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Abstract 

Black-Scholes (BS) equation is a popular mathematical model for determining the value of option in financial derivatives. 
To predict the option value during the contract of the option is a big problem. Several studies have been shown that the 
option price value can be determined by applying different methods. In this paper, we have discussed three finite difference 
methods: Explicit, Implicit and Crank-Nicolson for solving Black-Scholes equation for European call option and compared 
the obtained results with the exact value. It is found that the Crank-Nicolson method is more accurate and cost effective in 
comparison with explicit and implicit methods.  
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1. Introduction 

The Black-Scholes model is a very popular mathematical model in option pricing theory to determine 
the price of options. Before 1973, to predict the value of an option was a really big problem. In 1973, 
Fisher Black and Myron Scholes together addressed this job in a partial differential equation approach 
publishing a paper The price of Options and Corporate Liabilities in the journal: The journal of 
political economy [1]. At the same time Robert. C Merton also solved the problem in the same 
direction [8]. For this great contribution Scholes and Merton were awarded by Novel prize in 1997 
[12]. During the last years, different studies have provided solutions of the equation applying different 
analytical and numerical methods [2], [3], [13]. Black and Scholes derived an analytical solution in 
1973 [1]. Forsyth et al. (1999) used the finite element approach to the pricing of option [13]. Along 
similar lines, Tangman et al. (2008) considered High-Order Compact (HOC) schemes to discretize the 
Black-Scholes PDE for the numerical pricing of European option. Song and Wang (2013) applied 
symbolic calculation software to provide a numerical solution using the implicit scheme of the finite 
difference method. Two years later, Uddin et al. (2015) presented the numerical result of semi-discrete 
and full-discrete schemes for European call option and put option by Finite Difference Method and 
Finite Element Method [13], [12]. Ankudinova and Ehrhardt (2008) analyzed that the Crank-Nicolson 
are the most accurate techniques to price the European call option [12]. Darae et al found a numerical 
solution of Black-Scholes European options without using boundary conditions [5]. A comparative 
result between fully implicit, Crank-Nicolson finite difference methods and Monte-Carlo method is 
found in the paper of Nwozo and Fadugba [10] which concluded that the finite difference methods are 
most accurate and faster than the Monte-Carlo method. 

The Black–Scholes partial differential equation introduced by Black and Scholes to determine the 
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value of European call option is in the form 

 

(1) 

With the boundary and final conditions 

V (0, t) = 0

V (S,t →) S as S ∞→+

V (S, T) = max (S − K,0) 

where V is the value of an option, r is the risk-free interest rate, � is the volatility and S is the price of 
underlying asset at time t. This work focuses on finding the solution of Black-Scholes equation for 
European call option. A European call option is the right but not obligation to purchase an underlying 
asset at the exercise price K at the expiration time T. In fact, Options are the tools against the 
uncertainty of the market. The writer of an option gives its holder right to hedge the risk by limiting 
the loss, for which the writer is paid a premium called the option price [11]. Our purpose is to find the 
option price by solving the Black-Scholes equation using three finite difference schemes: explicit, 
implicit and Crank-Nicolson. We also compare our results with the exact solution.  

2. Numerical Solution  

A closed form solution can be found transforming the BS equation into a heat equation by applying 
suitable substitutions. The transformed heat equation is of the form 

 (2) 

with initial condition 

 . (3) 

The closed form solution [4] of the equation (2) for the European call option is given by 

u(S, t) = S �(d1) – K e− r(T− t)�(d2)

where   is the cumulative distribution function for the standard normal 
distribution and 

.

The numerical values calculated using Matlab program in different cases are given in chapter 3. 

3. Discretization of the Equational Mesh 

Since we cannot numerically solve the BS equation on an infinite domain (0, ∞ ), we truncate the 
infinite domain into a finite domain taking stock price sufficiently large [5]. We discretize the Black-
Scholes equation (1) by dividing the region [0, T] × [0, Smax] into a finite N × M number of grid 
points: 

t0 < t1 < ··· < tmax = T, T = N�t, 

S0 < S1 < ··· < SM, SM = M�S. 
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We approximate the time derivative  by the backward difference approximation 

 

and the spatial derivatives  and  by the central difference approximations for the case of explicit 
method. Then the equation (1) reduces in the form 

 

where Sj = j�S. After few steps simplification, we obtain a system of N equations for M variables of 
the form 

Vi− 1,j = ajVi,j− 1 + bjVi,j + ciVi,j+1,i = N,N − 1,···1; j = 1,2,··· ,M − 1

where 

 

.

