integral called Jackson’s q-integral on [0, x] delineated

as

∫

x

0

f(t) 0dqt =

∫

x

0

f(t) dqt = (1− q)x
∞
∑

n=0

qnf(qn) ; for x ∈ [0,∞) (4)

Theorem 1. [6] Assume that function f : J → R is continuous. Then, we have the following

(i) aDq

∫

x

a
f(t) adqt = f(x)− f(a) ;

(ii)
∫

x

c aDqf(t) adqt = f(x)− f(c) for c ∈ (a, x)

Theorem 2. [6] Let functions f, g : J → R be continuous and k ∈ R. Then we have the

following

(i)
∫

x

a
[f(t) + g(t)] adqt =

∫

x

a
f(t) adqt+

∫

x

a
g(t) adqt ;

(ii)
∫

x

a
(kf)(t) adqt = k

∫

x

a
f(t) adqt ;

(iii)
∫

x

a
f(t) aDqg(t) adqt = (fg)|x

c
−
∫

x

c
g(qt+ (1− q)a) aDqf(t) adqt for c ∈ (a, x)

The proofs of fundamental theorem on integral calculus , linear property and integration by

parts in Theorems 1 and 2, see [6].

Definition 4. [7] For α ∈ R− {−1}, the definite q- integral is given by

∫

x

a

(t− a)α adqt =
( 1− q

1− qα+1

)

(x− a)α+1 (5)

From this one can write
∫

x

0

tα 0dqt =
( 1− q

1− qα+1

)

xα+1 (6)

Definition 5 (Godunova class of function Q(I)). [2] A mapping f : I → R is said to belongs

to Q(I) class of function if it is non- negative and for all x, y ∈ I and λ ∈ (0, 1) satisfies the

inequality

f
(

λx+ (1− λ)y
)

≤
f(x)

λ
+

f(y)

1− λ
(7)

Definition 6 (Godunova class of function P(I)). [2] A function f : I → R is said to belong

to Godunova -Levin type P(I) class of function if it is non- negative and for all x, y ∈ I and

λ ∈ [0, 1] satisfies the inequality

f
(

λx+ (1− λ)y
)

≤ f(x) + f(y) (8)
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Definition 7 (s-Godunova-Levin class of function Qs(C)). [5] A function f : C ⊂ X → [0,∞)

is said to be s-Godunova -Levin type wity x ∈ [0, 1], if

f
(

tx+ (1− t)y
)

≤
1

ts
f(x) +

1

(1− t)s
f(y) (9)

for all t ∈ (0, 1) and x, y ∈ C where C is a convex set in linear space X. This class of function

is denoted by Qs(C).

Theorem 3. [2] Let f ∈ Q(I), a, b ∈ I with a < b and f ∈ L1[a, b].Then one has the inequali-

ties

f
(a+ b

2

)

≤
4

b− a

∫ b

a

f(x)dx (10)

and

1

b− a

∫ b

a

p(x)f(x)dx ≤
f(a) + f(b)

2
(11)

where p(x) =
(b− x)(x− a)

(b− a)2
, x ∈ [a, b]. The constant in 10 is the best possible.

Theorem 4. [2] Let f ∈ P (I), a, b ∈ I with a < b and f is integrable in [a, b]

f
(a+ b

2

)

≤
2

b− a

∫ b

a

f(x)dx ≤ 2
(

f(a) + f(b)
)

(12)

Theorem 5. [5] Let f ∈ Qs(C) with a < b and f ∈ L1[a, b], C= [a,b] , s ∈ [0, 1] then one has

the inequalities

f
(a+ b

2

)

≤
2s+1

(b− a)

∫ b

a

f(x)dx (13)

1

b− a

∫ b

a

f(x)dx ≤
f(a) + f(b)

1− s
; s ∈ [0, 1) (14)

2 Main results

Theorem 6 (q-analogue of theorem 3). Let f ∈ Q(I), a, b ∈ I with a < b , 0 < q < 1 and f is

integrable in [a,b].Then one has the inequalities

f
(a+ b

2

)

≤
4

b− a

∫ b

a

f(x)adqx (15)
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and

1

b− a

∫ b

a

p(x)f(x) adqx ≤
f(a) + f(b)

2
(16)

where p(x) =
(b− x)(x− a)

(b− a)2
, x ∈ [a, b]. The constant in 15 is the best possible.

