PROPERTIES RELATED TO WEIGHT FUNCTION

Vinod Parajuli¹ and Santosh Ghimire²

¹Assoc.Professor, Department of Science & Humanities, IOE, Pulchowk Campus, T.U.

Email Address: vparajuli@hotmail.com

²Department of Science & Humanities, IOE, Pulchowk Campus, T.U.

Email Address: santoshghimire@ioe.edu.np

Abstract

In this paper, we begin with brief discussion of theory of weights and A_p weight functions. We then state and prove some of the properties of A_P weight function using elementary analysis tools.

Key words: A_1 weight function, Maximal functions, A_p weight function, Holder's Inequality.

1. Introduction

The theory of weight are useful in boundary value problems for Laplace's equation and are much needed in extrapolation theory, vector-valued inequalities and estimates for certain class of non linear differential equation. Muckenhoupt (1970) characterized positive functions w for which the Hardy-Littlewood maximal operator M maps $L_p(R^n, w(x)dx)$ to itself. Muckenhoupt's characterization actually gave the better understanding of theory of weighted inequalities which then led to the introduction of A_p class and consequently the development of weighted inequalities [4]. To prove the results, some definition and results are in order:

Definition: The uncentered Hardy-Littlewood maximal operators on \mathbb{R}^n over balls B is defined as

$$M(f)(x) = \sup_{x \in B} \text{Avg} |f| = \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y)| dy.$$

Similarly the uncentered Hardy-Littlewood maximal operators on Rⁿ over cubes Q is defined as

$$M_c(f)(x) = \sup_{x \in Q} \operatorname{Avg} |f| = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| dy.$$

In each of the definition above, the suprema are taken over all balls B and cubes Q containing the point x. H-L maximal functions are widely used in Harmonic Analysis. For the details about the H-L maximal operators, see [1].

Definition: A locally integrable function on \mathbb{R}^n that takes values in the interval $(0,\infty)$ almost everywhere is called a weight. So by definition a weight function can be zero or infinity only on a set whose Lebesgue measure is zero.

Definition: A function w(x)>0 is called an A_1 weight if there is a constant $C_1>0$ such that

$$M(w)(x) \le C_1 w(x)$$

where M(w) is uncentered Hardy-Littlewood Maximal function given by

$$M(w)(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} w(t)dt.$$

If w is an A₁ weight, then the quantity (which is finite) given by

$$[w]_{A_1} = \sup_{Q \text{ cubes } in \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q |w(t)| dt \right) ||w^{-1}||_{L^{\infty}(Q)}$$

is called the A₁ characteristic constant of w.

Definition: Let $1 . A weight w is said to be of class <math>A_p$ if $[w]_{A_p}$ is finite where $[w]_{A_p}$ is defined as

$$[w]_{A_p} = \sup_{Q \text{ cubes in } \mathbb{R}^n} \left(\frac{1}{|Q|} \int_{Q} |w(x)| dx \right) \left(\frac{1}{|Q|} \int_{Q} |w(x)|^{\frac{-1}{p-1}} dx \right)^{p-1}.$$

We note that in the above definition of A_1 and A_p one can also use set of all balls in \mathbb{R}^n instead of all cubes in \mathbb{R}^n .

Finally, we state and prove some of the properties of weight functions:

Property 1: Let w_1 and w_2 be two A_1 weights and let $1 . Then <math>w_1 w_2^{1-p}$ is an A_p weight and $[w_1 w_2^{1-p}]_{A_p} \le [w_1]_{A_1} [w_2]_{A_1}^{p-1}$.

Proof: For every cube Q in \mathbb{R}^n , we have

$$\begin{split} \left(\frac{1}{|Q|}\int_{Q} \ w_{1}w_{2}^{1-p}dx\right) \left(\frac{1}{|Q|}\int_{Q} \ (w_{1}w_{2}^{1-p})^{\frac{-1}{p-1}}dx\right)^{p-1} \\ \leq \left(\frac{1}{|Q|}\int_{Q} \ w_{1} \ \left\|w_{2}^{-1}\right\|_{\mathrm{L}\infty(\mathbb{Q})}^{p-1}dx\right) \left(\frac{1}{|Q|}\int_{Q} \ \left\|w_{1}^{-1}\right\|_{\mathrm{L}\infty(\mathbb{Q})}^{1/(p-1)} w_{2}\,dx\right)^{p-1} \\ = \ \left\|w_{2}^{-1}\right\|_{\mathrm{L}\infty(\mathbb{Q})}^{p-1} \left(\frac{1}{|Q|}\int_{Q} \ w_{1}\,dx\right) \left\|w_{1}^{-1}\right\|_{\mathrm{L}\infty(\mathbb{Q})} \left(\frac{1}{|Q|}\int_{Q} \ w_{2}\,dx\right)^{p-1} \end{split}$$