In matrix form, this can be written as 

AVi = Vi− 1

The explicit method is conditionally stable. The time step �t should necessarily be small because the 

process is valid only for , that is , and �S should be kept small in order to 
attain reasonable accuracy. But this method seems fast since it requires only previous step values to 
compute current values. The explicit finite method is accurate to O(�t, �S2). Implicit finite difference 
methods are used to overcome the stability issue. There is no more need for ridiculously small time-
steps. For this method, the time derivative is replaced by the forward difference approximation and 
the spatial derivatives are approximated by the central difference approximations. The standard 
system of equations is of the form 

Vi,j = ajVi− 1,j− 1 + bjVi− 1,j + cjVi− 1,j+1 

where 

.
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Figure 1: Discretization of Explicit Method 

The implicit method is unconditionally stable despite the fact that it requires larger computations 
since it requires both current and previous step iteration values to compute present values. From one 
value at time T, three values from time step T − �t should be found, fortunately there are upper and 
lower boundary conditions, so system of equations is made and it can be solved. This kind of 
calculating prices spreads backward until step for present time is reached. 

 

Figure 2: Discretization of Implicit Method 

 

Crank-Nicolson method has been introduced in order to improve accuracy up to O(�t2), by 
combining the explicit and implicit methods. This method is unconditionally stable and accurate than 
the previous methods. For the time derivative the central difference approximation is applied. The 
standard system of equations is given by 

− ajVi− 1,j− −1 + (1  bj)Vi− 1,j − cjVi− 1,j+1 = ajVi,j− 1 + (1 + bj)Vi,j + cjVi,j+1 

where 
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Figure 3: Discretization of Crank-Nicolson Method 

− ajVi− 1,j− −1 + (1  bj)Vi− 1,j − cjVi− 1,j+1 = ajVi,j− 1 + (1 + bj)Vi,j + cjVi,j+1 

where 

 

4. Results and Discussion 

We observed three methods taking different time step sizes �t and stock price step sizes �S. The 
initial price is considered 70 and strike price 85. The risk-free interest is assumed r = 0.1 and the 
volatility rate is taken � = 0.2. Figure (4) shows that all three methods seem stable and convergence 
for respective time step sizes �t but differed by small error, see table 1. For large time step size �t the 
explicit method seems very far from convergence, see figure 5. For �t = 0.0001 the two methods: 
explicit and implicit seems very closer in case of convergence but the implicit method takes large 
amount of computational time, see table 1. The Crank-Nicolson method seems far better than the 
other two methods because for large step size �t = 0.01 the method converges to the exact solutions 
whereas explicit and implicit methods are far from convergence for the small step size �t = 0.0001 
compared to Crank-Nicolson method. 

Table 1: The option values calculated by Exact, explicit, implicit and crank-Nicolson methods 

 Explicit Implicit Crank-Nicolson 

Stock 
Price 

Exact 
Value 

Value Time(S) Value Time(S) Value Time(S) 

70 3.0296 3.0293 0.930 3.0299 0.777 3.0296 0.128 

75 5.1424 5.1419 0.938 5.1418 0.748 5.1421 0.139 

80 7.9141 7.9135 0.917 7.9129 0.754 7.9140 0.136 

85 11.2792 11.2782 0.931 11.2773 0.769 11.2796 0.136 

90 15.1336 15.1326 0.981 15.1316 0.848 15.1341 0.177 

95 19.3632 19.3622 1.053 19.3613 0.971 19.3638 0.184 

100 23.8635 23.8626 1.097 23.8620 1.111 23.8644 0.206 
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Taking the same time step �t = 0.0001 it seems that the two methods give the almost same results but 
the explicit method is faster than the implicit method. The time amount per iteration in implicit 
method is larger than that of the explicit values. 

Table 2: The numerical results by Explicit and Implicit methods taking �t = 0.0001 for both methods. 

Stock Price Explicit Implicit Time(S) 

70 3.0293 3.0294 7.413 

75 5.1419 5.1419 7.315 

80 7.9135 7.9135 7.376 

85 11.2782 11.2782 7.338 

90 15.1326 15.1325 8.218 

95 19.3622 19.3622 9.627 

100 23.8626 23.8627         10.361 

The following graph shows that the three methods converge to the exact values though they represent 
small error. The explicit values are calculated taking �S = 0.5 and �t = 0.0001 whereas for implicit 
method �S = 0.5 and �t = 0.001 are taken and for Crank-Nicolson methods we have assumed �S =
0.5 and �t = 0.01. This implies that explicit method requires comparatively small-time step size (large 
time mesh) for the convergence. 

 

Figure 4: Graphical Representation of Exact, Explicit, Implicit and Crank-Nicolson 
Values 

The following graph shows the divergence character of explicit method for comparatively large step 
size �t = 0.001. 
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Figure 5: Exact vs Explicit Values 

 

5. Conclusion 

We have applied three finite difference methods: explicit, implicit and Crank-Nicolson to solve the 
Black-Scholes partial differential equation for the European call option and compared the obtained 
results with the exact solution. To calculate the numerical values, we have used Matlab15 version on 
our own 64bit core i5 laptop. From the experiment, we observed that the explicit method is fast 
despite the fact that it requires very large time-price mesh. The implicit method is unconditionally 
stable but requires large computational time in each calculation. The Crank-Nicolson method is better 
than these two methods. It is fast and stable too. In future, my interest is to find the numerical solution 
of the Black-Scholes equation for European option with non-constant volatility and interest rate. 
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