Proof. Since f(x) ∈ Q(I).We have for all x, y ∈ I with λ = 1

2
and using 7

2
(

f(x) + f(y)
)

≥ f
(x+ y

2

)

Let x = ta+ (1− t)b and y = (1− t)a+ tb for t ∈ [0, 1].

Then

2
[

f
(

ta+ (1− t)b
)

+ f
(

(1− t)a+ tb
)]

≥ f
(a+ b

2

)

(17)

Now, q-integrating over t in [0,1].

2

∫

1

0

f
(

ta+ (1− t)b
)

0dqt+ 2

∫

1

0

f
(

(1− t)a+ tb
)

0dqt ≥

∫

1

0

f
(a+ b

2

)

0dqt (18)

Now

∫

1

0

f
(

ta+ (1− t)b
)

0dqt = (1− q)(1− 0)
∞
∑

n=0

qnf
(

qna+ (1− qn)b
)

= (1− q)
∞
∑

n=0

qnf
(

qna+ (1− qn)b
)

= (1− q)
(b− a)

(b− a)

∞
∑

n=0

qnf
(

qna+ (1− qn)b
)

=
1

(b− a)

∫ b

a

f(x) adqx (19)

But,
∫

1

0

f
(

ta+ (1− t)b
)

0dqt =

∫

1

0

f
(

(1− t)a+ tb
)

0dqt

Again,
∫

1

0

0dqt = (1− q)(1− 0)
∞
∑

n=0

qn · 1

= (1− q)(1 + q + q2 + q3 + · · · )

= (1− q)
1

(1− q)

= 1 (20)
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Using above results, one can get

2

(b− a)

∫ b

a

f(x) adqt+
2

(b− a)

∫ b

a

f(x) adqt ≥ f(
a+ b

2
)

∴ f
(a+ b

2

)

≤
4

(b− a)

∫ b

a

f(x) adqt (21)

This completes the first inequality and the number 4 is the best.

Again, Since f ∈ Q(I), for all a, b ∈ I and λ ∈ [0, 1] we have by definition

λ(1− λ)f(λa+ (1− λ)b) ≤ (1− λ)f(a) + λf(b)

and

λ(1− λ)f((1− λ)a+ λb) ≤ λf(a) + (1− λ)f(b)

Adding and q- integrating over λ ∈ [0, 1]

∫

1

0

λ(1− λ)f(λa+ (1− λ)b) 0dqλ+

∫

1

0

λ(1− λ)f((1− λ)a+ λb) 0dqλ ≤

∫

1

0

(f(a) + f(b)) 0dqλ

Now,
∫

1

0

λ(1− λ)f((1− λ)a+ λb) 0dqλ

Let x = (1− λ)a+ λb

q-differentiate with respect to λ, then we get

0Dqx = −a+ b

0Dqx = b− a

0dqx

0dqλ
= b− a

∴

1

b− a
0dqx = 0dqλ

As λ = 0, then x = a and as λ = 1, then x = b

And

x = (1− λ)a+ λb

= a− λa+ λb

x− a = (b− a)λ

∴ λ =
(x− a

b− a

)
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Again,

1− λ = 1−
x− a

b− a

1− λ =
(b− x

b− a

)

So,

∫

1

0

λ(1− λ)f((1− λ)a+ λb) 0dqλ =
1

b− a

∫ b

a

(x− a)(b− x)

(b− a)2
f(x) adqx (22)

Similarly one can get

∫

1

0

λ(1− λ)f(λ)a+ (1− λ)b) 0dqλ =
1

b− a

∫ b

a

(x− a)(b− x)

(b− a)2
f(x) adqx (23)

Hence we have all together

2

b− a

∫ b

a

(x− a)(b− x)

(b− a)2
f(x) adqx ≤

∫

1

0

(f(a) + f(b)) 0dqλ

∴

1

b− a

∫ b

a

(x− a)(b− x)

(b− a)2
f(x) adqx ≤

f(a) + f(b)

2

This proves the second inequality.

