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Abstract

Current methods for reconstructing 3D faces fronulagimages have some problems. They struggle @temrealistic
animated faces because they don’t account for hdnklegs change with different expressions. They &lawe trouble
working with images taken in real-world conditicassimages are likely to be occluded and exposedtteme condition.
A new approach is implemented that can predicstiepe of a face in 3D which has been blocked bigréift factor like
hand, eye glass, mask etc. Context based learnowl&dge distillation is used to transfer the knowlkeffom main DECA
model to learner model. The learner model is alaméd to handle different occlusion thus helpingdnstructing 3D
faces. This is done from normal pictures withowdirg special 3D information and it works reallyiiieroducing accurate
results. It achieves state-of-the-art shape renact&in accuracy on NoW benchmarks.
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1. Introduction

Three-dimensional (3D) face reconstruction from owrfar images is a key focus in computer
vision, with applications ranging from virtual rigglto facial recognition. Despite significant
advancements, current techniques still strugglle eapturing intricate geometric details, particiylar

in handling facial expressions and occlusions. pvimary approaches have been developed [1]: or
prioritizes high-detail 3D models for accurate mgaition, but these models falter when the face i
partially covered or the image is challenging. Tiker approach emphasizes robustness acro
varying conditions, such as angled views or hidderal features, but sacrifices some level of detai

Over the past two decades, advances have levemgecbmputed 3D face models and neura
network-based approaches [3], including Convolwiddeural Networks (CNNs) and Generative
Adversarial Networks (GANs). However, these methoften fail with occluded or uniquely
illuminated images, sometimes producing unrealisgjbost-like" reconstructions. A persistent
challenge remains in accurately reconstructingdietrils like expression-dependent wrinkles, whict
are crucial for realistic emotion depiction.

Addressing occlusions and refining the balance eetwflexibility and detail in 3D reconstructions
is an ongoing research challenge. Future directiodiside developing models that better handle
occlusions, possibly through context-based learnitog improve the realism and fidelity of

reconstructed facial models.

2. Literature Review

Existing 3D face reconstruction methods often gleitp animate faces realistically due to challenge
in capturing expression-dependent wrinkles and t@uapo real-world conditions. DECA [1]

improves on this by using a low-dimensional repmést®on to predict face details, including
wrinkles, from a single image, achieving statek-art accuracy. However, it struggles with low-
resolution images and lacks exposure to diversditons like varying illumination and occlusions.
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V. Blanz's et. al [2], method focuses on face rettiogn under different angles and lighting butéatt
with occlusions. [3] Technique excels in capturfimg details during complex expressions but alsc
faces challenges with realism.

Deep learning methods for 3D face reconstructidanostruggle due to limited training data with
accurate 3D shape information. Y. Deng et al. ffijrass this with a hybrid loss function and multi-
image reconstruction, improving accuracy and hagdticclusions. Z.-H. Feng et al. [5] focus on
evaluating reconstruction accuracy using a bencktatiaset but lack occluded images.

Ensemble learning, where multiple models are tchiaed averaged, enhances machine learnir
performance but is computationally intensive. Caeu&t al. [6] and Hinton et al. [3] propose
compressing ensemble knowledge into a single madploving efficiency. Hinton’s approach also
introduces a novel ensemble of full and speciafigidels for better accuracy. In 3D face
reconstruction, Tiwari et al. [7] address challengéth occlusions using a context-learning-base:
distillation technique. Their model, trained on locded images, significantly improves landmark
accuracy but struggles with capturing fine geometstails like wrinkles and moles. This researct
advances 3D facial reconstruction, particularlpécluded scenarios.

