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Abstract: 

In this article, we begin with Riesz potential. We then discuss some properties of the Riesz potential. Finally we discuss a 
relation of  Riesz Potential with fractional maximal function in the sense that fractional maximal function can be controlled by 
Riesz potential and the fractional  maximal function maps  the space �� to ��whenever the Riesz potential does. 
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1.  Introduction 

Riesz Potential is a potential in mathematics which is named after the Hungarian Mathematician Marcel 
Riesz. Let s be a complex number whose real part is greater than zero.  Then Riesz Potential of order s 

is denoted by �� and is defined as  �� � ��	
�� where 	 is Laplacian operator given by  	� ��� � ��
����
Moreover, the Riesz Potential ��, associated with a locally integrable function f on �� is defined as: 
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We note that the above singular integral is well defined if f decays sufficiently rapidly at infinity.Thus 
the above integral is convergent if the function � is in the Schwartz class where the Schwartz Class, 
roughly speaking, is the collection of smooth function whose all of the derivatives decay faster than the 
reciprocal of any polynomial at infinity. 
More generally the Riesz potential can be defined  in a weak sense as the convolution ����
 � � & '�
where '� is the locally integrable function given by 
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Readers are suggested to refer [3] for more about Riesz potential. 

With the introduction of maximal functions one can better understand the concept of averages of 
functions inanalysis. Maximal functions are widely used in differentiation theory in analysis. Roughly 
the maximal function is defined as the largest value of the averages of functions over all possible balls 
which contain a fixed point. Maximal functions appear in many forms. The most important of these is 
the Hardy�Littlewood maximal function. We now define Hardy-Little wood maximal function:  
 
Let � ) ���*�
+ ( , - . /� Let  
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Then 0�is called the Hardy-Littlewood maximal function of �. In the definition ofmaximal function, 
all the balls are centered at the point � Therefore, this is centered Hardy-Littlewoodmaximal function. 
Similarly, we can define uncentered Hardy-Littlewood maximal as: 
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One can easily show that the centered and uncentered H-L maximal functions are equivalent in the 
sense that value of these functions is controlled by each other up to some constant. Moreover, the 
Hardy-Little wood maximal functions can also be defined using cubes in *��
For < , = . >+ one can define another maximal function as: 
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where @� is the volume of the unit ball in *�� Due to the fraction power  
���
� , this maximal function is 

called  fractional maximal function. Readers are suggested to refer [3] and [2] for more about these 
maximal functions. 
The fractional maximal function and Riesz potential are related in various ways. Adams [1] showed 
that: 

2.  Theorem:  Let = D <+ ( . - . �
� + ( , E . / such that 

�
4 �

�
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� �

��
��� Then there exists a 

constant F D < (depending on the previous parameters) such that for all positive functions � we have  
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G.V. Welland [4] showed that: 
3.  Theorem: Let < . M . > and suppose < . N . OPQ�M+ > � M
� Then there exists a constant 
depending only on M+ N and n such that for all compactly supported bounded function f we have  
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�

Next, we discuss some properties related to Riesz potential. 
(1) Let < . =+ A . ! be such that = � A . >. Then Riesz potential satisfies ���? � ��"?� This property is 
called semi group  property. For this, consider a function � ) W�*�
where W�*�
denotes Schwartz 
class. Then by definition, we have  
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where the symbol �̂ denotes the Fourier transform of �. Again, 
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Therefore we have  ��"?X ��
 � ��_�?��
`] for all functions ) W�*�
 . This gives���? � ��"?�
This proves the semigroup property. We now discuss another property. 
 
(2)Riesz potential satisfies the following operator identity: 

����Z
a � ��Z
a�� � ����a � ��Z
a��


whenever �b	= D �	�b	c� 
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For this, we have �b�= � �c
 D <� Then 
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Clearly we have  
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Again we have 
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Similarly we can show: 
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So we have  
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This gives  
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(3) For all complex number c, we have e��!
a��
|��!
a�f
g � e�|fg whenever the  Fourier 
transforms of f and g vanish to sufficiently high order at the origin and the symbol eh|ig denotes the 
complex inner product. 
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We now discuss another property of Riesz potential. 

(4) Given �b	= D <+ then we find a complex number M such that 〈����
|�〉 � m��!
U��
] mH
�

whenever 

Fourier transform of � vanishes to sufficiently high order at origin. For this, we have 
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This gives:  

�o���|Y|
�� � ���|Y|
�nU		pR�̂�Y
R� %Y � <� 

This is possible only when we have ���|Y|
��	 � ���|Y|
�nU		 � < i.e. ���|Y|
��	 � ���|Y|
�nU		.Thus 
we have qM � =� Hence we get M � �

n�
Finally we establish the following result related to fractional maximal function and Riesz potential: 

For some constant F we have 0���
 , F	����
 for all � r <� Moreover, the fractional maximal 
function 0� maps the space ��to �� whenever the Riesz potential �� does. 

For � r <+ ����
��
 � F�>+ =
 s ��� �  
| |��"�#� %  where F�>+ =
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where F � �

�u�

���
�
� Now taking supremum over all A D <+ we have 0���
��
 , F	����
��
 for every  �

and for every � r <� Therefore 0���
 , F	����
 for every � r <� 
Next suppose that �� maps ��to ��� One can easily show that for some constant C, ‖����
‖HL ,
F ‖�‖HK for � ) ��� Now for any � ) �� we have  

‖0���
‖HL � v� |0���
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|�%�w
x
K

, v� |F	����
��
|�%�w
x
K

� F	‖����
‖HK
, Fy	‖�‖HL�

This proves that the fractional maximal function 0� maps the space ��to space �� whenever Riesz 
potential does. This proves the result. 
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4.  Conclusion: We discussed some properties of Riesz potential with their proof. Moreover, we 
also related Riesz potential with the fractional maximal function. 
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