Remarks 1. Hermite Hadmard type inequality for the functions in Q(I) are same for q-integral

and Riemann integrals. But in this case the result is more sharp in Q(I)space for q-Hadamard

inequality.

Now we give an q- analogue of 12

Theorem 7. Let f ∈ P (I), a, b ∈ I with a < b, 0 < q < 1 and f is integrable in [a, b]

f
(a+ b

2

)

≤
2

b− a

∫ b

a

f(x)adqx ≤ 2
(

f(a) + f(b)
)

(24)

Proof. As, f : I → R belongs to P(I) class, so for all x, y ∈ Iand λ ∈ [0, 1], we have

f
(

λx+ (1− λ)y
)

≤ f(x) + f(y) (25)

Let

x = at+ (1− t)b

y = (1− t)a+ tb
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and λ = 1

2
one can get

f
(a+ b

2

)

≤ f
(

at+ (1− t)b
)

+ f
(

(1− t)a+ tb
)

(26)

q- integrating over t ∈ [0, 1], we get

∫

1

0

f
(a+ b

2

)

0dqt ≤

∫

1

0

f
(

at+ (1− t)b
)

0dqt+

∫

1

0

f
(

(1− t)a+ tb
)

0dqt (27)

From 19 and 20 the equation 27 becomes

f
(a+ b

2

)

≤
1

b− a

∫ b

a

f(x)adqx+
1

b− a

∫ b

a

f(x)adqx

f
(a+ b

2

)

≤
2

b− a

∫ b

a

f(x)adqx (28)

Again, Let x = a and y = b then from 32 one can have

f
(

aλ+ (1− λ)b
)

≤ f(a) + f(b)

Now, q-integrating over λ ∈ [0, 1], we get

∫

1

0

f
(

aλ+ (1− λ)b
)

0dqλ ≤

∫

1

0

f(a)0dqλ+

∫

1

0

f(b)0dqλ (29)

Let us compute the integral in 29

∫

1

0

f
(

aλ+ (1− λ)b
)

0dqλ = (1− q)(1− 0)
∞
∑

n=0

qnf
(

aqn + (1− qn)b
)

= (1− q)
∞
∑

n=0

qnf
(

aqn + (1− qn)b
)

= (1− q)
(b− a)

(b− a)

∞
∑

n=0

qnf
(

aqn + (1− qn)b
)

=
1

(b− a)

∫ b

a

f(x)adqx (30)

Using 30 and 20 in 29 one can get
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1

(b− a)

∫ b

a

f(x)adqx ≤
(

f(a) + f(b)
)

⇒
2

(b− a)

∫ b

a

f(x)adqx ≤ 2
(

f(a) + f(b)
)

(31)

So combining 28 and 31 we can get the result.

f
(a+ b

2

)

≤
2

b− a

∫ b

a

f(x)adqx ≤ 2
(

f(a) + f(b)
)

(32)

Remarks 2. As q → 1, then 32 reduces to 12.

Theorem 8 (q-analogue of theorem 5 ). Let f ∈ Qs(C) with a < b and f is integrable in [a, b],

C= [a,b], 0 < q < 1 and s ∈ [0, 1] then one has the inequalities

f
(a+ b

2

)

≤
2s+1

(b− a)

∫ b

a

f(x)adqx (33)

1

b− a

∫ b

a

f(x)adqdx ≤
1− q

1− q−s+1

(

f(a) + f(b)
)

; s ∈ [0, 1) (34)

Proof. Since f ∈ Qs(C), we have for all x,y in C with t = 1

2

f
(x+ y

2

)

≤ 2sf(x) + 2sf(y)

f
(x+ y

2

)

≤ 2s
(

f(x) + f(y)
)

(35)

Let

x = at+ (1− t)b

y = (1− t)a+ tb

Then 35 gives

f
(a+ b

2

)

≤ 2s
[

f
(

ta+ (1− t)b
)

+ f
(

(1− t)a+ tb
)]

(36)

q-integrating 36 over t ∈ [0, 1], we get

∫

1

0

f
(a+ b

2

)