Taking supremum on both sides, we have

$$\begin{split} \sup_{Q} \left[\left(\frac{1}{|Q|} \int_{Q} \ w_{1} w_{2}^{1-p} dx \right) \left(\frac{1}{|Q|} \int_{Q} \ (w_{1} w_{2}^{1-p})^{\frac{-1}{p-1}} dx \right)^{p-1} \right] \\ & \leq \sup_{Q} \left[\left\| w_{2}^{-1} \right\|_{L^{\infty}(\mathbb{Q})}^{p-1} \left(\frac{1}{|Q|} \int_{Q} \ w_{1} \ dx \right) \left\| w_{1}^{-1} \right\|_{L^{\infty}(\mathbb{Q})} \left(\frac{1}{|Q|} \int_{Q} \ w_{2} \ dx \right)^{p-1} \right] \\ & \leq \sup_{Q} \left[\left(\frac{1}{|Q|} \int_{Q} \ w_{1} \ dx \right) \right] \left\| w_{1}^{-1} \right\|_{L^{\infty}(\mathbb{Q})} \cdot \sup_{Q} \left[\left(\frac{1}{|Q|} \int_{Q} \ w_{2} \ dx \right)^{p-1} \right] \left\| w_{2}^{-1} \right\|_{L^{\infty}(\mathbb{Q})}^{p-1} \end{split}$$

This shows that $[w_1w_2^{1-p}]_{A_p} \leq [w_1]_{A_1}[w_2]_{A_1}^{p-1}$. Consequently, we have $w_1w_2^{1-p} \in A_p$.

Next we state and prove another property:

Property 2: Let $w_0 \in A_{p_0}$ and $w_1 \in A_{p_1}$ for some $1 \le p_0, p_1 < \infty$. Let $0 \le \theta \le 1$ and define $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_0}$ and $w^{\frac{1}{p}} = w_0^{\frac{1-\theta}{p_0}} w_1^{\frac{\theta}{p_1}}$. Then w is in A_p showing that $[w]_{A_p} \le [w_0]_{A_{p_0}}^{(1-\theta)\frac{p}{p_0}} [w_1]_{A_{p_1}}^{\frac{\theta p}{p_1}}$.

Proof: Let p', p'_0 and p'_1 be the conjugate exponent of p, p_0 and p_1 respectively. We have,

This gives

$$1 - \frac{1}{p'} = (1 - \theta) \left(1 - \frac{1}{p_0'} \right) + \theta \left(1 - \frac{1}{p_1'} \right).$$

Simplifying the above relation we get

From (1) and (2) we immediately get,

$$1 = \frac{1}{\frac{p_0}{1-\theta}} + \frac{1}{\frac{p_1}{\theta}} \text{ and } 1 = \frac{1}{\frac{p_0'}{1-\theta}} + \frac{1}{\frac{p_1'}{\theta}}$$

Given a cube Q in \mathbb{R}^n , we apply Holder's inequality with the exponent $\frac{p_0}{1-\theta}$ and $\frac{p_1}{\theta}$ to obtain

$$\frac{1}{|Q|} \int_{Q} w = \frac{1}{|Q|} \int_{Q} w_0^{\frac{(1-\theta)p}{p_0}} w_1^{\frac{\theta p}{p_1}}$$

$$\leq \left(\frac{1}{|Q|} \int_{Q} w_0\right)^{\frac{(1-\theta)p}{p_0}} \left(\frac{1}{|Q|} \int_{Q} w_1\right)^{\frac{\theta p}{p_1}}.$$

These yields

$$\frac{1}{|Q|} \int_{Q} w \le \left(\frac{1}{|Q|} \int_{Q} w_{0}\right)^{\frac{(1-\theta)p}{p_{0}}} \left(\frac{1}{|Q|} \int_{Q} w_{1}\right)^{\frac{\theta p}{p_{1}}} -----(3)$$