Estimating 3D face shape from a single image idl@ging due to factors like lighting, pose, and
occlusions. Sanyal et al. [8] introduced RingNehich infers 3D shape by leveraging multiple
images and detected facial features, using a losdibn that ensures consistency across images
the same person. RingNet, evaluated with the neW Mataset, outperforms methods needing 3L
supervision but lacks 2D ear detection and fullyboeconstruction. Kao et al.'s [9] Perspective
Network (PerspNet) tackles challenges of perspeqpinojection by estimating 3D shapes and ¢
Degrees of Freedom (6DoF) pose, showing significaptovements in accuracy and application for
VR/AR.

3. Methodology
3.1 Dataset preparation

For the training of both the learner and teachéE@B) models, the CelebA dataset released b
Tensorflow [10] has been utilized. The choice @& tialanced dataset, encompassing around 181,0
images, has been made to serve as the training fdatthe models. A subset, constituting
approximately a quarter of the total images, hanlaxtracted from this extensive dataset.

3.2 Augmentation and Validation

Building on H. Tiwari et al.'s [7] approach, a ndataset of 45,000 images with various occlusion
was created by introducing arbitrary pixel valuggace images. This dataset helps validate mode
by comparing landmarks between clear and occlutkegés, revealing discrepancies from arbitran
pixels. The dataset's diverse occlusion scenanmd@enhance model robustness in handling rea
world occluded images. It prevents model bias iyguglobal context rather than local pixel values.
During training, the DECA model processes cleargesa while the Learner model works with
occluded versions of the same images, improvingtadity to occlusions.
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Figure I Sample dataset with clear image and occludedenoé
same person

3.3 Training Network

The Learner model is founded on context-based ilegrknowledge distillation. The training
framework for the Learner model is illustrated fre tfigure below. In this framework, the DECA
model functions as the teacher model, while thearheamodel serves as the student model for t
process of knowledge distillation.

DECA IDMM
Input image —
(MAIN) Coefficient
e
Loss
—
Occluded Input Learner 3DMM
p I ]
e Model Coefficient

x

Figure 2: Training Network

DECA [1] is a pre-trained model designed to gereld displacement maps using a compact late
representation, capturing individual-specific dstaind common expressions. It forecasts vario
parameters such as details, shape, color, expnssgiosture, and lighting from a single image, iand
trained on in-the-wild images without paired 3D sryision using datasets like VGGFace2, BUP1
Balancedface, and VoxCeleb2. The ResNet-50 modetseas DECA’s backbone, featuring a fully
connected layer with 236 nodes for coarse recartstruand 128 nodes for detailed reconstructio
The DECA model’'s weights are frozen during Leamedel training.

The determination of the output connection of tlesiRet model is as follows:
v, = ResNetl,)

The Learner model, utilizing ResNet-50, processmsuded or unoccluded input images to genere
coefficients for a 3D Morphable Model (3DMM) usirthe FLAME model. The ResNet-50's
classification layer is expanded to 257 nodes titimhe 3DMM coefficients. Adjustments have bee
made to the fully-connected classification layeithed ResNet-50 by expanding it to encompass 2
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nodes, corresponding to the coefficients represeaseve R?>7. The equation below expresses the
relationship:

v(0) = (1,6)
wheref signifies the network weight.

The training involves knowledge distillation, whate Learner model aims to replicate the DEC/
model's coefficients for occluded images, using Neaquared Error (MSE) loss to minimize
differences between predicted coefficients. Thigragch enhances the Learner model's robustness :
contextual learning capabilities, addressing odstushallenges effectively.

The MSE loss, shown in below equation, quantities comparison. The equation is defined as follow:s

_1m 2
Lgg = M2m=1 Cm

where M represents the number of elements in thowre, and in this particular case, M equals 257
Also ¢ = v, — v) The symbols,, and v stand for the labels predicted by the traamel the learner
models, respectively.

