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Abstract 

Current methods for reconstructing 3D faces from regular images have some problems. They struggle to create realistic 
animated faces because they don’t account for how wrinkles change with different expressions. They also have trouble 
working with images taken in real-world conditions as images are likely to be occluded and exposed to extreme condition. 
A new approach is implemented that can predict the shape of a face in 3D which has been blocked by different factor like 
hand, eye glass, mask etc. Context based learning knowledge distillation is used to transfer the knowledge from main DECA 
model to learner model. The learner model is also trained to handle different occlusion thus helping in constructing 3D 
faces. This is done from normal pictures without needing special 3D information and it works really well, producing accurate 
results. It achieves state-of-the-art shape reconstruction accuracy on NoW benchmarks.
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1. Introduction 

Three-dimensional (3D) face reconstruction from monocular images is a key focus in computer 
vision, with applications ranging from virtual reality to facial recognition. Despite significant 
advancements, current techniques still struggle with capturing intricate geometric details, particularly 
in handling facial expressions and occlusions. Two primary approaches have been developed [1]: one 
prioritizes high-detail 3D models for accurate recognition, but these models falter when the face is 
partially covered or the image is challenging. The other approach emphasizes robustness across 
varying conditions, such as angled views or hidden facial features, but sacrifices some level of detail. 

Over the past two decades, advances have leveraged pre-computed 3D face models and neural 
network-based approaches [3], including Convolutional Neural Networks (CNNs) and Generative 
Adversarial Networks (GANs). However, these methods often fail with occluded or uniquely 
illuminated images, sometimes producing unrealistic "ghost-like" reconstructions. A persistent 
challenge remains in accurately reconstructing fine details like expression-dependent wrinkles, which 
are crucial for realistic emotion depiction. 

Addressing occlusions and refining the balance between flexibility and detail in 3D reconstructions 
is an ongoing research challenge. Future directions include developing models that better handle 
occlusions, possibly through context-based learning, to improve the realism and fidelity of 
reconstructed facial models. 

2. Literature Review 

Existing 3D face reconstruction methods often struggle to animate faces realistically due to challenges 
in capturing expression-dependent wrinkles and adapting to real-world conditions. DECA [1] 
improves on this by using a low-dimensional representation to predict face details, including 
wrinkles, from a single image, achieving state-of-the-art accuracy. However, it struggles with low-
resolution images and lacks exposure to diverse conditions like varying illumination and occlusions. 
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V. Blanz’s et. al [2], method focuses on face recognition under different angles and lighting but falters 
with occlusions. [3] Technique excels in capturing fine details during complex expressions but also 
faces challenges with realism. 

Deep learning methods for 3D face reconstruction often struggle due to limited training data with 
accurate 3D shape information. Y. Deng et al. [4] address this with a hybrid loss function and multi-
image reconstruction, improving accuracy and handling occlusions. Z.-H. Feng et al. [5] focus on 
evaluating reconstruction accuracy using a benchmark dataset but lack occluded images. 

Ensemble learning, where multiple models are trained and averaged, enhances machine learning 
performance but is computationally intensive. Caruana et al. [6] and Hinton et al. [3] propose 
compressing ensemble knowledge into a single model, improving efficiency. Hinton’s approach also 
introduces a novel ensemble of full and specialist models for better accuracy. In 3D face 
reconstruction, Tiwari et al. [7] address challenges with occlusions using a context-learning-based 
distillation technique. Their model, trained on occluded images, significantly improves landmark 
accuracy but struggles with capturing fine geometric details like wrinkles and moles. This research 
advances 3D facial reconstruction, particularly in occluded scenarios. 

Estimating 3D face shape from a single image is challenging due to factors like lighting, pose, and 
occlusions. Sanyal et al. [8] introduced RingNet, which infers 3D shape by leveraging multiple 
images and detected facial features, using a loss function that ensures consistency across images of 
the same person. RingNet, evaluated with the new NoW dataset, outperforms methods needing 3D 
supervision but lacks 2D ear detection and full body reconstruction. Kao et al.'s [9] Perspective 
Network (PerspNet) tackles challenges of perspective projection by estimating 3D shapes and 6 
Degrees of Freedom (6DoF) pose, showing significant improvements in accuracy and application for 
VR/AR. 

3. Methodology

3.1 Dataset preparation

For the training of both the learner and teacher (DECA) models, the CelebA dataset released by 
Tensorflow [10] has been utilized. The choice of this balanced dataset, encompassing around 181,000 
images, has been made to serve as the training data for the models. A subset, constituting 
approximately a quarter of the total images, has been extracted from this extensive dataset. 

3.2 Augmentation and Validation

Building on H. Tiwari et al.'s [7] approach, a new dataset of 45,000 images with various occlusions 
was created by introducing arbitrary pixel values to face images. This dataset helps validate models 
by comparing landmarks between clear and occluded images, revealing discrepancies from arbitrary 
pixels. The dataset's diverse occlusion scenarios aim to enhance model robustness in handling real-
world occluded images. It prevents model bias by using global context rather than local pixel values. 
During training, the DECA model processes clear images, while the Learner model works with 
occluded versions of the same images, improving adaptability to occlusions. 
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3.3 Training Network 

The Learner model is founded on context-based learning knowledge distillation. The training 
framework for the Learner model is illustrated in the figure below. In this framework, the DECA 
model functions as the teacher model, while the Learner model serves as the student model for the 
process of knowledge distillation. 