We again apply Holder's inequality with the exponent $\frac{p_0'}{1-\theta}$ and $\frac{p_1'}{\theta}$ to obtain

$$\begin{split} \left(\frac{1}{|Q|}\int_{Q} \ w^{-\frac{p'}{p}}\right)^{\frac{p}{p'}} &= \left(\frac{1}{|Q|}\int_{Q} \ w_{0}^{\frac{-(1-\theta)p'}{p_{0}}}w_{1}^{\frac{-\theta p'}{p_{1}}}\right)^{\frac{p}{p'}} \\ &\leq \left[\left(\frac{1}{|Q|}\int_{Q} \ w_{0}^{\frac{-p_{0}'}{p_{0}}}\right)^{\frac{(1-\theta)p'}{p_{0}}} \left(\frac{1}{|Q|}\int_{Q} \ w_{1}^{\frac{-p_{1}'}{p_{1}}}\right)^{\frac{\theta p'}{p_{1}}}\right]^{\frac{p}{p'}} \\ &= \left(\frac{1}{|Q|}\int_{Q} \ w_{0}^{\frac{-p_{0}'}{p_{0}}}\right)^{\frac{(1-\theta)p}{p_{0}}} \left(\frac{1}{|Q|}\int_{Q} \ w_{1}^{\frac{-p_{1}'}{p_{1}}}\right)^{\frac{\theta p}{p_{1}}} \end{split}$$

$$= \left[\left(\frac{1}{|Q|} \int_{Q} w_{0}^{\frac{-p_{0}'}{p_{0}}} \right)^{\frac{p_{0}}{p_{0}'}} \right]^{\frac{(1-\theta)p}{p_{0}}} \left[\left(\frac{1}{|Q|} \int_{Q} w_{1}^{\frac{-p_{1}'}{p_{1}}} \right)^{\frac{p_{1}}{p_{1}'}} \right]^{\frac{\theta p}{p_{1}}}.$$

Consequently we get,

Now multiplying (3) and (4), we have

$$\begin{split} \left(\frac{1}{|Q|} \int_{Q} w\right) \left(\frac{1}{|Q|} \int_{Q} w^{-\frac{p'}{p}}\right)^{\frac{p}{p'}} &\leq \left(\frac{1}{|Q|} \int_{Q} w_{0}\right)^{\frac{(1-\theta)p}{p_{0}}} \left[\left(\frac{1}{|Q|} \int_{Q} w_{0}^{-\frac{p_{0}'}{p_{0}}}\right)^{\frac{p_{0}}{p_{0}'}}\right]^{\frac{(1-\theta)p}{p_{0}}} \\ &\times \left(\frac{1}{|Q|} \int_{Q} w_{1}\right)^{\frac{\theta p}{p_{1}}} \left[\left(\frac{1}{|Q|} \int_{Q} w_{1}^{-\frac{p_{1}'}{p_{1}}}\right)^{\frac{p_{1}}{p_{1}'}}\right]^{\frac{\theta p}{p_{1}}} \\ &\leq \left[w_{0}\right]_{A_{p_{0}}}^{(1-\theta)\frac{p}{p_{0}}} \left[w_{1}\right]_{A_{p_{1}}}^{\frac{\theta p}{p_{1}}} \end{split}$$

Now taking supremum over all cubes Q in \mathbb{R}^n , we have $w \in A_p$.

There are other properties of A_p which can be proved using the elementary analysis tools. For more about the weight function and related properties, please refer [2], [3], and [5].

Conclusion

We studied weight functions and we proved some important properties of these weight functions using the elementary analysis tools.

References

- 1. Banelos R. and Moore C.N, "*Probabilistic Behavior of Harmonic Functions*", Birkhauser Verlag, USA, (1991).
- 2. Ghimire S., Two Different Ways to Show a Function is an A₁ Weight Function, "The Nepali Mathematical Sciences Report", 33(1), (2014).
- 3. Ghimire S., Weighted Inequality, "Journal of Institute of Engineering", 10(1), (2014).
- 4. Grafakos Loukas, "Modern Fourier Analysis", Second Edition, Springer, (2009).
- 5. Parajuli V. and Ghimire S., Product of A_p weight functions, "*Journal of Institute of Engineering*", 11(1), (2015).