3.4 System Block Diagram

Flame 3D
2D image input ————p Learner model |———p S—— model
gelnp statistical model BRSO

Figure 3: System Block Diagram

The model accepts a 2D input image with dimensair24 x 224 pixels. Upon training, the Learnel
model is capable of processing a single image—vemnettcluded or clear—and generating a 3D mod
with intricate facial geometry. This model captufiee details such as wrinkles, contours, and t&xtu
The detailed 3D face model within the Learner eesialnimation by adjusting parameters related -
facial expressions and jaw pose, as describedijn This statistical model facilitates the creatafra
3D face from features extracted from the 2D inpuage. It not only reconstructs a highly detailed 3I[
face but also allows for the manipulation of fac&dpressions to produce realistic animations
preserving the individual's unique facial charastas.
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4. Result and Discussion
4.1 Qualitative comparisons

Figure 4: a) Original Occluded Image b) Output frDBECA c) Learner model d) 3DDFA V2 e)
MGC Net

As indicated in the preceding comparison, the presef occlusion, particularly involving a hand, i
observed in the image. DECA [1] and other convertionethods demonstrate a limited capacity
effectively manage occlusions within the image. S&muently, these methods attempt to infer ai
complete the occluded portions, leading to leswioming results. In contrast, the Learner model
specifically trained to address occlusions. As sulte it leverages the acquired knowledge durir
training to accurately fill the occluded regionglging more compelling and reliable outcomes.

4.2 Quantitative Evaluation

The NoW challenge, established in the 2019 studgduyyal et al. [8], serves as a benchmark task "
evaluating 3D face reconstruction algorithms. Tdegaset comprises 2,054 face images from 1
distinct individuals, organized into a validatiat with 20 individuals and a test set with 80 indijals.
Each individual has an associated reference 3Ddecae.

The dataset encompasses a diverse array of camgjiiieciuding indoor and outdoor environments
various facial expressions (both neutral and expre} partially obscured faces, and multiple viegvi
angles ranging from frontal to side profile. Toesssalgorithm performance, a standardized evaluat
process is employed, which involves computing tiséadce between all vertices in the reference &
scans and their corresponding points on the reaarietl 3D mesh surface.

Percentage

= LEARNER
DECA

- 3DDFA V2

— MGC Net

o 1 2 3 4 5 6 7

Error [mm)

Figure 5: Cumulative Error Plot
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Table 1: Reconstruction error on the NoW [Sanyall.e2019] benchmark

Method | Median (mm) | Mean (mm) | Std (mm)
3DDFA V2 1.15 1.28 1.26

MGC Net 1.12 1.27 1.23

DECA 1.10 1.26 1.20

LEARNER 1.08 1.20 1.18

5. Conclusion

In conclusion, this work has delved into the irdteerealm of 3D face reconstruction from occlude
images, addressing the formidable challenges pogeazartial or full obstructions in facial data. The
exploration encompassed diverse methodologies,uditeg context-learning-based distillatior
approaches, the synthesis of artificial occlusiasdal datasets, and the utilization of deep learffioing
accurate facial geometry extraction. Motivated bg need for robustness against occlusions, 1
proposed models exhibited promising results, sheimgaadvancements in landmark accuracy a
robust network training. As we move forward, thetggies developed in this work pave the way fi
enhanced 3D face reconstruction methodologies rinffevaluable contributions to the broade
landscape of computer vision and biometrics.

6. Suggestion And Recommendation

While the model has demonstrated success in efédgtaddressing occlusion within input 2D image:
there remains room for enhancement, particulartyaindling extreme poses and expressions. Notak
the current work does not explicitly incorporatmadel for facial hair, causing skin tone to inflaen
the lighting model and attributing facial hair effeto shape deformations. To further refine theelie
capabilities, the inclusion of more diverse dawmdetturing in-the-wild images can expose it to
broader range of variations during training. Howeves crucial to address challenges related !
extreme occlusions, which are not currently handletimally by the existing method. Additionally,
the training dataset’s incorporation of numerous-tesolution images contributes to robustness &
may introduce undesired noise. Exploring stratetpemitigate these limitations will be essential fo
advancing the model’s overall performance and appiliity.
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