   

DECA [1] is a pre-trained model designed to generate UV displacement maps using a compact latent 
representation, capturing individual-specific details and common expressions. It forecasts various 
parameters such as details, shape, color, expressions, posture, and lighting from a single image, and is 
trained on in-the-wild images without paired 3D supervision using datasets like VGGFace2, BUPT-
Balancedface, and VoxCeleb2. The ResNet-50 model serves as DECA’s backbone, featuring a fully-
connected layer with 236 nodes for coarse reconstruction and 128 nodes for detailed reconstruction. 
The DECA model’s weights are frozen during Learner model training. 

The determination of the output connection of the ResNet model is as follows:  

� = ResNet(�) 

The Learner model, utilizing ResNet-50, processes occluded or unoccluded input images to generate 
coefficients for a 3D Morphable Model (3DMM) using the FLAME model. The ResNet-50’s 
classification layer is expanded to 257 nodes to match the 3DMM coefficients. Adjustments have been 
made to the fully-connected classification layer of the ResNet-50 by expanding it to encompass 257 

Figure 1:  Sample dataset with clear image and occluded image of 
same person

Figure 2: Training Network 
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nodes, corresponding to the coefficients represented as v ���. The equation below expresses the 
relationship:  

v(�) = (I, �) 

 where � signifies the network weight. 

The training involves knowledge distillation, where the Learner model aims to replicate the DECA 
model’s coefficients for occluded images, using Mean Squared Error (MSE) loss to minimize 
differences between predicted coefficients. This approach enhances the Learner model's robustness and 
contextual learning capabilities, addressing occlusion challenges effectively. 

The MSE loss, shown in below equation, quantifies this comparison. The equation is defined as follows:  

where M represents the number of elements in the vector c, and in this particular case, M equals 257. 
Also c = ( � − v) The symbols � and v stand for the labels predicted by the trainer and the learner 
models, respectively. 

3.4 System Block Diagram 

           
   

The model accepts a 2D input image with dimensions of 224 x 224 pixels. Upon training, the Learner 
model is capable of processing a single image—whether occluded or clear—and generating a 3D model 
with intricate facial geometry. This model captures fine details such as wrinkles, contours, and texture. 
The detailed 3D face model within the Learner enables animation by adjusting parameters related to 
facial expressions and jaw pose, as described in [18]. This statistical model facilitates the creation of a 
3D face from features extracted from the 2D input image. It not only reconstructs a highly detailed 3D 
face but also allows for the manipulation of facial expressions to produce realistic animations, 
preserving the individual's unique facial characteristics.  

Figure 3: System Block Diagram 
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4. Result and Discussion 
4.1 Qualitative comparisons
                            

Figure 4: a) Original Occluded Image b) Output from DECA c) Learner model d) 3DDFA V2 e) 
MGC Net

As indicated in the preceding comparison, the presence of occlusion, particularly involving a hand, is 
observed in the image. DECA [1] and other conventional methods demonstrate a limited capacity to 
effectively manage occlusions within the image. Consequently, these methods attempt to infer and 
complete the occluded portions, leading to less convincing results. In contrast, the Learner model is 
specifically trained to address occlusions. As a result, it leverages the acquired knowledge during 
training to accurately fill the occluded regions, yielding more compelling and reliable outcomes. 

4.2 Quantitative Evaluation 

The NoW challenge, established in the 2019 study by Sanyal et al. [8], serves as a benchmark task for 
evaluating 3D face reconstruction algorithms. This dataset comprises 2,054 face images from 100 
distinct individuals, organized into a validation set with 20 individuals and a test set with 80 individuals. 
Each individual has an associated reference 3D face scan. 

The dataset encompasses a diverse array of conditions, including indoor and outdoor environments, 
various facial expressions (both neutral and expressive), partially obscured faces, and multiple viewing 
angles ranging from frontal to side profile. To assess algorithm performance, a standardized evaluation 
process is employed, which involves computing the distance between all vertices in the reference 3D 
scans and their corresponding points on the reconstructed 3D mesh surface. 

         Figure 5: Cumulative Error Plot 
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5. Conclusion  

In conclusion, this work has delved into the intricate realm of 3D face reconstruction from occluded 
images, addressing the formidable challenges posed by partial or full obstructions in facial data. The 
exploration encompassed diverse methodologies, including context-learning-based distillation 
approaches, the synthesis of artificial occlusion-based datasets, and the utilization of deep learning for 
accurate facial geometry extraction. Motivated by the need for robustness against occlusions, the 
proposed models exhibited promising results, showcasing advancements in landmark accuracy and 
robust network training. As we move forward, the strategies developed in this work pave the way for 
enhanced 3D face reconstruction methodologies, offering valuable contributions to the broader 
landscape of computer vision and biometrics. 

6. Suggestion And Recommendation 

While the model has demonstrated success in effectively addressing occlusion within input 2D images, 
there remains room for enhancement, particularly in handling extreme poses and expressions. Notably, 
the current work does not explicitly incorporate a model for facial hair, causing skin tone to influence 
the lighting model and attributing facial hair effects to shape deformations. To further refine the model’s 
capabilities, the inclusion of more diverse datasets featuring in-the-wild images can expose it to a 
broader range of variations during training. However, it’s crucial to address challenges related to 
extreme occlusions, which are not currently handled optimally by the existing method. Additionally, 
the training dataset’s incorporation of numerous low-resolution images contributes to robustness but 
may introduce undesired noise. Exploring strategies to mitigate these limitations will be essential for 
advancing the model’s overall performance and applicability.

Table 1:  Reconstruction error on the NoW [Sanyal et al. 2019] benchmark.
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