0dqt ≤ 2s
[

∫

1

0

f
(

ta+ (1− t)b
)

0dqt+

∫

1

0

f
(

(1− t)a+ tb
)

0dqt
]

(37)
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Now,

∫

1

0

f
(

at+ (1− t)b
)

0dqt = (1− q)(1− 0)
∞
∑

n=0

qnf
(

aqn + (1− qn)b
)

= (1− q)
∞
∑

n=0

qnf
(

aqn + (1− qn)b
)

= (1− q)
(b− a)

(b− a)

∞
∑

n=0

qnf
(

aqn + (1− qn)b
)

=
1

(b− a)

∫ b

a

f(x)adqx (38)

Also,

∫

1

0

0dqt = (1− q)(1− 0)
∞
∑

n=0

qn · 1

= (1− q)(1 + q + q2 + q3 + · · · )

= (1− q)
1

(1− q)

= 1 (39)

So, using 38 and 39 in 37 we get

f
(a+ b

2

)

≤ 2s
[ 1

(b− a)

∫ b

a

f(x)adqx+
1

(b− a)

∫ b

a

f(x)adqx
]

= 2s × 2
1

(b− a)

∫ b

a

f(x)adqx

=
2s+1

(b− a)

∫ b

a

f(x)adqx (40)

So, this proofs first inequality 33

Now we prove the next inequality

As f ∈ Qs(C), we have

f
(

ta+ (1− t)b
)

≤
f(a)

ts
+

1

(1− t)s
f(b)

f
(

ta+ (1− t)b
)

≤ t−sf(a) + (1− t)−sf(b)

q-integrating over t ∈ [0, 1] we get
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∫ 1

0

f
(

ta+ (1− t)b
)

0dqt ≤
∫ 1

0

t−sf(a)0dqt+

∫ 1

0

(1− t)−sf(b)0dqt (41)

Now,

∫ 1

0

t−s0dqt = (1− q)
∞
∑

n=0

qn(qn)−s

= (1− q)
∞
∑

n=0

qn(q)−ns

= (1− q)
∞
∑

n=0

qn(−s+1)

= (1− q)×
1

1− q(−s+1)

=
1− q

1− q(−s+1)
; s ∈ (0, 1) (42)

Expression 33 is valid for our calculation in usual integration. For

Take s = 1
2

∫ 1

0

t−
1

2dt =
[ t−1/2+1

−1/2 + 1

]1

0

= 2
(√

t
)1

0

= 2 (43)

Again

∫ 1

0

t−s0dt =
1− q

1− q−s+1
(44)

As q → 1 the right hand side of equation 44 is also 2. For, Using L’Hospital rule.

lim
q→1

1− q

1− q−s+1
= lim

q→1

0− 1

1− (−s+ 1)q−s+1−1

= lim
q→1

−1
1− (−s+ 1)q−s

= lim
q→1

−1
(s− 1)q−s

=
1

1− s
(45)

Jacem, Vol.9, 2024   Some q-Analogues of Hermite-Hadamard Type Integral Inequalities for the Godunova-Levin and 

    s-Godunova -Levin class of Functions



284 Jacem

As s = 1

2
then

lim
q→1

1− q

1− q−s+1
=

1

1− 1/2

= 2 (46)

Similarly one we can find

∫

1

0

(1− t)−s0dqt =
1− q

1− q−s+1
(47)

From 41 and using above stuffs one can get

∫

1

0

f
(

ta+ (1− t)b
)

0dqt ≤

∫

1

0

t−sf(a)0dqt+

∫

1

0

(1− t)−sf(b)0dqt

1

(b− a)

∫ b

a

f(x)adqx ≤ f(a)
( 1− q

1− q−s+1

)

+ f(b)
( 1− q

1− q−s+1

)

=
( 1− q

1− q−s+1

)(

f(a) + f(b)
)

∴

1

(b− a)

∫ b

a

f(x)adqx ≤
( 1− q

1− q−s+1

)(

f(a) + f(b)
)

(48)

This completes the proof.

Remarks 3. As q → 1, then 48 reduces to 14

Remarks 4. Combining 33 and 34 one can get the following inequality.
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